Skip to main content

Memory Access Pattern Protection for Resource-Constrained Devices

  • Conference paper
Book cover Smart Card Research and Advanced Applications (CARDIS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7771))

Abstract

We propose a practice-oriented scheme for protecting RAM access pattern. We first consider an instance which relies on the use of a secure (trusted) hardware buffer; it achieves both security and performance levels acceptable in practice by adapting ideas from oblivious RAM mechanisms, yet without the expensive (re-)shuffling of buffers. Another instance requires no special hardware, but as a result leads to a higher, yet practical overhead. One of the main features of the proposal is to maintain the history of memory access to help hiding the access pattern. We claim that under reasonable assumptions, the first scheme with trusted memory is secure with overhead of only 6 ×, as is the second scheme with overhead of (2m + 2ℓ h  + 2) × where m and ℓ h are respectively the size of the buffer and history. We note that although the proposal is particularly focused on the software execution protection environment, its security may well be appropriate for most uses in the remote storage environment, to prevent access pattern leakage of cloud storage with much lower performance overhead than existing solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajtai, M.: Oblivious RAMs without cryptographic assumptions. In: Schulman, L.J. (ed.) STOC, pp. 181–190. ACM (2010)

    Google Scholar 

  2. Boneh, D., Mazieres, D., Popa, R.A.: Remote Oblivious Storage: Making Oblivious RAM Practical. Technical Report MIT-CSAIL-TR-2011-018, Massachusetts Institute of Technology (2011)

    Google Scholar 

  3. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private Information Retrieval. In: FOCS, pp. 41–50. IEEE Computer Society (1995)

    Google Scholar 

  4. Damgård, I., Meldgaard, S., Nielsen, J.B.: Perfectly Secure Oblivious RAM without Random Oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 144–163. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Goldreich, O.: Towards a Theory of Software Protection and Simulation by Oblivious RAMs. In: Aho, A.V. (ed.) STOC, pp. 182–194. ACM (1987)

    Google Scholar 

  6. Goldreich, O., Ostrovsky, R.: Software Protection and Simulation on Oblivious RAMs. J. ACM 43(3), 431–473 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Goodrich, M.T.: Data-Oblivious External-Memory Algorithms for the Compaction, Selection, and Sorting of Outsourced Data. In: Rajaraman, R., Meyer auf der Heide, F. (eds.) SPAA, pp. 379–388. ACM (2011)

    Google Scholar 

  8. Goodrich, M.T., Mitzenmacher, M.: Privacy-Preserving Access of Outsourced Data via Oblivious RAM Simulation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 576–587. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Oblivious RAM simulation with Efficient Worst-Case Access Overhead. In: Cachin, C., Ristenpart, T. (eds.) CCSW, pp. 95–100. ACM (2011)

    Google Scholar 

  10. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Practical Oblivious Storage. In: Bertino, E., Sandhu, R.S. (eds.) CODASPY, pp. 13–24. ACM (2012)

    Google Scholar 

  11. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Privacy-Preserving Group Data Access via Stateless Oblivious RAM Simulation. In: Rabani, Y. (ed.) SODA, pp. 157–167. SIAM (2012)

    Google Scholar 

  12. Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (In)security of Hash-based Oblivious RAM and a New Balancing Scheme. In: Randall, D. (ed.) SODA, pp. 143–156. SIAM (2012)

    Google Scholar 

  13. Lorch, J.R., Mickens, J.W., Parno, B., Raykova, M., Schiffman, J.: Toward Practical Private Access to Data Centers via Parallel ORAM. IACR Cryptology ePrint Archive, 2012:133 (2012)

    Google Scholar 

  14. Lu, S., Ostrovsky, R.: Distributed Oblivious RAM for Secure Two-Party Computation. IACR Cryptology ePrint Archive, 2011:384 (2011)

    Google Scholar 

  15. Osvik, D.A., Shamir, A., Tromer, E.: Cache Attacks and Countermeasures: The Case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Pinkas, B., Reinman, T.: Oblivious RAM Revisited. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 502–519. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)3) Worst-Case Cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 197–214. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Stefanov, E., Shi, E., Song, D.: Towards Practical Oblivious RAM. CoRR, abs/1106.3652 (2011)

    Google Scholar 

  19. Williams, P., Sion, R.: Usable PIR. In: NDSS. The Internet Society (2008)

    Google Scholar 

  20. Williams, P., Sion, R.: SR-ORAM: Single Round-trip Oblivious RAM. In: ACNS, Industrial Track, pp. 19–33 (2012)

    Google Scholar 

  21. Zhuang, X., Zhang, T., Lee, H.-H.S., Pande, S.: Hardware Assisted Control Flow Obfuscation for Embedded Processors. In: Irwin, M.J., Zhao, W., Lavagno, L., Mahlke, S.A. (eds.) CASES, pp. 292–302. ACM (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakano, Y., Cid, C., Kiyomoto, S., Miyake, Y. (2013). Memory Access Pattern Protection for Resource-Constrained Devices. In: Mangard, S. (eds) Smart Card Research and Advanced Applications. CARDIS 2012. Lecture Notes in Computer Science, vol 7771. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37288-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37288-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37287-2

  • Online ISBN: 978-3-642-37288-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics