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Abstract. Learning in the brain requires complementary mechanisms:
potentiation and activity-dependent homeostatic scaling. We introduce
synaptic scaling to a biologically-realistic spiking model of neocortex
which can learn changes in oscillatory rhythms using STDP, and show
that scaling is necessary to balance both positive and negative changes in
input from potentiation and atrophy. We discuss some of the issues that
arise when considering synaptic scaling in such a model, and show that
scaling regulates activity whilst allowing learning to remain unaltered.

1 Introduction

Spike Timing-Dependent Plasticity (STDP), a phenomenological learning rule
in which synaptic potentiation and depression depend upon relative firing times
[1,2], has been used to learn oscillatory rhythms in neocortical models. In an
existing biologically-realistic spiking model of neocortex [3], applying excita-
tory to excitatory (E→E) STDP with a rhythmic training signal led to hyper-
potentiation through positive feedback: strengthened synapses drove postsynap-
tic neurons to fire immediately, leading to further potentiation. This unbounded
potentiation then pushed the network into synchronized epileptiform firing. Di-
rectly opposing E→E learning with equal excitatory to inhibitory (E→I) potenti-
ation partially balanced this positive feedback. However, epileptiform behaviour
still occurred with high-frequency signals [4].

We postulated that a homeostatic mechanism might be a solution to this
problem. Neuronal homeostatic synaptic scaling is a local feedback mechanism
which senses levels of activity-dependent cytosolic calcium within the cell and
adjusts neuronal firing activity accordingly. This is achieved by producing alter-
ations in excitatory AMPA receptor accumulation in response to changes in firing
activity occurring over hours to days [5], leading to changes in the excitability
of the neuron.

During learning, synaptic scaling plays an important role in balancing po-
tentiation. By constantly shifting mean activation back towards a target activity
level, but maintaining the learned relative distribution of presynaptic weights,
global levels of activity can be regulated [6]. During periods of hypoactivity (e.g.
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in degenerative disorders), synaptic scaling is also capable of raising the sensi-
tivity of neurons via AMPA receptor upregulation, so that activity levels can be
restored [5].

Previous work has demonstrated synaptic scaling with learning in a single-
neuron model [6]. It has also been shown that synaptic scaling can prevent
input saturation in a spiking neural network in the absence of learning [7]. In
this paper, we add long-term synaptic plasticity to a spiking neural network
to show that homeostatic synaptic scaling can prevent hyper-potentiation while
preserving learned information.

2 Methods

The model was based on the anatomy of a single column of sensory neocortex
[3,8,9]. It was composed of 470 neurons divided into 3 types (excitatory pyrami-
dal cells E, fast-spiking interneurons I, and low-threshold spiking interneurons
IL), distributed across the 6 layers of the neocortex. This yielded 13 neuronal
populations in total, with the following numbers of cells per type: E2 (i.e. ex-
citatory layer 2/3 cell), 150; I2 (fast spiking interneuron in layer 2/3), 25; I2L
(low-threshold spiking interneuron in layer 2/3), 13; E4, 30; I4, 20; I4L, 14; E5a,
65; E5b, 17; I5, 25; I5L, 13; E6, 60; I6, 25; and I6L, 13.

The cell model was an extension of an integrate-and-fire unit with added
complexity (adaptation, bursting, depolarization blockade, and voltage-sensitive
NMDA conductance) in the form of rules [10], and was simulated in an event-
driven fashion where cell state variables were only calculated at input events,
making use of previously developed just-in-time synapses optimized for large
networks supporting high-frequency synaptic events [11]. Each cell had fast in-
hibitory GABAA receptors, fast excitatory AMPA receptors, and slow excitatory
NMDA receptors, with each producing a voltage-step with following decay.

In addition to spikes generated by cells in the model, subthreshold Poisson-
distributed spike inputs to each synapse were used to maintain activity in the
model: 100–150 Hz for GABAA, 240–360 Hz for AMPA receptors, and 40–60 Hz
for NMDA receptors. These external inputs represented the inputs from other re-
gions of the brain. To simulate additional afferent sensory inputs, low-amplitude
training signals were applied to the layer 4 excitatory neurons (E4) in some sim-
ulations. STDP was implemented on AMPA synapses from E→E cells using a
basic model with bilateral exponential decay (40ms maximal interspike differ-
ence, 10ms time constant) incrementing by 0.1% of baseline synaptic weight. It
should be noted that STDP in this model is additive, whilst van Rossum argues
that it should be multiplicative [6]. Further details of the cell model can be found
in [3] and [4].

Scaling was implemented at E cell AMPA synapses by multiplying each cell
i’s postsynaptic input by a scale factor wi, representing the multiplicative ac-
cumulation of AMPA receptors at synapses. Changes in the scale factor were
calculated following the formula of van Rossum et al. [6], with ai as the cell’s

firing activity, agoali as the target activity, β as the scaling strength, γ as the



“integral controller” weight, and dwi(t)
dt as the rate of change of the synaptic

weight:

dwi(t)

dt
= βwi(t)[a

goal
i − ai(t)] + γwi(t)

∫ t

0

dt′[agoali − ai(t′)] (1)

The following parameter values were used: strength β = 4.0 × 10−8/ms/Hz;
integral controller weight γ = 1.0×10−10/ms2/Hz; activity sensor time constant
τ = 100 × 103 ms. Scaling was applied inversely at GABAA synapses (i.e. by
multiplying postsynaptic input by 1

wi
) to enable the scaling of excitatory and

inhibitory synapses in opposite directions, mimicking the effect of global growth
factors such as BDNF [5,7,12,13].

Average activity level for each cell i was sensed using van Rossum’s slow-
varying sensor ai(t), which increased monotonically with spike tx at current
timestep t, and decayed otherwise [6]:

τ
dai(t)

dt
= −ai(t) +

∑
x

δ(t− tx) (2)

The sensor decays exponentially as it is updated at each non-firing timestep.
However, the use of event-driven just-in-time synapses [4,11] meant that cell
states were only updated upon each spike event rather than at every timestep,
so inter-spike decay of the activity sensor could only be calculated periodically.
We therefore modified the activity sensor. Here, the first term decays the sensor
according to the time between spikes t− tx, and the second term increments it
for the new spike, with both terms updated concurrently on the occurrence of a
spike at time tx:

ai(t) = ai(tx)e−
1
τ (t−tx) +

1− ai(tx)

τ
(3)

Figure 1 shows the activity of a simulated, randomly-spiking neuron operat-
ing under the constant-timestep update policy (2), and the equivalent activity
values under the periodic-update policy (3). The activity rises identically in both
cases when spikes occur, but the periodic sensor does not decay until the next
spike event occurs, giving the step-like appearance. The values at the spike times
are correct down to round-off error at the spike times.

Instead of providing an arbitrary rate target for each cell, which would fun-
damentally affect network dynamics, the intrinsic dynamics of the network were
used to provide set-points. Initially, with synaptic scaling off, activity sensors
began at 0 Hz. They were then adjusted over 800 s of simulated time based on
the activity level of the cells. Synaptic scaling was then switched on.

A time constant τ of 100 s [6] leads to a simulation timescale of several
hours for synaptic scaling: far closer to the expected biological timescale than
previous studies [5,14,7]. To achieve this length of simulation, the model was
extended to allow periodic flushing of all spike data to disk, enabling very long
runs (unlimited except for available disk space). A typical simulation of 44 hours
ran in approximately real time and produced around 2 GB of spike data. The
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Fig. 1: Activity sensor updating at every simulation timestep (Eqn. 2; black) and
at every spike for activity-driven just-in-time synapses (Eqn. 3; magenta).

model was implemented in NEURON 7.2 [15] for Linux, and is available on
ModelDB at the following URL: (https://senselab.med.yale.edu/modeldb/
enterCode.asp?model=147141).

Data analysis Simulation spike-trains were organized into multiunit activ-
ity (MUA) vectors, defined for a cell population as the number of spikes in
the population over a time interval (bin). Bin sizes were set to 5 ms (200 Hz
sampling rate). Analyses were performed using mean-subtracted MUA vectors,
with spectra calculated by the multitaper spectral power estimation method, as
implemented in the Python wrapper of the FORTRAN MTSpec library [16].

3 Simulation Results

3.1 Scaling Prolonged Activity During Deletion

In an initial experiment, we demonstrated the usefulness of synaptic scaling by
altering network dynamics through gradual removal (pruning) of cells (Fig. 2).
Every 1600 s, three I or E neurons were selected at random and removed from
the network by setting all their synaptic weights to zero. The global external
input weights were scaled down proportionally to the amount of deletion, at
a quarter of the deletion rate, to prevent the external inputs from swamping
internal activation and artificially raising activity. By the end of the simulation,
approximately two thirds of the cells in the network had been deleted.

In the absence of scaling, average firing across E cells declined steadily as
cell deletion progressed (Fig. 2 green / lower line). With scaling present, firing
activity was maintained (Fig. 2 blue / upper line), with brief activity peaks
caused when the inherent delay in the activity sensor led to over-compensation.
These activity peaks do not correspond to deletion times, but rather to emer-
gent instabilities in the resulting damaged network. Indeed, the network remains
stable for nearly half a day following the onset of deletion after 800 s. The
over-compensation can be adjusted to some degree, although not eliminated, by
altering the scaling parameters β and γ (not shown).

https://senselab.med.yale.edu/modeldb/enterCode.asp?model=147141
https://senselab.med.yale.edu/modeldb/enterCode.asp?model=147141


0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Time (days)

0.0

0.5

1.0

1.5

2.0

2.5

Fr
e
q
u
e
n
cy

 (
H

z)

Fig. 2: E activity during pruning with (blue / upper) and without (green / lower)
compensatory synaptic scaling. Run time 160,000 s (≈ 44 h).
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(a) E activity during scaling
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(b) Scale factors of E cells

Fig. 3: Scaling does not destabilize the network (mean: blue, std: grey).

3.2 Synaptic Scaling Did Not Disrupt Network Behavior

The model was run for 160,000 s (≈ 44 h) to examine the effects of scaling
over time on network dynamics. With scaling, activity of the E cells remained
steady (Fig. 3a), and scale factors remained centered around 1 (Fig. 3b). Scaling
appeared to preserve stability of the network during these extremely long runs.

3.3 Unrestrained STDP Led To Hyper-Potentiation

We trained the network by applying a signal consisting of low-weight single spikes
at 8 Hz to E4 cells for 8000 s (≈ 2.2 h) in the absence of synaptic homeostasis
(Fig. 4). STDP was turned off during the final 800 s in order to test recall. We
found that any training signal frequency eventually pushed the network into a
state of excessive firing. This occurred even when E→I STDP balancing was
added (not shown).
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(a) E activity during training (b) Raster plot of 500 ms showing high-
frequency network activity after 2 h

Fig. 4: Training with E→E STDP pushes network to high frequency activity.
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(a) E activity during training with scaling
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Fig. 5: Synaptic scaling maintains E activity profile during STDP.

3.4 Synaptic Scaling Prevented Overactivation

We then assessed the model with STDP, training and synaptic scaling (Fig. 5).
Local E cell homeostatic scaling balanced the potentiation caused by STDP,
gradually scaling down all E cells, and preventing pathological over-activation.

3.5 Synaptic Scaling Preserved Learning

Synaptic scaling served to maintain cell firing near the target rate, here the base-
line rate. However, it was possible that the scaling-down of activity would simply
reverse the potentiation caused by STDP, resulting in a loss of learned informa-
tion. In order to determine whether scaling allowed the learning of oscillations to
persist, the power spectra of the E cells were obtained at various points during
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Fig. 6: Baseline power spectrum of E cells (frequency (Hz) vs normalized power).

the learning process using the multitaper spectral analysis method, with spikes
sorted into 5 ms bins (Fig. 6) [16]. These plots show unsmoothed normalised
power of the E cells within the network at each of a range of frequencies from
0-100 Hz.

STDP was applied at E→E synapses for 8000 s (≈ 2.2 h) with an 8 Hz sensory
signal (Fig. 7d). In one simulation, synaptic scaling was also switched on for E
cells. Power spectra were obtained for the period from 5600-6400 s, shortly after
the middle of training (Figs. 7a and 7b), and again during the recall period at
the end of learning (Figs. 7c and 7d).

In both simulations, it can be seen that STDP has caused a shift in the power
spectra, with an increase in the amplitude of oscillations at low frequencies from
0-10 Hz and a decrease above 10 Hz (Figs. 7a and 7b). This demonstrates that
the network has learned from the training signal. Shortly after 7400 s (2 h), the
network without synaptic scaling transitioned to high-frequency activity, without
retention of the 8 Hz training signal (Fig. 7c; note different scale). However,
in the network with synaptic scaling turned on, lower frequency activity was
maintained, with a peak near the 8 Hz that was imposed during training (Fig.
7d). Synaptic scaling therefore prevented over-activation and preserved learning.

4 Discussion

This research has introduced homeostatic synaptic scaling with dynamically-
obtained target activity rates to a realistic spiking model of neocortex which
learned oscillatory frequencies via STDP. We demonstrated that scaling is nec-
essary for upregulation of neural activity during decline in input. This might have
implications for neurodegenerative brain disorders, in which cortical activation
might be expected to decrease. Peaks of activity were observed during dele-
tion due to periodic over-compensation by the scaling mechanism. Experimen-
tal observations demonstrating hyperactivity in cells near beta-amyloid plaques
in Alzheimer’s disease, and the increased incidence of seizures in Alzheimer’s
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(a) With STDP only, during training
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(b) With STDP & scaling, during training
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(c) With STDP only, after training
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(d) With STDP & scaling, after training

Fig. 7: Power spectra during (top)/after (bottom) STDP, with (R)/without (L)
scaling.

patients, suggests these activity peaks may have a biological basis [17,14,18].
Additionally, synaptic scaling may play a significant role in the progression of
Alzheimer’s disease [19,20,21], and further understanding of this mechanism and
its relationship to learning and disease pathology may be crucial to finding better
treatments.

We also showed that scaling does not negatively affect the network at base-
line, but that it is stable. We demonstrated that E→E scaling is sufficient
to balance the hyper-potentiation caused by unrestrained STDP. Potentiation
strengthens the co-incident connections between neurons in a positive feedback
cycle, eventually leading to hyper-potentiation, but scaling acts to shift the mean
activation constantly back towards the target activity. At the same time, the rel-
ative (learned) distribution between postsynaptic weights remains unaltered by
scaling, and we subsequently demonstrated this principle by showing that learn-
ing of an 8 Hz oscillatory signal is not erased by scaling.



This model investigated training and scaling at E→E synapses between E
cells. While there is some evidence of STDP in I cells [22], I cells do not appear
to perform scaling, but rather: “homeostatic regulation of inhibition is a noncell-
autonomous process that either requires changes in both pre-and postsynaptic
activity simultaneously or is triggered by global changes in network activity”
(Turrigiano et al., 2011 [13]). In our model, directly enabling synaptic scaling in
I cells was found to lead to dramatic instabilities in the network dynamics (even
when operating the network at baseline, i.e. without STDP or a sensory signal),
which is consistent with Turrigiano’s observations. Rather, the network appears
to be most stable when I cells are allowed to adjust their activity passively
according to the changing output from neighboring E cells, thus requiring only
one dimension for the E/I balance rather than needing a second simultaneously
active dimension for scaling.

STDP was implemented using an incremental step of 0.1% of baseline synap-
tic weight, which may seem low. Increasing this step size, however, meant that
short bursts of high-frequency activity were seen during learning, as the activity
sensors could not respond quickly enough to cause sufficient compensatory scal-
ing (although the network did soon scale back to previous firing rates). However,
8000 s (2 h) of sustained training may also be very long compared to biological
learning from hippocampal backprojections, which is known to include periods
of recall and consolidation between periods of learning [23]. This would make an
interesting avenue for future research.
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