Skip to main content

An Examination of Feature Detection for Real-Time Visual Odometry in Untextured Natural Terrain

  • Chapter
  • 236 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 208))

Abstract

Estimating the position of a robot is an essential requirement for autonomous mobile robots. Visual Odometry is a promising localization method in slippery natural terrain, which drastically degrades the accuracy of Wheel Odometry, while relying neither on other infrastructure nor any prior knowledge. Visual Odometry, however, suffers from the instability of feature extraction from the untextured natural terrain. To date, a number of feature detectors have been proposed for stable feature detection. This paper compares commonly used detectors in terms of robustness, localization accuracy and computational efficiency, and points out their trade-off problems among those criteria. To solve the problem, a hybrid algorithm is proposed which dynamically switches between multiple detectors according to the texture of terrain. Validity of the algorithm is proved by the simulation using dataset at volcanic areas in Japan.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Triggs, B., McLauchalan, P., Hartley, R., Fitzgibbon, A.: Bundle adjustment – a modern synthesis. Vision Algorithms: Theory and Practice, 153–177 (2000)

    Google Scholar 

  2. Open source software for SLAM and loop-closing, http://openslam.org

  3. Nister, D., Naroditsky, O., Bergen, J.: Visual odometry for ground vehicle applications. J. of Field Robotics 23, 3–20 (2006)

    Article  MATH  Google Scholar 

  4. Konolige, K., Agrawal, M.: Large-scale visual odometry for rough terrain. In: International Symposium on Research in Robotics (ISRR 2007), vol. 66 (2007)

    Google Scholar 

  5. Howard, A.: Real-time stereo visual odometry for autonomous ground vehicles. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2008), pp. 3946–3952. IEEE (2008)

    Google Scholar 

  6. Maimone, M., Cheng, Y., Matthies, L.: Two years of visual odometry on the mars exploration rovers. J. of Field Robotics 24(3), 169–186 (2007)

    Article  Google Scholar 

  7. Johnson, A.E., Goldberg, S.B., Cheng, Y., Matthies, L.H.: Robust and efficient stereo feature tracking for visual odometry. In: IEEE International Conference on Robotics and Automation (ICRA 2008), pp. 39–46 (2008)

    Google Scholar 

  8. Tamura, Y., Suzuki, M., Ishii, A., Kuroda, Y.: Visual odometry with effective feature sampling for untextured outdoor environment. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2009), pp. 3492–3497. IEEE (2009)

    Google Scholar 

  9. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, Manchester, UK, vol. 15, pp. 147–151 (1988)

    Google Scholar 

  10. Shi, J., Tomasi, C.: Good features to track. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 1994), pp. 593–600. IEEE (1994)

    Google Scholar 

  11. Rosten, E., Drummond, T.: Fusing points and lines for high performance tracking. In: IEEE International Conference on Computer Vision (ICCV 2005), vol. 2, pp. 1508–1515. IEEE (2005)

    Google Scholar 

  12. Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  14. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: SURF: Speeded-up robust features. Computer Vision and Image Understanding 110(3), 346–359 (2008)

    Article  Google Scholar 

  15. Agrawal, M., Konolige, K., Blas, M.R.: CenSurE: Center surround extremas for realtime feature detection and matching. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 102–115. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyohei Otsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Otsu, K., Otsuki, M., Ishigami, G., Kubota, T. (2013). An Examination of Feature Detection for Real-Time Visual Odometry in Untextured Natural Terrain. In: Kim, JH., Matson, E., Myung, H., Xu, P. (eds) Robot Intelligence Technology and Applications 2012. Advances in Intelligent Systems and Computing, vol 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37374-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37374-9_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37373-2

  • Online ISBN: 978-3-642-37374-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics