Searching for Novel Classifiers
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Abstract. Natural evolution is an open-ended search process without an
a priori fitness function that needs to be optimized. On the other hand,
evolutionary algorithms (EAs) rely on a clear and quantitative objective.
The Novelty Search algorithm (NS) substitutes fitness-based selection with
a novelty criteria; i.e., individuals are chosen based on their uniqueness. To
do so, individuals are described by the behaviors they exhibit, instead of
their phenotype or genetic content. NS has mostly been used in evolu-
tionary robotics, where the concept of behavioral space can be clearly de-
fined. Instead, this work applies NS to a more general problem domain,
classification. To this end, two behavioral descriptors are proposed, each
describing a classifier’s performance from two different perspectives. Ex-
perimental results show that NS-based search can be used to derive effec-
tive classifiers. In particular, NS is best suited to solve difficult problems,
where exploration needs to be encouraged and maintained.
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1 Introduction

Research in Evolutionary Computation (EC) has produced search and opti-
mization algorithms that frequently achieve promising new results in diverse
domains [4]. Therefore, the practical value of evolutionary algorithms (EAs) is
by now widely accepted. Nonetheless, for some within the field a conceptual,
or even philosophical, problem remains regarding most EAs. At their core, EAs
are simple abstractions of Neo-Darwinian evolution. However, instead of the
open-ended nature of biological evolution, EAs are objective driven, just like
any conventional optimization algorithm. Therefore, EAs are expected to con-
verge on a small subset of local optima within a static fitness landscape.

This difference, however, is not a general one. In fact, some of the earliest
EAs were open-ended techniques [1]. While such EAs are still abstract simpli-
fications of evolution, they do integrate an open-ended feature not present in
most standard algorithms. Open-ended algorithms have mostly been used in
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specialized domains, such as artificial life environments [10] and interactive
search [3]. Only recently have open-ended algorithms been proposed to solve
mainstream problems. In particular, Lehman and Stanley [5-7] proposed nov-
elty search (NS), an EA where the objective function is abandoned. Instead,
selective pressure considers the novelty, or "uniqueness”, of each individual by
describing its behavior. Thus, fitness in NS is implicitly captured within the be-
havioral description of each individual. While such an approach might seem
counterintuitive, experimental results are promising and show that highly fit
solutions can emerge from a search that does not consider fitness explicitly.

Despite the success of NS, it might also appear to be a niche strategy that is
well-suited for a small subset of domains. This paper explores the usefulness of
NS on a common type of problem: classification. The core element of NS is that
each individual is described by a behavioral descriptor, which is then used to
measure the novelty that each solution introduces into the search. This paper
proposes two behavioral descriptors for a Genetic Programming (GP) classifier.
Each descriptor introduces a different behavioral space and corresponding fit-
ness landscapes. Experimental results are encouraging, NS-based classification
achieves competitive results compared to a canonical GP. Moreover, the paper
analyzes some of the practical considerations that must be accounted for if NS
is to be used successfully.

The paper is organized as follows. First, Section 2 describes the NS algo-
rithm. Afterwards, Section 3 presents the proposed NS-based GP algorithm for
data classification and two behavioral descriptors for evolved classifiers. Then,
Section 4 presents the experiments and an analysis of the results. Finally, a sum-
mary of the paper and concluding remarks are given in Section 5.

2 Novelty Search

The main idea behind NS is to eliminate the objective function from a search [5-
7]. In other words, evolution is not guided by the measured quality of each indi-
vidual, instead it is guided by a measure of uniqueness; i.e., how novel each in-
dividual is with respect to what has been found earlier by the search. A known
limitation of the traditional objective-based search is a tendency to converge
and stagnate on local optima, particularly in multi-modal problems with irreg-
ular fitness landscapes. Within EC, diversity preservation techniques are usu-
ally incorporated within an EA to overcome the above shortcoming. However,
most proposals can be regarded as ad-hoc solutions that must continuously at-
tempt to balance exploration and exploitation during the search . Conversely,
through the search for novelty alone, diversity preservation introduces the sole
selective pressure during the search.

NS operates based on the concept of behavior, where each individual is de-
scribed based on the functional behavior it exhibits. Therefore, individuals are
described in behavioral space, instead of the more common genotypic, pheno-
typic or fitness spaces that are used for diversity preservation [13, 14]. Behaviors
are expressed by a domain dependent descriptor, such that each individual is



mapped to a single point in behavioral space. A behavior implicitly represents
the fitness of an individual, providing a fine grained view of its performance
or just a different domain specific perspective. Since many individuals in geno-
typic space express the same behavior, and are thus mapped to the same point
in behavioral space, the search for novelty is often feasible. Lehman and Stan-
ley argue that since the number of simple behaviors for any given problem
is relatively small, then the search for novelty must necessarily lead to more
functionally complex solutions. The concept of behavior as described above is
closely related to the concept of semantics in GP [15].

In summary, NS uses a measure of novelty to characterize each individual.
More precisely, the sparseness of each individual within behavioral space is
measured, with respect to other individuals within the population and novel
solutions from previous generations. An important observation is that such a
measure of novelty is dynamic; i.e., it can produce different results for the same
individual depending on the population state and search progress at a given
generation. NS measures the sparseness p around each individual i, described
by its behavioral descriptor X, using the average distance to the k-nearest neigh-
bors in behavioral space, with k an algorithm parameter, given by

k
P = 3 distx ). (1)

where [ is the ith-nearest neighbor of x with respect to distance metric dig, a
domain-dependent measure of behavioral difference between two descriptors.
If the average distance is large then the individual lies within a sparse region of
behavioral space and it lies in a dense region when the measure is small.

In NS, sparseness is computed based on the contents of the current pop-
ulation and an archive of individuals that at one moment were considered to
be novel. Therefore, an individual is added to the archive if its sparseness is
above a minimal threshold pmin, the second parameter of the NS algorithm. The
archive can also mitigate backtracking by the search process. This can also be
seen as a shortcoming of the approach, since if the archive grows then a higher
computational cost is incurred to compute sparseness. To address this problem,
[6] implements the archive as a fixed size FIFO queue.

The NS algorithm provides an open-ended evolutionary approach to solve
mainstream scientific and engineering problems. However, since its proposal in
[5], and later works [6, 7], most applications of NS have focused on robotics, [5-
8]. All of these works are part of a wider area of research known as evolutionary
robotics (ER), where evolutionary algorithms are used to solve problems related
to robot design and control. Within ER, the topic of evolving a diverse set of be-
haviors has also been addressed in other ways. For instance, [13, 14] propose
to integrate speciation techniques to evolve a diverse set of robot behaviors.
A good review on this topic is given by Mouret and Doncieux [9]. Search al-
gorithms that explicitly contemplate behaviors seem well suited for robotics,
since most high-level tasks can usually be solved in structurally different ways,
guaranteeing multi-modal search spaces.



On the other hand, NS has not been used in most domains. A noteworthy
exception is [16], where NS is integrated with an interactive evolutionary sys-
tem. To the authors knowledge, however, applying NS to mainstream problems
is not yet common. The present work proposes the use of NS for a ubiquitous
pattern analysis problem, data classification.

3 Classification with Novelty Search

This section presents the proposed behavioral descriptors for GP-based classi-
fiers and discusses the fitness landscape of each.

3.1 Static Range Selection GP Classifier

This work uses the Static Range Selection GP Classifier (SRS-GPC) described
by Zhang and Smart [17]. In a classification problem, a pattern x € R has to
be classified as belonging to a single class from Q = {wy,...,wv}, where each
a represents a distinct class label. Then, in a supervised learning approach
the goal is to build a mapping g(x) : RP — Q, that assigns each pattern x to
a corresponding class w, where g is derived based on evidence provided by a
training set .7 of N P-dimensional patterns with a known classification. In this
work, only two-class classification problems are considered. In SRS-GPC, R is
divided into M non-overlapping regions, one for each class. Then, GP evolves
a mapping g(x) : R” — R, such that the region in R where pattern x is mapped
to, determines the class to which it belongs. For a two-class problem, if g(x) > 0
then x belongs to class w, and belongs to w, otherwise. The fitness function is
simple, it consists on maximizing the classification accuracy of g.

3.2 Novelty Search extension of SRS-GPC

As stated above, to apply NS with SRS-GPC the fitness function is substituted
by the sparseness measure of Equation 1. Therefore, a proper domain specific
behavioral descriptor must be proposed [2]. Two descriptors are proposed next,
each inducing a different fitness landscape and behavioral neighborhoods.

Class Descriptor (CD): The training set .7 used by SRS-GPC contains sam-
ple patterns from each class. Then, for a two-class problem with Q = {wy, @}
the CD is constructed in the following way. If .7 = {y1,Y2,...yL}, then the be-
havioral descriptor for each GP classifier K; is a binary vector & = (ay,ap, ...a,)
of size L, where each vector element a; is set to 1 if classifier K; assigns label w
to pattern yj and is set to 0 otherwise.

Accuracy Descriptor (AD): The second descriptor considers the accuracy of
a classifier at a fine scale. If .7 = {y1,Yy2,...yL}, then the behavioral descriptor
for each GP classifier K; is a binary vector b; = (b1, by, ...b.) of size L, where each
vector element bj is set to 1 if classifier K correctly classifies sample y; and is
set to 0 otherwise.
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Fig. 1. Fitness landscape in behavioral space for each descriptor.

While both descriptors are binary vectors of size L, each induces a different
fitness landscape in behavioral space. Suppose that the number of training ex-
amples from each class is 5, and suppose that they are ordered in such a way
that the first % elements in .7 correspond to class label wi. Let X represent a
binary vector, and function u(x) return the number of 1s in X. Moreover, let Ko
be the optimal classifier that achieves a perfect accuracy on the training set.

Then, the CD of Ko is given by al = (11,12,...1%,0%+1....0|_). The AD of Ko

is given by b! where u(b') = L. Moreover, for a two-class problem, an equally
useful solution is to take the opposite (complement) behaviors and invert the
classification, such that a 1 is converted to a 0 and vice-versa. These mirror
behaviors are a® = (01,05, ...O%,l%ﬂ....lL) for the CD and b® with u(b®) = 0 for
the AD. The fitness landscapes in behavioral space are depicted in Figure 1.

For a two-class problem with a reasonable degree of difficulty, the initial
generations of a GP search should be expected to contain close to random clas-
sifiers, with roughly a 50% accuracy. For the CD descriptor, behavioral space
is organized on a two dimensional surface, such that one axis u_ considers the
number of ones on the left hand side, first % bits, of a behavior descriptor a, and
Ur considers the remaining 5 bits; see Figure 1(a). Notice that the middle val-
ley of the fitness landscape corresponds to random classifiers, with worst case
performance. Hence, NS will push the search towards either of the two global
optima, a* and a° On the other hand, for the AD descriptor, early behaviors
will mostly exhibit descriptors with equal proportions of zeros and ones; see
Figure 1(b). Then, NS will progressively explore towards two opposite points
in behavioral space, b! or b. The effect on performance of these differences,
between the CD and the AD, are explored experimentally in the following sec-
tion.

Finally, given the above binary descriptors, a natural dist() function for Equa-
tion 1 is the Hamming distance, that counts the number of bits that differ be-
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Fig. 2. Five synthetic 2-class problems used to evaluate each algorithm in ascending or-
der of difficulty from left to right.

tween two binary vectors. This similarity measure has been used to measure
behavioral diversity in ER [9].

4 Experiments

The performance of the NS-based GP classifier is examined. Several different
versions are tested and compared. First, the basic SRS-GPC classifier. Second,
the NS variant with CD in two different versions. One configuration uses a
novelty archive of unbounded size, while the second one used a FIFO archive
with limited size as in [6]. Hereafter, the former is referred to as NS-CD and the
latter as NS-CD-L. Similarly, two NS variants with AD are tested, NS-AD and
NS-AD-L.

Gaussian Mixture Models are used to generate five random synthetic prob-
lems, each with different amounts of class overlap and geometry. All problems
are set in the R? plane with x,y € [—10, 10] and 200 sample points were randomly
generated for each class. The parameters for the GMM of each class were also
randomly chosen, following the same strategy reported in [12]. The five prob-
lems are of increasing difficulty, denoted as: Trivial; Easy; Moderate; Hard; and
Hardest; these problems are graphically depicted in Figure 2.

As stated above, five different algorithms are experimentally compared:
SRS-GPC, NS-CD, NS-CD-L, NS-AD and NS-AD-L. All algorithms share the
same GP representation and genetic operators, a tree-based Koza style algo-



Table 1. Parameters for the GP-based search.

Parameter Description
Population size 200 individuals.
Generations 200 generations.
Initialization Ramped Half-and-Half,
with 6 levels of maximum depth.
Operator probabilities Crossover pc = 0.8, Mutation p, = 0.2.
Function set {+,=,x,=,|-,%%, yX,log, sin, cos,if } .
Terminal set {X1,.-.,Xi,....Xp}, where X; is a dimension of the data patterns x € R".
Bloat control Dynamic depth control.
Initial dynamic depth 6 levels.
Hard maximum depth 20 levels.
Selection Tournament.

rithm with subtree mutation and crossover. The parameters shared by all algo-
rithms are summarized in Table 1. Additionally, SRS-GPC also uses a keep-best
elitism strategy.

For the NS-based algorithms two different parameter settings are used. In
particular, two different values for the archive threshold pmin are used, 40 and
80. Parameter K is set to 15 for all algorithms. Finally, all algorithms were coded
using Matlab 2009a and the GPLAB toolbox [11].

For each algorithm, 30 different runs were executed for each problem shown
in Figure 2. In each run, the data set is randomly dividing into training and
testing sets, with the former containing 70% of the data samples.

First, tables 2 and 3 compare the performance of every algorithm on each
problem, considering the test data from each run and presenting the average
classification error + the standard error. In Table 2 the NS-based algorithms use
k =15 and pmin = 80, while in Table 3 k= 15 and pmin = 40. To verify statistical
significance, the Wilcoxon rank-sum test is performed between the control al-
gorithm SRS-GPC and each of the NS algorithms. In tables 3 and 2 an asterisk
indicates that the corresponding NS-algorithm achieves statistically equivalent
results with SRS-GPC at the a = 0.05 significance level. In general, these re-
sults show that AD produces better performance than CD and that limiting the
size of the archive does not affect performance, and in some cases improves it.
Additionally, a lower pmin encourages better performance in most algorithms.
Moreover, with respect to each problem we can state the following. First, for
the trivial problem, all of the algorithms can solve it nearly perfectly. Second,
for the easy problem NS produces slightly worse results than standard search.
However, both problems are quite easy, far from the type of data generally en-
countered in real-world scenarios. Finally, for the moderate and hard problems,
the NS-algorithm achieves equal performance with respect to SRS-GPC.

Figures 3-10 examines the evolution of the NS-based algorithms. Each fig-
ure contains two plots that show averages over all runs; these are: (1) evolution
of fitness and (2) evolution of sparseness. First, with respect to the fitness of the
best solution at each generation, the difference in performance between each
problem is evident and consistent across all algorithms. The second plot in each
figure shows the sparseness value associated to the best solution at each gener-



Table 2. Average classification error and standard error of the best solution found by
each algorithm on each problem; NS-based algorithms use k = 15 and pmjin = 80.

Problem SRS-GPC NS-CD NS-CD-L NS-AD NS-AD-L
Trivial 0.005+0.006 0.006 - 0.008* 0.006 + 0.010* 0.002+ 0.005* 0.006 -+ 0.007*
Easy 0.080+0.026 0.131+0.035 0.128+0.031 0.115+0.034 0.136+0.033

Moderate  0.129+0.030 0.150+0.030 0.132+0.041* 0.152+ 0.050* 0.133+0.041*
Hard 0.255-:0.049 0.279-0.044* 0.287+0.039 0.282+0.044 0.272+0.057*
Hardest ~ 0.374+0.048 0.342+0.037* 0.381+0.053" 0.367 - 0.049" 0.380-0.045*

Table 3. Average classification error and standard error of the best solution found by
each algorithm on each problem; NS-based algorithms use k = 15 and pmin = 40.

Problem SRS-GPC NS-CD NS-CD-L NS-AD NS-AD-L

Trivial 0.005+0.006 0.004 + 0.006* 0.001+0.004* 0.005+ 0.006* 0.005+0.007*
Easy 0.080+0.026 0.124+0.032 0.152+0.124 0.130+0.034 0.134+0.037
Moderate  0.129+ 0.030 0.153+0.045 0.180+0.146* 0.148+0.044* 0.149+ 0.036"
Hard 0.255+0.049 0.281+0.051* 0.330+0.155" 0.27140.053" 0.271+40.053*
Hardest 0.374+0.048 0.383+0.045 0.406+0.111* 0.385+0.050" 0.365+0.037*

ation. A horizontal line in these plots shows the corresponding threshold value,
set to 80 in figures 3-6 and set to 40 in figures 7-10. In the former group, on aver-
age, the best solution does not reach the threshold. This exhibits the importance
of Pmin, if it is not set correctly then the best solution might not be saved in the
archive; thus explaining the overall worse performance shown in Table 2. It is
apparent that pmin should be lower, as is the case in figures 7-10. Nonetheless,
with Pmin = 40 the sparseness value of the best individual rises above the thresh-
old only on the more difficult problems. This illustrates the main assumption
behind the usefulness of NS, that random solutions will mostly exhibit bad
fitness, and thus good solutions will tend to also be novel ones. Nonetheless,
even if the best solution at each generation is not incorporated into the archive,
it appears that sufficiently good solutions are saved, based on the test perfor-
mance summarized in tables 2 and 3, that is mostly equivalent to the standard
GP search.

5 Conclusions

This paper uses a GP system based on the NS algorithm to search for data clas-
sifiers. To the authors knowledge, the work represents the first attempt to lever-
age NS to solve a common problem in pattern analysis and recognition, since
previous applications of NS were primarily focused on robotic tasks. This line
of research follows other recent works where solution behavior [14, 9], or solu-
tion semantics [15], are explicitly considered during a population-based search.
To do so, two domain-specific behavioral descriptors were proposed, the Class
Descriptor and the Accuracy Descriptor. In general, both descriptors appear to
produce equivalent performance, in most cases statistically similar to a canon-
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Fig. 4. Evolution of NS-CD-L with parameters k = 15 and pmin = 80.

ical GP search. Moreover, it appears that NS-based search exhibits the best re-
sults when confronted with difficult problems. It seems that the reason for this
is that generating a high-quality solution at random is less probable for difficult
problems, then the incentive for behavioral exploration is incremented and the
search for novelty will indeed lead towards quality during the search. For sim-
ple problems, however, the explorative capacity of NS is mostly unexploited or
even a detriment to the search; i.e., if random solutions have a high fitness then
novelty could easily lead the search towards worse results. Finally, while both
descriptors, AD and CD, achieve similar performance on these tests, their dif-
ferences must be studied and exploited further. In particular, the AD descriptor
can only be used in supervised learning problems since it assumes knowledge
of a ground truth set or classified samples. The CD descriptor, however, is less
restrictive in this sense. Therefore, future work will center on exploring the use-
fulness of NS on the more difficult problem of non-supervised learning.
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