
A Hyper-heuristic with a Round Robin
Neighbourhood Selection

Ahmed Kheiri and Ender Özcan

University of Nottingham, School of Computer Science
Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK

axk, exo@cs.nott.ac.uk

Abstract. An iterative selection hyper-heuristic passes a solution through
a heuristic selection process to decide on a heuristic to apply from a fixed
set of low level heuristics and then a move acceptance process to accept
or reject the newly created solution at each step. In this study, we in-
troduce Robinhood hyper-heuristic whose heuristic selection component
allocates equal share from the overall execution time for each low level
heuristic, while the move acceptance component enables partial restarts
when the search process stagnates. The proposed hyper-heuristic is im-
plemented as an extension to a public software used for benchmarking
of hyper-heuristics, namely HyFlex. The empirical results indicate that
Robinhood hyper-heuristic is a simple, yet powerful and general multi-
stage algorithm performing better than most of the previously proposed
selection hyper-heuristics across six different Hyflex problem domains.

1 Introduction

A hyper-heuristic is a heuristic that performs a search over a space of heuristics,
as opposed to space of solutions directly. Although the term hyper-heuristic
was coined recently, the idea of combining the strengths of different heuristics
(neighbourhood operators) dates back to the 1960s [1]. An aim of the hyper-
heuristic research is to raise the level of generality by providing a high level
strategy that is applicable across different problem domains rather than a single
one. There are two main types of hyper-heuristics in the academic literature:
methodologies used for generation or selection of heuristics [2–4].

A selection hyper-heuristic methodology combines heuristic selection and
move acceptance processes under a single point search framework [5–9]. A can-
didate solution is improved iteratively by selecting, applying a heuristic (neigh-
bourhood operator) from a set of low level heuristics, then passing the new
solution through move acceptance to replace the solution in hand at each step.
[10, 2] are the recent surveys on hyper-heuristics. In this study, a new simple
selection hyper-heuristic is introduced and tested across a variety of problem
domains using Hyflex (Hyper-heuristics Flexible framework) [11], a software tool
for hyper-heuristic development and research.

2 Ahmed Kheiri and Ender Özcan

1.1 Hyflex

Hyflex provides an interface for the implementation of not only hyper-heuristics
but also other (meta)heuristics and problem domains. Any problem domain de-
veloped for Hyflex is required to define a set of low level heuristics (neighobour-
hood operators) which should be classified as mutational (MU), hill climbing
(HC), ruin and re-create (RC) or crossover (XO). A mutational heuristic makes
a random perturbation producing a new solution and this process does not nec-
essarily generate an improvement over the input solution. Local search or hill
climbing is often an iterative procedure searching different neighbourhoods start-
ing from a given solution. A ruin and re-create operator produces a partial solu-
tion from a given complete solution and then rebuilds a new complete solution.
Crossover is a well known operator in evolutionary computation, which takes
two solutions and produces a new solution. In general, crossover yields two new
solutions and the best new solution is returned in Hyflex.

HyFlex provides utilities to control the behaviour of some low level heuristics
to a limited extent. It is possible to increase or decrease the intensity of some mu-
tational and ruin and re-create operations by adjusting a control parameter from
0.0 to 1.0. Changing the value of the intensity parameter could mean changing
the range of new values that a variable can take in relation to its current range
of values or changing the number of solution variables that will be processed by
a heuristic. There is also another similar control parameter for some local search
operators for changing the depth of search which relates to the number of hill
climbing steps.

HyFlex currently provides an implementation of six minimisation problem
domains: Boolean Satisfiability (MAX-SAT), One Dimensional Bin Packing (BP),
Permutation Flow Shop (PFS), Personnel Scheduling (PS), Travelling Salesman
Problem (TSP) and Vehicle Routing Problem (VRP) each with different in-
stances and a set of low-level heuristics. The nature of each low level heuristic
for each Hyflex problem domain is summarised in Table 1. Currently, there are
12 different instances for the first four problem domains and 10 for the last two
problem domains. What is left is to design and implement a high-level strategy
(hyper-heuristic) that intelligently selects and applies suitable low-level heuris-
tics from the set provided to each instant from the given domain to get the
minimum objective function value in ten minutes. Hyflex was used for Cross-
domain Heuristic Search Challenge (CHESC)1 in 2011. The hyper-heuristics
entered into this competition and made it to the finals serve as a benchmark for
newly developed hyper-heuristics targeting generality.

2 Related Work

There is a growing number of work on selection hyper-heuristics which have been
designed and tested using hyflex. Before CHeSC 2011 (Cross-Domain Heuristic

1 http://www.asap.cs.nott.ac.uk/chesc2011/

A Hyper-heuristic with a Round Robin Neighbourhood Selection 3

Table 1. The nature of the low level heuristics used in each problem domain. The bold
entries for each problem domain mark the last low level heuristic of each type

Heuristic IDs LLH0 LLH1 LLH2 LLH3 LLH4 LLH5 LLH6 LLH7

MAX-SAT MU0 MU1 MU2 MU3 MU4 MU5 RC0 HC0

Bin Packing MU0 RC0 RC1 MU1 HC0 MU2 HC1 XO0

PS HC0 HC1 HC2 HC3 HC4 RC0 RC1 RC2

PFS MU0 MU1 MU2 MU3 MU4 RC0 RC1 HC0

TSP MU0 MU1 MU2 MU3 MU4 RC0 HC0 HC1

VRP MU0 MU1 RC0 RC1 HC0 XO0 XO1 MU2

Heuristic IDs LLH8 LLH9 LLH10 LLH11 LLH12 LLH13 LLH14

MAX-SAT HC1 XO0 XO1

PS XO0 XO1 XO2 MU0

PFS HC1 HC2 HC3 XO0 XO1 XO2 XO3

TSP HC2 XO0 XO1 XO2 XO3

VRP HC1 HC2

Search Challenge), a mock competition was organised with hyflex and the perfor-
mance of several well known previously proposed hyper-heuristics were compared
across a subset of CHeSC problem domains. Burke et al. [12] reported that the
best performing hyper-heuristic was an iterated local search approach which ap-
plied a randomly selected mutational and ruin and re-create heuristic and then
the hill climbers in a predefined sequence. This framework is based on the most
successful hyper-heuristic framework reported to perform the best in [8]. Özcan
and Kheiri [13] provide a greedy heuristic selection strategy named dominance-
based heuristic selection which aims to determine low level heuristics with good
performance based on the trade-off between the change (improvement) in the
solution quality and the number of steps taken. The approach attempts to re-
duce the number of low level heuristics. It performs well with respect to the
mock competition hyper-heuristics on four problem domains of HyFlex. Nguyen
et al. [14] tested an evolutionary approach to generate hyper-heuristics across
three HyFlex problem domains and according to the experimental results, they
obtained only one improving solution over the top two hyper-heuristics from the
mock competition.

In the mock competition, each algorithm was run for once for each instance,
while 31 runs were performed in CHeSC and the median results were compared
to determine the best performing hyper-heuristic among the CHeSC partici-
pants generalising well across all six (four public and two hidden) HyFlex prob-
lem domains given 10 minutes of execution time per instance. The algorithm
description of the approaches developed by CHeSC competitors are provided
in (http://www.asap.cs.nott.ac.uk/external/chesc2011/results.html). The win-
ner of the competition, denoted as AdapHH was a hyper-heuristic which com-
bines a learning adaptive heuristic selection method with an adaptive iteration
limited list-based threshold move accepting method ([15]). This hyper-heuristic
does not make use of the type information provided for the low level heuristics.

4 Ahmed Kheiri and Ender Özcan

A hyper-heuristic based on Variable Neighborhood Search (VNS-TW) ranked
the second at the competition [16]. This approach applies shaking heuristics fol-
lowed by hill-climbers to solve the problems. The third ranking algorithm (ML)
was based on a self-adaptive meta-heuristic using multiple agents. The fourth
approach (PHUNTER) was inspired by the pearl hunting utilising two phases
diversification and intensification. The fifth hyper-heuristic (EPH) was based
on evolutionary programming which evolves population of solutions and heuris-
tics. The other hyper-heuristics were inspired from well known population based
and single point-based search metaheuristics: Iterated Local Search driven by
Evolutionary Algorithms (ISEA) [17], Hybrid Adaptive Evolutionary Algorithm
(HAEA), Genetic Hive Hyper-heuristic (GenHive), Ant Colony Optimization
based hyper-heuristic (ACO), Simulated Annealing Hyper-Heuristic with Re-
inforcement Learning and Tabu-Search (KSATS-HH), Reinforcement Learning
(AVEG-Nep) [18] and Generic Iterative Simulated-Annealing Search (GISS).
More on these approaches can be found at the competition webpage.

After the CHeSC 2011 competition, a number of researchers attempted to
improve previously proposed hyper-heuristics. Kalender et al. [19] proposed a
hyper-heuristic which combines a learning greedy gradient approach for heuris-
tic selection and simulated annealing move acceptance. The results show that
this approach performs slightly better than a Choice Function hyper-heuristic
whose performance is improved by Drake et al. [20] substantially with a mi-
nor adjustment. Although, these approaches improved the performance of the
traditional Choice Function and Greedy hyper-heuristics on HyFlex problem do-
mains, their performances still on average as compared to the hyper-heuristics
of CHeSC competitors. In [21, 22], the authors proposed an adaptive neighbour-
hood iterated local search algorithm based on Hyflex and its variant.

The proposed hyper-heuristic in this study is also implemented as an exten-
sion to HyFlex. Its performance is compared to the mock competition hyper-
heuristics as well as hyper-heuristics provided by the CHeSC competitors.

3 Methodology

This study introduces a multi-stage selection hyper-heuristic framework based on
a round-robin neighbourhood selection mechanism (Algorithm 1). This frame-
work gives a chance for each low level heuristic in a selected subset of low level
heuristics to execute for a certain duration at a stage. A low level heuristic is
chosen in a round robin fashion. Depending on the strategy whole set of low
level heuristics can be used and the order of low level heuristics can be fixed
or varied. Any move acceptance method could be used within this framework.
We describe an easy-to-implement yet powerful selection hyper-heuristic based
on this framework which will be referred to as Robinhood hyper-heuristic in this
section. The Robinhood hyper-heuristic is implemented for Hyflex accommodat-
ing performance testing across domain implementations and comparison to the
top hyper-heuristics competed in CHeSC.

A Hyper-heuristic with a Round Robin Neighbourhood Selection 5

Algorithm 1 Robinhood hyper-heuristic framework

1: procedure Robinhood
2: initialise();
3: while (terminationCriteriaNotSatisfied1()) do ◃ e.g., terminate when the

given overall execution time is exceeded
4: update1(); ◃ set/update relevant parameter/variable values before entering

into a stage or no-op
5: for (i =nextLowLevelHeuristicID()) do ◃ entry of the stage
6: while (terminationCriteriaNotSatisfied2()) do ◃ e.g., terminate when

the given time for a heuristic is exceeded
7: S′ =applyLLH(i, S); ◃ S and S′ are the current and new solutions,

respectively
8: moveAcceptance(S, S′);
9: end while
10: update2(); ◃ set/update relevant parameter/variable values after

employing a low level heuristic or no-op
11: end for
12: update3(); ◃ set/update relevant parameter/variable values after a stage

or no-op
13: end while
14: end procedure

The Robinhood hyper-heuristic is composed of components inspired from
previously proposed approaches. The heuristic selection methods presented by
Cowling et al. [6] includes Random Permutation and Random Permutation Gra-
dient. This method applies a low level heuristic one at a time sequentially in a
randomly generated permutation order. Random Permutation Gradient operates
in the same with a minor change that is as long as the chosen heuristic makes
an improvement in the current solution the same heuristic is employed. Given a
time limit of t (Algorithm 1, line 3), and n low level heuristics, the Robinhood
hyper-heuristic fixes the number of stages as k and applies all low level heuris-
tics (line 5) to the current solution in a given order for t/(n.k) time unit at a
stage (line 6). Hyflex does not provide any annotation for the low level heuristics
in a given domain, indicating whether they operate on a given solution with a
stochastic or deterministic approach. Although this could be detected with a
level of certainty using some initial tests over the set of heuristics, we assumed
that all operators are stochastic and so each heuristic is given an equal amount
of time to process a given solution at each stage.

We classified all ruin and re-create low level heuristics provided in a given
problem domain as mutational heuristics, since Hyflex does not provide any in-
dication whether a ruin and re-create heuristic is a mutational or local search
operator. The proposed hyper-heuristic aims to use all low level heuristics as-
suming that the domain implementers chose reasonable heuristics which will not
be misleading for the search process. Consequently, we randomly order the low
level heuristics within each group of heuristics: mutational, crossover and hill
climbing. Inspired from memetic algorithms [23, 24], in which solutions are im-

6 Ahmed Kheiri and Ender Özcan

proved through successive application of mutation, crossover and hill climbing,
the Robinhood hyper-heuristic uses the same ordering of groups and randomly
fixing the ordering of heuristics within each group at a stage. There is also
a strong empirical evidence in the literature that this ordering is a good choice
even for selection hyper-heuristics as reported in [12, 8]. Our hyper-heuristic uses
the same ordering in the subsequent stage if there is an improvement in the so-
lution quality at a given stage. Otherwise, without changing the group ordering,
another random ordering of low level heuristics within each group is generated
for the subsequent stage.

In this study, we discretised the choices for the control parameters provided
in Hyflex into five different levels of intensity and depth of search: {0.1, 0.3, 0.5,
0.7, 0.9}. A low level heuristic with the chosen parameter setting is treated as
a different heuristic, hence producing five heuristics instead of one. Crossover
operator is not commonly used by single point-based search techniques. In order
to be able to apply a crossover heuristic, an extra solution (argument) is required.
In our approach, the current solution is always used as one of the solutions passed
to the crossover operator. To decide on the second solution, we used a circular
queue containing M best solutions so far. Again, the round robin strategy is
employed. A pointer is used to indicate which solution will be used from this
queue during crossover. After a crossover operation, the pointer advances to the
next item in the list for the next crossover.

A modified version of the adaptive acceptance method in [12] is introduced
for the move acceptance. This acceptance method accepts all improvements as
usual, but the deteriorations are accepted with respect to an adaptively chang-
ing rate, denoted as acceptanceRate. Assuming a minimisation problem, let f(x)
denote the quality of a given solution x, then if f(S′) is less than f(S), then S′ is
accepted, otherwise S′ is accepted with a uniform probability of acceptanceRate
(Algorithm 1, line 8). Initially, only strictly improving moves are accepted. How-
ever, if the solution does not improve for one stage, only the moves generating
improving or equal quality new solutions are accepted. If the solution does not
improve for another following stage, then threshold move acceptance is activated
based on acceptanceRate. A reinforcement learning mechanism is used for adapt-
ing the value of acceptanceRate. If the solution gets stuck at a local optimum for
a given stage, then acceptanceRate is increased by a δ value for the next stage,
making it more likely that a worsening solution is accepted. Conversely, if the
solution in hand worsens in a given stage, then the acceptanceRate is reduced
by δ, making it less likely for a worsening solution to be accepted. the value of
δ is fixed arbitrarily as 0.01 during the experiments. The acceptanceRate value
updates are intended to help the search navigate out of local optima, and focus
the search if it is progressing well.

4 Empirical Results

In all the cases, a run terminates after t = 600 seconds or equivalent to 10
minutes as the competition requires. The equivalent value is obtained using the

A Hyper-heuristic with a Round Robin Neighbourhood Selection 7

benchmarking tool provided at the competition website. Initial experiments are
performed for parameter tuning of number of stages, k. Testing different values of
k = {1, 2, 10, 20, 30, ..., 100, 200, 300, 1000} revealed that the best k value is 200
in the current. Due to the memory limitation, the size of the stored solutions M
has fixed arbitrarily as 50. The Formula1 scoring system is used for comparing
the performance of hyper-heuristics. The top hyper-heuristic receives 10 points,
the second one gets 8 and then 6, 5, 4, 3, 2, 1, respectively. The remaining
approaches get zero point. These points are accumulated as a score for a hyper-
heuristic over all instances.

4.1 Performance comparison to the mock competition
hyper-heuristics

The performance of the Robinhood hyper-heuristic (RHH) is compared to the
performances of eight different previous hyper-heuristics (HH1-HH8) across four
problem domains, each with 10 different instances, as provided for the mock
competition at:
www.asap.cs.nott.ac.uk/external/chesc2011/defaulthh.html
The problem domains used in the mock competition are Boolean Satisfiability
(MAX-SAT), One Dimensional Bin Packing (BP), Personnel Scheduling (PS)
and Permutation Flow Shop (PFS). A single run is performed using each problem
instance in the mock competition.

The Robinhood selection hyper-heuristic outperforms the mock competition
hyper-heuristics with a Formula 1 score of 264.25 in the overall (Figure 1). It
obtains the best results in 7 out of 10 instances with 2 draws in the MAX-SAT
and with no draws in the 1D Bin Packing. In the personnel scheduling problem,
RHH produces the best results in 2 instances. RHH delivers a relatively poor
performance in the permutation flow shop problem domain as compared to its
performance on the other domains. RHH is the winner in the MAX-SAT and
1D Bin Packing problem domains and looses to the other hyper-heuristics in the
rest of the problem domains.

HH1
HH4RHH

RHH

RHH

0

50

100

150

200

250

300

MAX-SAT 1D Bin

Packing

Personnel

Scheduling

Permutation

Flow Shop

Overall

HH1

HH2

HH3

HH4

HH5

HH6

HH7

HH8

RHH

Score

Fig. 1. Comparisons of the different hyper-heuristics over each domain based on For-
mula1 scores

8 Ahmed Kheiri and Ender Özcan

4.2 Analysis of RHH and its performance comparison to the
CHESC competitors

The Robinhood selection hyper-heuristic is run for 31 times across six prob-
lem domains including Boolean Satisfiability (MAX-SAT), One Dimensional Bin
Packing (BP), Personnel Scheduling (PS), Permutation Flow Shop (PFS), Trav-
elling Salesman Problem (TSP) and Vehicle Routing Problem (VRP). We have
initially analysed whether the proposed heuristic selection method makes effec-
tive use of the low level heuristics. Figure 2 shows the percentage utilisation of
the low level heuristics considering improving moves only with respect to the
number of times a heuristic gets selected while solving an arbitrary instance
from each problem domain as an example. A similar phenomena is observed for
the other instances. Not all the low level heuristics are useful in improving a
solution. For example, in 1D Bin Packing, LLH1, LLH5 and LLH7 generates no
improvements. Most of the improving moves are due to mutational heuristics
rather than hill climbers across all problem domains. Ruin and recreate heuris-
tics are more successful for creating improving moves in the Permutation Flow
Shop domain, while a hill climbing heuristic creates the most improvements in
1D bin packing problem domain. Although a heuristics that does not generate
any improvement could still be useful when used in combination with another
heuristic, so there is a lot of research scope for methodologies attempting to
reduce the number of low level heuristics before and during a run.

LLH0

4%
LLH1

8%

LLH2

12%

LLH3

2%

LLH5

72%

LLH7

2%

MAX-SAT

LLH0

12%
LLH2

12%

LLH3

1%

LLH4

3%

LLH6

72%

1D Bin Packing

LLH1

5%
LLH2

4%

LLH3

35%LLH4

26%

LLH5

4%

LLH6

4%

LLH7

22%

Personnel Scheduling

LLH0

9%

LLH1

12%

LLH2

8%LLH5

35%

LLH6

15%LLH9

1%

LLH10

13%

LLH11

1%

LLH12

2%

LLH13

4%

Permutation Flow Shop

LLH0

29%

LLH1

10%

LLH4

37%

LLH5

1%

LLH7

1%

LLH8

8%

LLH9

9%

LLH10

4%

LLH12

1%

Travelling Salesman

LLH0

44% LLH1

1%

LLH4

8%

LLH5

3%

LLH7

1%

LLH8

38%

LLH9

5%

Vehicle Routing

Fig. 2. Percentage utilisation of low level heuristics obtained from a sample run while
solving an arbitrary instance from each problem domain.

We have investigated the behavior of RHH based on the proposed acceptance
method. In most of the cases, RHH rapidly improves the quality of the solution
in hand. After a while, the improvement process slows down as the approach
reaches a local optimum. Still, it seems that the proposed move acceptance works
well as a part of the proposed hyper-heuristic, allowing further improvement in

A Hyper-heuristic with a Round Robin Neighbourhood Selection 9

time even if takes a while to obtain an improved solution. The proposed move
acceptance allows partial restarts and the extension of these restarts change
if there is no improvement and in general there is some improvement. This
behaviour is illustrated in Figure 3 for an arbitrarily selected instance from each
problem domain. Similar phenomena are observed in the other instances. RHH
seems to require partial restarts while solving problems from the MAX-SAT,
Permutation Flow Shop and Personnel Scheduling problem domains more than
the others. For the Vehicle Routing and somewhat 1D Bin Packing problem
domains, RHH generates continuous improvement via the heuristics.

o
b

je
ct

iv
e

 f
u

n
ct

io
n

 v
a

lu
e

time

MAX-SAT

o
b

je
ct

iv
e

 f
u

n
ct

io
n

 v
a

lu
e

time

1D Bin Packing

o
b

je
ct

iv
e

 f
u

n
ct

io
n

 v
a

lu
e

time

Personnel Scheduling

o
b

je
ct

iv
e

 f
u

n
ct

io
n

 v
a

lu
e

time

Permutation Flow Shop

o
b

je
ct

iv
e

 f
u

n
ct

io
n

 v
a

lu
e

time

Travelling Salesman

o
b

je
ct

iv
e

 f
u

n
ct

io
n

 v
a

lu
e

time

Vehicle Routing

0 75 150 0 300 600 0 300 600

0 300 600 0 50 100 0 75 150

Fig. 3. Plots of the objective value versus time from a sample run while solving an
arbitrary instance from each problem domain.

The performance of the Robinhood selection hyper-heuristic is compared
to the performances of CHeSC hyper-heuristics as provided at the competition
website. The comparison is based on the Formula1 scoring system using the
median of 31 runs for each instance. The points are accumulated as a score
for each hyper-heuristic over five instances from six problem domains including
Boolean Satisfiability (MAX-SAT), One Dimensional Bin Packing (BP), Per-
sonnel Scheduling (PS), Permutation Flow Shop (PFS), Travelling Salesman
Problem (TSP) and Vehicle Routing Problem (VRP). Table 2 summarises the
results. The table shows that RHH is ranking the fourth when compared to the
algorithms implemented by the CHeSC competitors with a total score of 93.70.

The normalized function values based on the median of 31 runs for each
instance can also be used to evaluate the performance of the different hyper-
heuristics [18]. The objective values are calculated and rescaled in [0,1] as a score
to rank the different approaches for each problem domain. Figure 4 illustrates
the normalized function for the problem domains in which Robinhood hyper-
heuristic performs the best and worst. The results are still consistent with the
previous findings. The Robinhood hyper-heuristic is the top in VRP problem

10 Ahmed Kheiri and Ender Özcan

Table 2. Formula 1 scores of the top ten hyper-heuristics among CHeSC finalists and
Robinhood hyper-heuristic (RHH) across six problem domains.

HH SAT BP PS PFS TSP VRP TOT

AdapHH 33.10 45.00 8.00 37.00 40.25 11.00 174.35
VNS-TW 33.60 2.00 37.50 34.00 16.25 4.00 127.35
ML, 11.00 8.00 29.50 39.00 13.00 21.00 121.50
RHH 22.70 26.00 16.00 0.00 3.00 26.00 93.70
PHUNTER 8.00 3.00 11.50 9.00 26.25 29.00 86.75
EPH 0.00 7.00 9.50 21.00 36.25 12.00 85.75
HAHA 31.10 0.00 23.50 3.50 0.00 13.00 71.10
NAHH 11.50 19.00 1.00 22.00 12.00 5.00 70.50
ISEA 3.50 28.00 14.50 3.50 11.00 4.00 64.50
KSATS-HH 21.70 7.00 7.50 0.00 0.00 19.00 55.20

domain. In the MAX-SAT and 1D Bin Packing problem domains, the RHH
produces good quality of solutions comparing to other approaches. In the other
domains, RHH produces a relatively poor performance. It delivers the worst
performance, particularly in the permutation flow shop problem domain.

AdapHH

ML

VNS-TW

NAHH

EPH

HAEA

HAHA

ISEA

PHUNTER

GenHive

ACO-HH

DynILS

SelfS

KSATS

RHH

ShafiXCJ

AVEGNep

SA-ILS

MCHH-S

GISS

Ant-Q

0.00 0.25 0.50 0.75 1.00

Normalized function value

H
y
p

e
r-

h
e

u
ri
s
ti
c

FlowShop

RHH

PHUNTER

HAEA

AdapHH

ML

ShafiXCJ

GISS

HAHA

KSATS

ISEA

NAHH

SA-ILS

GenHive

EPH

DynILS

VNS-TW

MCHH-S

AVEGNep

ACO-HH

SelfS

Ant-Q

0.00 0.25 0.50 0.75 1.00

Normalized function value

H
y
p

e
r-

h
e

u
ri
s
ti
c

VRP

Fig. 4. Normalized function values.

5 Conclusion and Future Work

Hyper-heuristics have been shown to be effective solution methods across many
problem domains. In this study, an easy-to-implement selection hyper-heuristic
combining a round-robin strategy-based neighbourhood selection and an adap-
tive move acceptance methods is introduced. The Robinhood hyper-heuristic
allocates equal share from the overall time for each low level heuristic ordering

A Hyper-heuristic with a Round Robin Neighbourhood Selection 11

them randomly within their categories of mutation, crossover and local search.
In this manner, memetic algorithm is imitated under a single point-based search
framework with multiple operators. The Robinhood hyper-heuristic operates in
stages and prior to each stage, relevant decisions are made for the ordering of
heuristics within groups and parameters of the system components, such as move
acceptance. The experimental results show that proposed hyper-heuristic is a
simple yet very powerful and general strategy outperforming many previously
proposed selection hyper-heuristics across six different domains. As for the future
work, we plan to work on more learning components within this framework to
further improve its performance without introducing additional parameters and
making the hyper-heuristic more complicated. The Robinhood hyper-heuristic
has only three parameters: δ, M and k. All these values are currently tuned
after some experimentation, but of course, the question is whether it is possible
to adapt them during the search process, in particular the duration allocated
for each stage and get improved performance. We have observed that some of
the heuristics are almost useless at different stages of the search process, then
by reducing the number of heuristics involved in the search process at a stage
would be a good idea.

References

1. Fisher, H., Thompson, G.L.: Probabilistic learning combinations of local job-shop
scheduling rules. In Muth, J.F., Thompson, G.L., eds.: Industrial Scheduling, New
Jersey, Prentice-Hall, Inc (1963) 225–251

2. Burke, E.K., Genreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.:
Hyper-heuristics: A survey of the state of the art. Technical report (to appear)

3. Burke, E., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.: A classi-
fication of hyper-heuristics approaches. In: Handbook of Metaheuristics, Springer
- in press (2009)

4. Özcan, E., Parkes, A.J.: Policy matrix evolution for generation of heuristics. In:
Proceedings of the 13th annual conference on Genetic and evolutionary computa-
tion. GECCO ’11 (2011) 2011–2018

5. Burke, E.K., Hart, E., Kendall, G., Newall, J., Ross, P., Schulenburg, S.: Hyper-
heuristics: An emerging direction in modern search technology. In Glover, F.,
Kochenberger, G., eds.: Handbook of Metaheuristics. Kluwer (2003) 457–474

6. Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling
a sales summit. In: Selected papers from the Third International Conference on
Practice and Theory of Automated Timetabling, London, UK, Springer-Verlag
(2001) 176–190

7. Özcan, E., Bilgin, B., Korkmaz, E.: Hill climbers and mutational heuristics in
hyperheuristics. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 4193 LNCS
(2006) 202–211

8. Özcan, E., Bilgin, B., Korkmaz, E.E.: A comprehensive analysis of hyper-heuristics.
Intelligent Data Analysis 12 (2008) 3–23

9. Burke, E., Kendall, G., Misir, M., Özcan, E.: Monte carlo hyper-heuristics for
examination timetabling. Annals of Operations Research (2010) 1–18

12 Ahmed Kheiri and Ender Özcan

10. Chakhlevitch, K., Cowling, P.: Hyperheuristics: Recent developments. (2008) 3–29
11. Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J., Walker, J., Gendreau,

M., Kendall, G., McCollum, B., Parkes, A., Petrovic, S., Burke, E.: HyFlex: A
Benchmark Framework for Cross-domain Heuristic Search. 7245 (2012) 136–147

12. Burke, E.K., Curtois, T., Hyde, M.R., Kendall, G., Ochoa, G., Petrovic, S.,
Rodŕıguez, J.A.V., Gendreau, M.: Iterated local search vs. hyper-heuristics: To-
wards general-purpose search algorithms. In: IEEE Congress on Evolutionary Com-
putation. (2010) 1–8

13. Özcan, E., Kheiri, A.: A hyper-heuristic based on random gradient, greedy and
dominance. In Gelenbe, E., Lent, R., Sakellari, G., eds.: Computer and Information
Sciences II. Springer London (2012) 557–563

14. Nguyen, S., Zhang, M., Johnston, M.: A genetic programming based hyper-
heuristic approach for combinatorial optimisation. In: Proceedings of the 13th
annual conference on Genetic and evolutionary computation. GECCO ’11, New
York, NY, USA, ACM (2011) 1299–1306

15. Misir, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: A new hyper-
heuristic implementation in HyFlex: a study on generality. In Fowler, J., Kendall,
G., McCollum, B., eds.: Proceedings of the 5th Multidisciplinary International
Scheduling Conference: Theory & Application,. (2011) 374–393

16. Hsiao, P.C., Chiang, T.C., Fu, L.C.: A vns-based hyper-heuristic with adaptive
computational budget of local search. In: Evolutionary Computation (CEC), 2012
IEEE Congress on. (2012) 1 –8

17. Kubaĺık, J.: Hyper-heuristic based on iterated local search driven by evolution-
ary algorithm. In: Proceedings of the 12th European conference on Evolution-
ary Computation in Combinatorial Optimization. EvoCOP’12, Berlin, Heidelberg,
Springer-Verlag (2012) 148–159

18. Di Gaspero, L., Urli, T.: Evaluation of a family of reinforcement learning cross-
domain optimization heuristics. In Hamadi, Y., Schoenauer, M., eds.: Learning
and Intelligent Optimization. Volume 0 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg (2012) 384–389

19. Kalender, M., Kheiri, A., Özcan, E., Burke, E.K.: A greedy gradient-simulated
annealing hyper-heuristic for a curriculum-based course timetabling problem. In:
Computational Intelligence (UKCI), 2012 12th UK Workshop on. (2012) 1 –8

20. John H. Drake, E.O., Burke, E.K.: An improved choice function heuristic selection
for cross domain heuristic search. In: 12th International Conference on Parallel
Problem Solving From Nature. LNCS 7492, Springer (2012) 307–316

21. Burke, E.K., Gendreau, M., Ochoa, G., Walker, J.D.: Adaptive iterated local search
for cross-domain optimisation. In: Proceedings of the 13th annual conference on
Genetic and evolutionary computation. GECCO ’11, New York, NY, USA, ACM
(2011) 1987–1994

22. Ochoa, G., Walker, J., Hyde, M., Curtois, T.: Adaptive evolutionary algorithms
and extensions to the hyflex hyper-heuristic framework. In Coello, C., Cutello, V.,
Deb, K., Forrest, S., Nicosia, G., Pavone, M., eds.: Parallel Problem Solving from
Nature - PPSN XII. Volume 7492 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg (2012) 418–427

23. Özcan, E., Parkes, A.J., Alkan, A.: The interleaved constructive memetic algorithm
and its application to timetabling. Comput. Oper. Res. 39 (2012) 2310–2322

24. Moscato, P., Norman, M.G.: A memetic approach for the traveling salesman prob-
lem implementation of a computational ecology for combinatorial optimization on
message-passing systems. In: In Proceedings of the International Conference on
Parallel Computing and Transputer Applications, IOS Press (1992) 177–186

