

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-04-24T23:52:35Z

Some rights reserved. For more information, please see the item record link above.

Title
Update Semantics for Interoperability among XML, RDF and
RDB - A Case Study of Semantic Presence in CISCO's Unified
Presence Systems

Author(s) Ali, Muhammad Intizar; Lopes, Nuno; Mileo, Alessandra

Publication
Date 2013

Publication
Information

Ishikawa, Y., Li, J., Wang, W., Zhang, R., Zhang, W., Ali, M.,
et al. Update Semantics for Interoperability among XML, RDF
and RDB Web Technologies and Applications (Vol. 7808, pp.
43-50): Springer Berlin Heidelberg.

Publisher Springer

Link to
publisher's

version
http://dx.doi.org/10.1007/978-3-642-37401-2_7

Item record http://hdl.handle.net/10379/4125

DOI http://dx.doi.org/10.1007/978-3-642-37401-2_7

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Update Semantics for Interoperability among
XML, RDF and RDB?

A case study of Semantic Presence in CISCO’s Unified
Presence Systems

Muhammad Intizar Ali1, Nuno Lopes1, Owen Friel2, and Alessandra Mileo1

1 DERI, National University of Ireland, Galway, Ireland
{ali.intizar,nuno.lopes,alessandra.mileo}@deri.org

2 Cisco Systems, Galway, Ireland
{ofriel}@cisco.com

Abstract. XSPARQL is a transformation and querying language that
provides an integrated access over heterogeneous data sources on the fly.
It is an extension of XQuery which supports a subset of SPARQL and
SQL to provide unified access over XML, RDF and RDB formats. In
practical applications, data integration does not only require the inte-
grated access over distributed heterogeneous data sources, but also the
update of underlying data.

XSPARQL in its present state is only a querying and transformation
language, hence lacking the update facility. In this paper, we propose an
extension of the XSPARQL language with update facility. We present
the syntax and semantics for this extension, and we use the real world
scenario of semantic presence in CISCO’s Unified Presence Systems to
demonstrate the requirement of update facility. Preliminary evaluation
of the XSPARQL Update Facility is also presented.

Keywords: XSPARQL, SPARQL , XQuery, XMPP, Updates, DML

1 Introduction

Relational databases (RDB) are the most common way of storing and managing
data in majority of the enterprise environments [1]. Particularly in the enter-
prises where integrity and confidentiality of the data are of the utmost impor-
tance, relational data model is still the most preferred option. However, with the
growing popularity of the Web and other Web related technologies (e.g. Semantic
Web), various data models have been introduced. Extensible Markup Language
(XML) is a very popular data model to store and specify the semi-structured
data over the Web [7]. It is also considered as a de-facto data model for data
exchange. XPath and XQuery are designed to access and query data in XML

? This work has been funded by Science Foundation Ireland, Grant No.
SFI/08/CE/l1380 (Lion2) and CISCO Systems Galway, Ireland.

format[10, 5]. Semantic Web is built upon data represented in Resource Descrip-
tion Format (RDF) [4]. RDF is a standard data format for establishing semantic
interpretability and machine readability among the various data sources scat-
tered over the Web. SPARQL is a query language designed to query linked data
in RDF data format [17]. All of the above mentioned data models were designed
to perform a specific task and their importance in their own domains can not
be denied. Several query languages including SQL, XQuery and SPARQL have
been designed to access and query RDB, XML and RDF data respectively. It is
inevitable for modern data integration applications to avoid such heterogeneity
of data formats and query languages. Therefore, often these applications require
integrated access over distributed heterogeneous data sources.

XSPARQL is a W3C Member Submission (http://www.w3.org/
Submission/2009/01/) which combines XQuery, SPARQL and SQL to
provide an integrated access over XML, RDF and RDB data sources [2].
However, in practice the integrated applications not only require the access of
integrated data, but in many scenarios an update in the existing data is also
desired. XSPARQL in its present state only provides Data Query Language
(DQL) while lacking Data Manipulation Language (DML). In this paper we
define syntax and semantics of XSPARQL Update Facility which extends the
capabilities of the XSPARQL language to perform update operations over RDB,
XML and RDF data on the fly while keeping the data sources in their original
data formats. XSPARQL Update Facility is fully compatible with the update
semantics defined individually for SQL, XQuery and SPARQL [16, 18, 12]. Our
main motivation for this extension was the real world scenario of semantic
presence in the CISCO Unified Presence (CUP) systems, based on processing
and integrating information retrieved from XMPP(http://xmpp.org) messages
and update the underlying data in RDB and RDF data sources to keep track
of up-to-date semantic presence history of registered users. In this scenario we
require not only the simultaneous access to heterogeneous data represented in
RDB, XML and RDF, but also the update operations are desired to update the
underlying RDB and RDF data on the fly [8].

Our main contributions in this paper can be summarised as follows: (i) we
extend XSPARQL with updates, providing what we call XSPARQL Update Fa-
cility, (ii) we define formal semantics of the XSPRQL Update Facility, (iii) we
demonstrate the need for XSPARQL Update Facility by presenting a use case
scenario for semantic presence in the CUP systems, and (iv) we successfully im-
plement and evaluate XSPARQL Update Facility for dealing with group chats
history in the same scenario.

2 Semantic Presence in Cisco’s Unified Presence System

Cisco Unified Presence (CUP) systems is a standards-based enterprise platform
that aims to provide an effective way of communication among people in and
across the organisation using instant messaging (IM) over XMPP standard pro-
tocol. A general architecture to collect several presence information from various

Seman&c(
Enhancement(

IM(Client(2(IM(Client(1(CUP((
Server(

PostgreSQL(

Message(Archive(

Virtuoso(
Server(

Seman&c(Data(

XML(XML(

RDB(RDF(

Fig. 1. Semantic Presence in CUP Systems

heterogeneous and dynamic
sources has been introduced
in [14],which provides some
insights on how richer seman-
tic presence services and ap-
plications can be deployed. As
a first step towards the en-
hancement of CUP systems
with richer semantic presence,
a mapping of the core XMPP
messages into RDF is for-
mally defined in [8]. Figure
1 depicts a simplified high-
level version of the architec-
ture of semantic presence in the CUP systems focusing only on heteroge-
neous data formats that need to be manipulated during communication. All
XMPP messages are mapped into RDF using various ontologies e.g SIOCC
(http://rdfs.org/sioc/chat#), Nepomuk (http://www.semanticdesktop.
org/ontologies/2007/03/22/nmo#) and SIOC (http://rdfs.org/sioc/ns#).
CUP server stores history of all the group chat messages and other communi-
cations in an external PostgreSQL (http://www.postgresql.org/) database,
while semantic enhancement component stores the semantic information in a
graph database using Virtuoso Server (http://openlinksw.com/virtuoso).
Listing 1 shows a sample XMPP message generated by IM client while re-
questing for the creation of a chat room. Listing 2 depicts mapping of
XMPP messages into RDF using SIOC and SIOCC ontologies. We use
the XSPARQL Update Facility to interpret the XMPP message and gen-
erate/update RDB and RDF data on the fly. This enables a semantically
enriched CUP system to update/generate data from one data model to
any other data model. Later, in section 4 we evaluate our XSPARQL Up-
date facility by using the use case of semantic presence in CUP systems.

#i n t i z a r @ d e r i . org s eeks to ente r
#in the DERICollab room

<presence
from=

” i n t i z a r @ d e r i . org / i n t i z a r−notebook ”
to=

”DERICollab@conference . corp . com/
i n t i z a r ”>
<x xmlns=”http :// jabber . org / p ro toco l /
muc”/>
</presence>

Listing 1. XMPP request message for chat
room creation

@base <http :// l i o n 2 p c i s c o . com
/example#>.

: DERICollab a
s i o c t : ChatChannel ;

s i o c : has owner
: in t i za r@corp . com .

: DERICollabChatSession a
s i o c c : ChatSess ion ;

s i o c : ha s con ta in e r
: DERICollab ;

s i o c c : h a s p u b l i s h i n g s o u r c e
: int i zarNotebook

s i o c c : has nickname ” a l i ”

Listing 2. Mapping XMPP Message of
Listing 1 into RDF [8]

Prolog: declare namespace prefix=”namespace-URI” or
prefix prefix: <namespace-URI>

Body: for var in FLWOR’ expression
let var:= FLWOR’ expression
where FLWOR’ expression
order by FLWOR’ expression or
for varlist
from/ from named (<dataset-URI> or FLWOR’ expr)
where pattern
order by expression
limit integer > 0
offset integer > 0 or
for SelectSpec
from RelationList
where WhereSpecList

Update: insert node expression ((as(first|last))?into)|after|before) expression|
delete node expression |
replace (value of) node expression with expression or
insert data Quads |
((delete data Quads) | (delete where QuadPattern)) |
[with <IRI>] ((delete QuadPattern [insert QuadPattern]) | (insert Quad-
Pattern))(using [named] <IRI>)* where GroupGraphPattern

or

insert into RelationList values ValueList |
delete from RelationList where WhereSpecList |
update RelationList set ValueList where WhereSpecList

Head: construct template (with nested FLWOR’ expressions) or
return XML + nested FLWOR’s expression

Fig. 2. Schematic View of XSPARQL with Updates

3 XSPARQL Update Facility

In this section we specify the XSPARQL Update Facility by giving a detailed
description of its syntax and semantics.

3.1 Syntax

XSPARQL is built on XQuery semantics, XSPARQL Update Facility is also ex-
tended using formal semantics of XQuery Update Facility. It merges the subset
of SPARQL, XQuery and SQL update clauses. We limit ourself to three major
update operations of INSERT: to insert new records in the data set, DELETE:
to delete already existing records from data set and UPDATE: to replace the ex-
isting records or their values with the new records or values. Figure 2 presents a
schematic view of the XSPARQL Update Facility which allows its users to select
data from one data source of any of its data format and update the results into
another data source of different format within a single XSPARQL query while
preserving the bindings of the variables defined within query. Contrary to the
select queries, the update queries have no return type. On successful execution
of the update queries no results are returned, only a response is generated which
can be either successful upon successful execution of the query or an appropriate
error is raised if for some reasons the XSPARQL query processor is unable to
update the records successfully. However if a valid updating or delete query with
or without where clause does not match any relevant tuple in the data source,
the XSPARQL query processor will still response with successful execution, but

there will be no effect on the existing data source. The basic building block of
XQuery is the expression, an XQuery expression takes zero or more XDM in-
stances and returns an XDM instance. Following new expressions are introduced
in XSPARQL Update Facility

– A new category of expression called updating expression is introduced to
make persistent changes in the existing data.

– A basic updating expression can be any of the insert, delete or update.
– for, let, where or order by clause can not contain an updating expression.
– return clause can contain an updating expression which will be evaluated for

each tuple generated by its for clause.

RevalidationDecl::= "declare" "revalidation" ("strict" | "lax" | "skip")
XSPARQLExpr ::= (FLWORExpr | SPARQLForClause | SQLForClause) |

(InsertClause | DeleteClause | UpdateClause)
(ReturnClause | ConstructClause)

InsertClause ::= XQueryInsert | SPARQLInsert | SQLInsert
DeleteClause ::= XQueryDelete | SPARQLDelete | SQLDelete
UpdateClause ::= XQueryUpdate | SPARQLUpdate | SQLUpdate
...

Fig. 3. XSPARQL Update Facility Grammar Overview

Figure 3 presents an overview of the basic syntax rules for XSPARQL Update
Facility, for complete grammar of XSPARQL Update Facility, we refer our reader
to the latest version of the XSPARQL available at http://sourceforge.net/

projects/xsparql.

3.2 Semantics

Similar to the semantics of the XSPARQL language [6], for the semantics of
updates in XSPARQL we rely on the semantics of the original languages: SQL,
XQuery, and SPARQL. Notably, the semantics for SPARQL updates are pre-
sented only in the upcoming W3C recommendation: SPARQL 1.1 [12]. We start
by presenting a brief overview of the semantics of update languages for the dif-
ferent data models: relational databases, XML, and RDF.

RDB: updates in the SQL language rely on a procedural language that specify
the operations to be performed, respectively: insrdb(r, t), delrdb(r, C), and
modrdb(r, C,C ′), where r is a relation name, t is a relational tuple, and C,C ′

are a set of conditions of the form A = c or A 6= c (A is an attribute
name and c is a constant). Following [1], insrdb(r, t) inserts the relational
tuple t into the relation r, delrdb(r, C) deletes the relational tuples from
relation r that match the condition, and modrdb(r, C,C ′) updates the tuples
in relation r that match conditions C to the values specified by C ′.

XML: For XML data, the XQuery language is adapted such that an expression
can return a sequence of nodes (as per the XQuery semantics specifica-
tion [9]) or pending update list [18], which consists of a collection of update

primitives, representing state changes to XML nodes. For this paper we
are focusing on insert, delete, and replace operations, whose semantics are
procedurally defined in [18] and in this paper we represent these procedural
semantics by the functions insxml(SourceExpr , InTargetChoice,TargetExpr),
delxml(TargetExpr), and modxml(TargetExpr ,ExprSingle).

RDF: SPARQL Update’s semantics are similarly defined in terms of changes
to the underlying triple store [12], where the result of an update opera-
tion is a new triple store. We rely on the semantics functions insrdf , delrdf ,
and modrdf (shorthand for the functions OpInsertData, OpDeleteData,
and OpDeleteInsert, respectively). The functions signatures are as per the
SPARQL specification: insrdf (GS ,QuadPattern), delrdf (GS ,QuadPattern),
and modrdf (GS ,DS ,QuadPatterndel ,QuadPatternins ,P) presented in [12].
The functions insrdf and delrdf insert and delete triples match-
ing QuadPattern from the triple store DS, respectively. The modrdf eval-
uates the graph pattern P against the dataset DS and apply these bindings
to QuadPatterndel in order to determine the triples to be removed from the
graph store GS and to QuadPatternins for the inserted triples.

4 Implementation and Evaluation

Implementation: We use java platform for the implementation of the XS-
PARQL Update Facility. XSPARQL grammar rules are defined using ANTLR
(http://www.antlr.org). XSPARQL uses Saxon (http://www.saxonica.com)
as a query processor for XQuery, Jena ARQ (http://jena.apache.org) for
SPARQL queries and for SQL queries we provide option to connect to multi-
ple relational database management systems including PostgreSQL and MySQL
(http://www.mysql.com).

Evaluation of XSPARQL Update Facility: In order to demonstrate and
evaluate performance and practicality of XSPARQL Update Facility, we consider
a generic use case of group chat of the semantic presence in CUP systems as
described in Section 2. However XSPARQL Update Facility can be used by any
application which requires access and updates in distributed heterogeneous data
stored in any of the RDB, XML or RDF data models.

f o r $x in //∗ [name=’ presence ’]
i f $x/ s t a tu s [@code=201] then
i n s e r t data
{Graph <SemanticPresence>

{
: DERICollab a s i o c t : ChatChannel ;
s i o c : has owner : i n t i z a r a l i @ c o r p . com .
: DERICollabChatSession a s i o c c : ChatSess ion ;
s i o c : ha s con ta in e r : DERICollab ;
s i o c c : h a s p u b l i s h i n g s o u r c e : i n t i z a r a l i N o t e b o o k
s i o c c : has nickname ” a l i ”

}}

Listing 3. A Sample XSPARQL Update Query

A user creates a chat group: Consider a scenario where a user creates a
persistent chat room over a specific topic as shown in Listing 1 in the Section 2.
When an IM client sends a request to create a chat room an XMPP message will
be generated by IM client and sent to the CUP Server. CUP Server will process
the message. The semantic presence component of CUP systems wants to update
the semantic data stored in Virtuoso Server. Listing 3 shows an XSPARQL query
that interprets XMPP messages using XQuery and if certain condition is met,
the XSPARQL update query will insert the relevant information into RDF data
store using SPARQL update query.

5 Related Work

Several efforts are made to integrate distributed XML, RDF and RDB data
on the fly. These approaches can be divided into two types, (i) Transformation
Based: Data stored in various format is transformed into one format and can be
queried using a single query language [11]. The W3C GRDDL working group
addresses the issues of extracting RDF from XML documents. (ii) Query Re-
writing Based: Query languages are used to transform or query data from one
format to another format. SPARQL queries are embedded into XQuery/XSLT to
pose against pure XML data [13]. XSPARQL was initially designed to integrate
data from XML and RDF and later extended to RDB as well. DeXIN is another
approach to integrate XML, RDF and RDB data on the fly with more focus
on distributed computing of heterogeneous data sources scattered over the Web
[3]. Realising the importance of the updates, the W3C has recommendations for
XQuery and SPARQL updates [18, 12]. In [15], SPARQL is used to update the
relational data. However, to the best of our knowledge their is no work available
which can provide simultaneous access over the distributed heterogeneous data
source with updates.

6 Conclusion and Future Work

In this paper we have extended XSPARQL to provide the Update Facility which
further strengthens the capabilities of XSPARQL by enabling simultaneous ac-
cess and update of heterogeneous data sources. We have defined syntax and
semantics of XSPARQL Update Facility, which merges update operations of
SQL, XQuery and SPARQL. Using XSPARQL Update Facility user not only
can query, integrate and transform heterogeneous data on the fly, but can also
update the already stored data in the data sets or in-memory data generated
as a result of a query before an update operation. XSPARQL Update Facility
will lead to the wide adoption of XSPARQL in many applications (e.g. simi-
lar to semantic presence in CUP systems) which require integrated access over
distributed heterogeneous data sources with updates.

In the future, we plan to further investigate query optimisation techniques
that would make it possible to evaluate even complex XSPARQL queries in
tractable time, that would make XSPARQL usable for large-scale applications.

In this paper, we elaborated the practicality of XSPARQL Update Facility using
real world scenario, however in future, we plan to define detailed formal seman-
tics of the language, evaluation of static and dynamic rules and experimental
evaluation considering various parameters including scalability and query exe-
cutaon time. We also plan to extend XSPARQL Update Facility to include Data
Definition Language (DDL) for its subsequent languages.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. W. Akhtar, J. Kopecký, T. Krennwallner, and A. Polleres. XSPARQL: Traveling
between the XML and RDF Worlds - and Avoiding the XSLT Pilgrimage. In Proc.
of ESWC 2008, pages 432–447, 2008.

3. M. I. Ali, R. Pichler, H. L. Truong, and S. Dustdar. DeXIN: An Extensible Frame-
work for Distributed XQuery over Heterogeneous Data Sources. In Proc. of ICEIS
2009, LNBIP, pages 172–183. Springer, 2009.

4. D. Beckett and B. McBride. RDF/XML Syntax Specification (Revised), Feb. 2004.
W3C Proposed Recommendation.

5. A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay, J. Robie, and
J. Siméon. XML Path Language (XPath) 2.0, Dec. 2010. W3C Recommendation.

6. S. Bischof, S. Decker, T. Krennwallner, N. Lopes, and A. Polleres. Mapping between
RDF and XML with XSPARQL. Journal on Data Semantics, 1:147–185, 2012.

7. T. Bray, J. Paoli, E. Maler, F. Yergeau, and C. M. Sperberg-McQueen. Extensible
Markup Language (XML) 1.0 (Fifth Edition), Nov. 2008. W3C Recommendation.

8. M. Dabrowski, S. Scerri, I. Rivera, and M. Leggieri. Dx– Initial Map-
pings for the Semantic Presence Based Ontology Definition, Nov. 2012.
http://www.deri.ie/publications/technical-reports/.

9. D. Draper, P. Fankhauser, M. Fernández, A. Malhotra, K. Rose, M. Rys, J. Simeón,
and P. Wadler. XQuery 1.0 and XPath 2.0 Formal Semantics, Jan 2007. W3C
Recommendation.

10. M. F. Fernández, D. Florescu, S. Boag, J. Robie, D. Chamberlin, and J. Siméon.
XQuery1.0: An XML query language, Apr. 2009. W3C Proposed Recommendation.

11. F. Gandon. GRDDL Use Cases: Scenarios of extracting RDF data from XML
documents, Apr. 2007. W3C Proposed Recommendation.

12. P. Gearon, A. Passant, and A. Polleres. SPARQL 1.1 Update, Jan. 2012. W3C
Working Draft.

13. S. Groppe, J. Groppe, V. Linnemann, D. Kukulenz, N. Hoeller, and C. Reinke.
Embedding SPARQL into XQuery/XSLT. In Proc. of SAC, 2008.

14. M. Hauswirth, J. Euzenat, O. Friel, K. Griffin, P. Hession, B. Jennings, T. Groza,
S. Handschuh, I. P. Zarko, A. Polleres, and A. Zimmermann. Towards Consolidated
Presence. In Proc. of CollaborateCom 2010, pages 1–10, 2010.

15. M. Hert, G. Reif, and H. Gall. Updating relational data via SPARQL/update. In
Proc. of EDBT/ICDT Workshops, 2010.

16. M. Negri, G. Pelagatti, and L. Sbattella. Formal Semantics of SQL Queries. ACM
Trans. Database Syst., 16(3):513–534, 1991.

17. E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF, Jan.
2008. W3C Proposed Recommendation.

18. J. Robie, D. Chamberlin, M. Dyck, D. Florescu, J. Melton, and J. Siméon. XQuery
Update Facility 1.0, Mar. 2011. W3C Recommendation.

