Skip to main content

Stable Modifiable Walking Pattern Algorithm with Constrained Optimized Central Pattern Generator

  • Chapter

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 208))

Abstract

In this paper, stable modifiable walking pattern algorithm is proposed using evolutionary optimized central pattern generator (CPG). Sensory feedback pathways in CPG are proposed, which use force sensing resistor (FSR) signals. For the optimization of CPG parameters, two-phase evolutionary programming (TPEP) is employed. Modifiable walking pattern generator (MWPG) generates position trajectory of center of mass (COM) of humanoid robot and CPG generates sagittal swing foot position trajectory. The effectiveness of the proposed scheme is demonstrated by simulations using a Webots dynamic simulator for a small sized humanoid robot, HSR-IX, developed in the Robot Intelligence Technology (RIT) Lab, KAIST.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., Fujimura, K.: The intelligent ASIMO: system overview and integration. In: Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., pp. 2478–2483 (2002)

    Google Scholar 

  2. Akachi, K., Kaneko, K., Kanehira, N., Ota, S., Miyamori, G., Hirata, M., Kajita, S., Kanehiro, F.: Development of humanoid robot HRP-3P. In: Proc. IEEE-RAS Int. Conf. Humanoid Robots, pp. 50–55 (2005)

    Google Scholar 

  3. Ogura, Y., Aikawa, H., Shimomura, K., Kondo, H., Morishima, A., Lim, H.-O., Takanishi, A.: Development of a new humanoid robot WABIAN-2. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 76–81 (2006)

    Google Scholar 

  4. Park, I.-W., Kim, J.-Y., Lee, J., Oh, J.-H.: Online free walking trajectory generation for biped humanoid robot KHR-3(HUBO). In: Proc. IEEE Int. Conf. on Robot. Autom., pp. 1231–1236 (2006)

    Google Scholar 

  5. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Yokoi, K., Hirukawa, H.: A realtime pattern generator for biped walking. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 31–37 (2002)

    Google Scholar 

  6. Motoi, N., Suzuki, T., Ohnishi, K.: A bipedal locomotion planning based on virtual linear inverted pendulum mode. IEEE Trans. Ind. Electron. 56(1), 54–61 (2009)

    Article  Google Scholar 

  7. Erbatur, K., Kurt, O.: Natural ZMP trajectories for biped robot reference generation. IEEE Trans. Ind. Electron. 56(3), 835–845 (2009)

    Article  Google Scholar 

  8. Sato, T., Sakaino, S., Ohashi, E., Ohnishi, K.: Walking trajectory planning on stairs using virtual slope for biped robots. IEEE Trans. Ind. Electron. 58(4), 1385–1396 (2001)

    Article  Google Scholar 

  9. Lee, B.-J., Stonier, D., Kim, Y.-D., Yoo, J.-K., Kim, J.-H.: Modifiable Walking Pattern of a Humanoid Robot by Using Allowable ZMP Variation. IEEE Trans. Robot. 24(4), 917–925 (2008)

    Article  Google Scholar 

  10. Hong, Y.-D., Lee, B.-J., Kim, J.-H.: Command state-based modifiable walking pattern generation on an inclined plane in pitch and roll directions for humanoid robots. IEEE/ASME Trans. Mechatron. 16(4), 783–789 (2011)

    Article  Google Scholar 

  11. Taga, G.: Emergence of bipedal locomotion through entrainment among the neuro-musculo-skeletal system and the environment. Physica D: Nonlinear Phenomena 75(1.3), 190–208 (1994)

    Article  MATH  Google Scholar 

  12. Aoi, S., Tsuchiya, K.: Stability analysis of a simple walking model driven by an oscillator with a phase reset using sensory feedback. IEEE Trans. Robot. 22(2), 391–397 (2006)

    Article  Google Scholar 

  13. Righetti, L., Ijspeert, A.J.: Programmable central pattern generators: an application to biped locomotion control. In: Proc. IEEE Int. Conf. Robot, pp. 1585–1590 (2006)

    Google Scholar 

  14. Park, C.-S., Hong, Y.-D., Kim, J.-H.: An Evolutionary Central Pattern Generator for Stable Bipedal Walking by the Increased Double Support Time. In: Proc. IEEE Int. Conf. Robot. Bio., pp. 497–502 (2011)

    Google Scholar 

  15. Myung, H., Kim, J.-H.: Hybrid evolutionary programming for heavily constrained problems. BioSystems 38(1), 29–43 (1996)

    Article  Google Scholar 

  16. Kim, J.-H., Myung, H.: Evolutionary programming techniques for constrained optimization problems. IEEE Trans. Evol. Comput. 1(2), 129–140 (1997)

    Article  Google Scholar 

  17. Matsuoka, K.: Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biol. Cybern. 52(6), 367–376 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vukobratovic, M., Borovac, B.: Zero-moment point-thirty live years of its life. Int. J. Humanoid Robot. 1(1), 157–173 (2004)

    Article  Google Scholar 

  19. Michel, O.: Cyberbotics Ltd. WebotsTM: Professional mobile robot simulation. Int. J. Advanced Robot. Syst. 1(1), 39–42 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Soo Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Park, CS., Kim, JH. (2013). Stable Modifiable Walking Pattern Algorithm with Constrained Optimized Central Pattern Generator. In: Kim, JH., Matson, E., Myung, H., Xu, P. (eds) Robot Intelligence Technology and Applications 2012. Advances in Intelligent Systems and Computing, vol 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37374-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37374-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37373-2

  • Online ISBN: 978-3-642-37374-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics