Skip to main content

Robust Multiple-Instance Learning with Superbags

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7725))

Included in the following conference series:

Abstract

Multiple-instance learning consists of two alternating optimization steps: learning a classifier with missing labels and finding the missing labels with the classifier. These steps are iteratively performed on the same training data, thus imputing labels by evaluating the classifier on the data it is trained upon. Consequently this alternating optimization is prone to self-amplification and overfitting. To resolve this crucial issue of popular multiple-instance learning we propose to establish a random ensemble of sets of bags, i.e., superbags. Classifier training and label inference are then decoupled by performing them on different superbags. Label inference is performed on samples from separate superbags, and thus avoids label imputation on training samples in the same superbag. Experimental evaluations on standard datasets show consistent improvement over widely used approaches for multiple-instance learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dietterich, T.G., Lathrop, R.H.: Solving the multiple-instance problem with axis-parallel rectangles. Artificial Intelligence 89, 31–71 (1997)

    Article  MATH  Google Scholar 

  2. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning. In: Advances in Neural Information Processing Systems 15, pp. 561–568. MIT Press (2003)

    Google Scholar 

  3. Zhang, Q., Goldman, S.A.: Em-dd: An improved multiple-instance learning technique. In: Advances in Neural Information Processing Systems, pp. 1073–1080. MIT Press (2001)

    Google Scholar 

  4. Vijayanarasimhan, S., Grauman, K.: Keywords to visual categories: Multiple-instance learning for weakly supervised object categorization. In: CVPR (2008)

    Google Scholar 

  5. Chen, Y., Bi, J., Wang, J.Z.: Miles: Multiple-instance learning via embedded instance selection. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1931–1947 (2006)

    Article  Google Scholar 

  6. Monroy, A., Ommer, B.: Beyond Bounding-Boxes: Learning Object Shape by Model-Driven Grouping. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 580–593. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple instance learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI (2011)

    Google Scholar 

  8. Leistner, C., Saffari, A., Bischof, H.: MIForests: Multiple-Instance Learning with Randomized Trees. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 29–42. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, COLT 1998, pp. 92–100. ACM, New York (1998)

    Chapter  Google Scholar 

  10. Roth, P., Leistner, C., Berger, A., Bischof, H.: Multiple instance learning from multiple cameras. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 17–24 (2010)

    Google Scholar 

  11. Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Gehler, P.V., Chapelle, O.: Deterministic annealing for multiple-instance learning. Journal of Machine Learning Research - Proceedings Track 2, 123–130 (2007)

    Google Scholar 

  13. Fu, Z., Robles-Kelly, A., Zhou, J.: Milis: Multiple instance learning with instance selection. IEEE Trans. Pattern Anal. Mach. Intell. 33, 958–977 (2011)

    Article  Google Scholar 

  14. Li, W., Duan, L., Xu, D., Tsang, I.W.H.: Text-based image retrieval using progressive multi-instance learning. In: ICCV, pp. 2049–2055 (2011)

    Google Scholar 

  15. Fergus, R., Fei-Fei, L., Perona, P., Zisserman, A.: Learning object categories from google’s image search. In: Proceedings of the 10th International Conference on Computer Vision, Beijing, China, vol. 2, pp. 1816–1823 (2005)

    Google Scholar 

  16. Schroff, F., Criminisi, A., Zisserman, A.: Harvesting image databases from the web. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 754–766 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Antić, B., Ommer, B. (2013). Robust Multiple-Instance Learning with Superbags. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37444-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37444-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37443-2

  • Online ISBN: 978-3-642-37444-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics