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Abstract. Inferring Online Social Networks (OSN) group members may help to 

evaluate the authenticity of an applicant asking to join a certain group, and se-

cure vulnerable populations online, such as children. We propose machine 

learning based methods, which associate OSN members’ affiliation with virtual 

groups based on personal, topological, and group affiliation features. The study 

applies and evaluates the methods empirically, on two social networks (Ning 

and TheMarker). The experimental results demonstrate that one can accurately 

determine the group genuine members. Our study compares personal, topologi-

cal and group based classification models. The results show that topological and 

group affiliation attributes contribute the most to group inference accuracy. Ad-

ditionally, we examine the relations among the groups and identify group clus-

tering tendencies where some groups are more tightly connected than others. 
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1 Introduction 

Online Social Network (OSN), characteristics differ from each other, however the 

majority of these networks contain two main capabilities: connecting two members 

via a friendship connection and a group creation. These mechanisms simulate real life 

scenarios. While a friendship connection signifies or correlates with a tie between two 

individuals (e.g. relatives, friends, acquaintances, etc.), the group formation correlates 

with a community of multiple individuals based on similarity (i.e. residence, work-

place, interests, etc.). Due to the OSN’s rise and the opportunity to obtain large scale 

datasets, many recent studies have focused on various different aspects of the social 

network, such as: structure, evolution, security aspects, complex network common 

characteristics, and more [1] [2] [3]. 

The problem we contemplate is community membership inference in social 

networks: inferring group membership of a user based on friendship connections (i.e. 

topological structures), personal attributes, and affiliations with other groups. Our 

methodology may be used for the automatic screening of applications to join groups, 

protecting vulnerable internet populations (e.g. children), group recommendations and 
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more. We believe our work is the first of its kind to study this group inference prob-

lem variation, as defined here, map it to a classification problem, examine four classi-

fication models, and compare these models. 

Here, we propose new group affiliation inference methods using machine 

learning techniques based on three sets of features: topological, groups, and personal. 

These methods are examined and validated on several real world datasets. Four pre-

diction models for the OSN affiliation analysis problem were developed: (a) structur-

al/topological features set based model. (b) group affiliation features set based model, 

(c) personal features set based model, and (d) a model that combines all features in 

the previous models (i.e., topological, group affiliation, and personal features). We 

evaluate our proposed models using sample datasets of two social media websites: 

TheMarker
1
 (an online social network site in Hebrew) and Ning 

2
 (an online social 

network for Ning creators). Specifically, our novel contributions are:  

 Proposal of four novel group affiliation predicting methods using machine learning 

techniques based on three types of features: topological, membership in other 

groups, and personal features.  

 Introduction of several new topological measures that encompass information from 

the two graph structures of OSN: the social ties graph, and the group membership 

bipartite graph. 

 We demonstrate that group clusters can be identified easily by calculating the in-

formation gain among the groups.  

We describe related studies in the next section. Section 3 outlines the problem formal 

definition and our methods. Then, we describe the evaluation in section 4, and exper-

iment results in section 5. We conclude and discuss future works in section 6. 

2 Related Work 

Identifying graph communities has been a prevalent topic in recent years. In 

2002, Girvan and Newman published an innovative algorithm, which detects such 

communities by isolating them as separate graph components [1]. Since then, addi-

tional methods for community detection have been presented. These can be found in 

Fortunato’s comprehensive survey on community detection [2]. 

While recent studies have focused on community structure in social net-

works [5] [3] [2], these studies concentrated mostly on the communities’ detection on 

complex graphs, and examined their structure and dynamics. Traud et Al. [6][7], ap-

plied network analysis tools to study the role of university organizations and affilia-

tions in structuring the social networks of students by examining a snapshot of the 

Facebook “friendships”  graph at five American universities. They also compared the 

relative contributions of different personal characteristics to the community structure 

of universities.  

                                                           
1 http://cafe.themarker.com 
2 http://creators.ning.com 



The classical community detection problem concentrates on detecting communities 

within a social network based on the friendship connections between friends [1] [2]. 

Unlike studies where each member is associated with a unique community, our study 

concentrates on OSN groups where a member may belong to multiple groups or 

communities. Detection of the overlapping communities’ problem has been addressed 

by Friggeri et al. [8], who introduced cohesion metrics based on network to topologi-

cal features and triangles counting. Similarly, we focus on OSNs, where a member 

may join overlapping interest groups. OSNs include a rich set of features and infor-

mation. Members’ information includes social ties, group membership, and personal 

data. The personal and group information does not require extensive computation; 

therefore, our model may use this additional information in order to perform group 

prediction efficiently. 

3 Problem Definition and Methods 

We represent a social network as a graph G = (V,E,H), where V is a set of n nodes 

(OSN members), of the same type,   is a set of edges (the friendship links),   is a set 

of groups that nodes can belong to, and   is a set of node attributes. The graph edge 

         represents an undirected link between node    and node   . We describe a 

group as a hyper-edge       among all the nodes that belong to that group;     de-

notes the set of users who are connected through hyper-edge h. A user profile has a 

unique ID with which the user forms links and participates in groups. The goal is to 

predict for a user     , whether       , while we do not know whether    is a 

member of     but all other group members of     (i.e. other users who are members 

of the group h) are given. An alternate goal is to predict for a certain group      , 

which users should be included as members in    . For both cases the same method 

may be used, but the evaluation process is different. 

We chose to use machine learning methods and develop group inference classifi-

ers, which aim to estimate the probability that a specific user is a member in the target 

group. Therefore, we presented our problem as a binary classification problem where 

each user (OSN member), is represented as an instance that is characterized by multi-

ple attributes (also known as features). The target class is a binary attribute indicating 

whether a user is a member of the group or not. For each group, a specific dataset is 

generated. The dataset feature attributes contain a users’ information about their per-

sonal characteristic (age, gender, etc.), social ties structure (aka topological features), 

and affiliation with other groups. Thus, the features can be divided into three catego-

ries:  

Personal Characteristics Features (PRS) - The personal information refers to the 

information in users’ profile and usually includes demographic details such as: gen-

der, age, residence, etc.  We included each one of these information categories as a 

feature for our machine learning model. We assume that these personal characteristics 

may indicate users’ groups due to homophily [9]. For example in a fan group of a 

kids’ TV show we would expect that most of the members will be children. Therefore 

an applicant with an older man profile would be suspicious. 



Group Affiliation Features (GRP) - This set of attributes denotes the user affilia-

tion with all the social network groups, except for the target class group. Every in-

stance includes a Boolean vector, where each dimension corresponds to a unique 

group and includes group membership information. If user   is a member in group 

     , meaning        , then the corresponding attribute is TRUE. The motiva-

tion for using other groups' affiliations is derived from the fact that similar users tend 

to register to the same set of groups. For example, many users that are registered to 

the "Data Mining" group are also registered to the "Big Data" group.  

Network Topological Features (TPL) - These features are extracted from the 

topological structure of the graph. For each group, we extracted a set of topological 

features. These features assist in estimating the chances that a given user is a member 

in the group. For each member   V and a group      we calculated a set of 8 

topological features as displayed below in Table 1. 

Table 1. Topological Features 

Attribute Name Indication 

          Degree, number of immediate friends 

           Number of  ’s friends  in group   

                       normalized by total number of friends 

            Number of  ’s friends connected with at least one other of  ’s 

friend in group   

                         normalized by  ’s degree   

            Number of connections  ’s friends in group   have among them-

selves 

                         normalized by number of all possible such connec-

tions 

              Number  ’s friends of friends in the group   sub-graph (exactly 2 

hops from  ) 

The following definitions are the formal definitions of the topological features: 

The neighbourhood      of   is defined as the set of  ‘s friends, namely, vertices 

that are adjacent to  . The following is the formal definition of neighbourhood:  

     { |       }                                                     

The group-neighbourhood       , of     and    , is the set of  ’s friends 

who are also  members of group  . The following is the formal definition of group-

neighbourhood: 

        {                }                  

Based on the group-neighbourhood definition, we define ingroup-common-friends 

of user   to be the set of  ’s friends who are members of group     and have at 

least another friend in this set. We denote this set of nodes as ICF: 

                               {  |                                   } (3) 



Based on the group-neighbourhood definition, we define ingroup-common-

connections of user   to be all the pairs of  ’s friends who are members of group 

    and are also friends with each other. We denote this set of nodes as ICC: 

                                   {(       ) |               (       )   } (4) 

Using the above definitions, we can create the following features for vertex  : 

Degree: We defined the vertex   degree as the number of vertices user   has a 

friendship connection with.  We formally define it as: 

           |    | (5) 

Ingroup-friends (GRP_F): We define the number of  ’s friends who are members 

in group  ,  as: 

            |       | (6) 

 

Ingroup-friends-l2 (GRP_F_L2): We define the number of  ’s friends of friends 

who are all members in group   (i.e., at two hops distance from   within group   

subgraph)  as: 

              | {   (     )                           

       }| (7) 

Grp-common-friends (GRP_CF): We define the number of  ’s friends in group   

who are connected  with at least one other  ’s friend in group   as: 

             |        |   (8) 

Grp-friends-connections (GRP_CC): We define the number of connections, which 

 ’s friends, who belong to  group  , have with other  ’s friends in group   as: 

             |   (v,h)| (9) 

Ingroup-friends-ratio (GRP_FN): We normalize GRP_F by the number of  ’s 

friends who are members in group   with with  ’s degree and define it as: 

             
|      |

|    |
 (10) 

GRP_CFN is the normalized value of GRP_CF, obtained by dividing it by  ’s de-

gree.  

GRP_CCN is the normalized value of GRP_CC, by dividing it with the number of 

all possible such connections between  ’s friends. i.e.   
                      

 
  . 



4 Evaluation 

We performed an evaluation of the proposed methodology on two OSN datasets TheMarker 

and Ning, and compared the four suggested group prediction models. The social networks 

datasets were collected using a dedicated Web crawling code. The properties of the datasets are 

presented in Table 2.  

Table 2. Properties Of The Datasets. 

Property TheMarker Ning 

Number of users 87,905 11,011 

Number of links 1,644,848 76,263 

Number of groups 85 81 

Average degree 37.4 7.4 

Number of groups per user: Average (Range) 2.4(0-84) 0.4(0-53) 

Group size:  Average/ (Range) 2,465/ (92-8,360) 59/(1-698) 

Number of personal features 28 3 

 

Note that group affiliation inference is a highly imbalanced problem. For most of 

the groups there are many more non-members than members among all of the OSN 

users. Formally, there are many more negative links than positive links. Imbalanced 

datasets pose difficulties for induction algorithms as standard machine learning tech-

niques may be “overwhelmed” by the majority class and in result ignore the minority 

class. For overcoming this problem, we followed the under-sampling approach in 

which a balanced training set is generated and used to train a classifier, which is then 

tested on an imbalanced test set. Two non-overlapping subsets of data, train and test, 

were selected from each original group data set. For the train set, half of the total of 

positive and the equal number of negative examples were selected, thus creating a 

balanced set. The rest of the positive and negative examples were used for test set 

(imbalanced). 

We used the area under the ROC curve (AUC) measure, which is not influenced by 

the imbalance distribution of the classes [10], for evaluation of different classification 

models. Additionally, we used the Precision and Recall measures in order to verify the 

ranking performance of our algorithm. We ran the experiments with WEKA [11], a 

popular machine learning software suite, and used the Bagging algorithm due to its 

high performance and relatively low run time [4]. The Bagging algorithm was setup 

with its default configuration parameters and J48 (Weka's implementation of the well-

known C4.5 decision tree algorithm), with the minimal number of instances per leaf 

set to 10 as the base learning method.  

5 Experimental Results 

The AUC results of the Bagging algorithm, on TheMarker and Ning networks, using 

various sets of attributes for the 13 selected groups are presented in Table 3. The 

groups were selected randomly for TheMarker network, and the largest groups were 



selected for the Ning. The ALL column presents the results achieved using the com-

bination of all three subsets. For each group, the best result among all the evaluated 

four models is marked in bold font. The best result among the three attribute subsets 

(GRP, PRS and TPL) is underlined. 

Table 3. AUC Results on the TheMarker (a) and Ning (b) Datasets. Baseline AUC = 0.5 

Group Attributes subset 

Size ALL GRP PRS TPL 

339 0.839 0.822 0.694 0.747 

353 0.773 0.759 0.574 0.733 

362 0.859 0.854 0.570 0.778 

563 0.913 0.918 0.622 0.807 

949 0.888 0.871 0.627 0.695 

1366 0.882 0.852 0.735 0.728 

1671 0.875 0.763 0.767 0.736 

1751 0.838 0.800 0.675 0.771 

1930 0.867 0.838 0.710 0.753 

2210 0.823 0.768 0.585 0.727 

2248 0.770 0.696 0.656 0.712 

3788 0.840 0.764 0.725 0.772 

7600 0.840 0.767 0.656 0.689 
 

Group Attributes subset 

Size ALL GRP PRS TPL 

102 0.909 0.813 0.596 0.891 

103 0.854 0.854 0.895 0.818 

122 0.831 0.665 0.611 0.778 

127 0.901 0.550 0.842 0.856 

141 0.879 0.840 0.537 0.797 

150 0.866 0.805 0.475 0.849 

152 0.851 0.775 0.464 0.793 

204 0.934 0.527 0.919 0.899 

239 0.872 0.759 0.585 0.849 

239 0.910 0.804 0.528 0.881 

378 0.883 0.673 0.689 0.873 

582 0.788 0.695 0.502 0.789 

698 0.876 0.568 0.886 0.875 
 

(a) (b) 

It can be seen that the best AUC is achieved by using all attributes for most of the 

groups in both networks. Among the evaluated attribute subsets, the group’s affilia-

tion provides the best prediction results for most of the groups in TheMarker network, 

and topological attributes perform the best for most groups of the Ning network. This 

suggests that the optimal model is OSN related, and depends on the social network 

properties. As shown in Table 2, TheMarker groups are larger, and the number of 

groups per user is higher compared to Ning (2.4 vs. 0.4 accordingly), which may ex-

plain the strength of the GRP attribute set in the case of TheMarker.  

Interestingly, the prediction accuracy achieved using the ALL attribute set versus 

the GRP attribute set is very similar in many cases. This suggests that the GRP model 

(including group’s affiliation attributes only), may be used in certain cases, such as in 

large social networks with many members and various interest groups. In these cases 

it allows for a better computational performance (as these attributes are easy and 

quick to compute), with the lowest (if any), loss in prediction accuracy. It can also be 

noted that in the TheMarker network, personal attributes provide AUC values only 

slightly above the baseline AUC (equal to 0.5). Contrarily, in the Ning network, per-

sonal attributes provide relatively high AUC values, especially in the groups which 

are country or language related. This strengthens our conclusion that the type of most 

predictive attributes depends on the investigated network itself. 

The Precision and Recall results at various K sizes for one of the groups from the 

TheMarker network are presented in Fig. 1(a), and compared to the optimal and base-

line values of these measures. The vertical dashed line specifies the K equal to the 



actual number of positive examples in the test set (i.e. number of group members). 

While the absolute Precision and Recall values improvement is desired, they are much 

better than baseline (computed as percentage of group members out of the total 

amount of users in the network). These results suggest that the developed models can 

already be used for reducing the load and cost of group inference related tasks. These 

set of tasks include identifying the most suitable individuals to the group or the most 

suitable groups for an individual. The results on other groups in both networks follow 

a very similar pattern, and are thus discarded from this publication.   

  
(a) (b) 

Fig. 1. (a) Precision, Recall for different K's on the "The design works" group, TheMarker 

dataset; (b) TheMarker groups' clusters using information gain evaluation. 

Additionally, to obtain an indication of the usefulness of the various individual fea-

tures, we analysed their importance using Weka’s information gain attribute selection 

algorithm. Generally, the results of this analysis correspond with AUC and Preci-

sion/Recall results. We also calculated the information gain between all possible 

group pairs in the TheMarker network and represented this information using a graph 

(see Fig. 1(b)). The groups in this graph are represented by nodes; directed edges 

      represent information gain value for group   when attempting to predict mem-

bership in target group  . For each group we chose the three edges with the highest 

information gain values to be included in the graph. The size of the nodes in the graph 

is proportional to the information gain value the group has for inferring other groups. 

We applied the Louvain method for community detection [12], which divided the 

graph into three communities. The clustered nature on this graph indicates that some 

groups are more tightly connected than others. Further evaluation of this clustering in 

OSN group graphs is one our future task plans. 

6 Conclusions and Future Work 

This study presents the group inference problem in OSN and proposes machine 

learning based methods to address it. The classification models are based on personal, 

topological and group affiliation features. Generally, we can see that a relatively high 

predictive accuracy (an AUC of about 0.8 on average, while baseline is 0.5), can be 

achieved using all the attributes along with the simple and quick bagging classifica-

tion algorithm. The model yielding the highest accuracy varies across OSNs, and may 

depend on OSN properties. The precision and recall measurements also demonstrated 



significantly higher results compared to baseline values. Additionally, our study 

demonstrates that information gain values between different groups can be used for 

analyzing their relations and detecting group clusters. These clusters can then be used 

as a target class instead of individual groups. 

We believe that predictive performance can be further improved using more so-

phisticated classification methods and by devising additional topological features. An 

evaluation of our approach with such methods on additional OSN datasets is one of 

our nearest future tasks. 
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