
Fast Training of Effective Multi-class Boosting
Using Coordinate Descent Optimization?

Guosheng Lin, Chunhua Shen??, Anton van den Hengel, David Suter

The University of Adelaide, Australia

Abstract. We present a novel column generation based boosting method
for multi-class classification. Our multi-class boosting is formulated in
a single optimization problem as in [1, 2]. Different from most existing
multi-class boosting methods, which use the same set of weak learners
for all the classes, we train class specified weak learners (i.e., each class
has a different set of weak learners). We show that using separate weak
learner sets for each class leads to fast convergence, without introducing
additional computational overhead in the training procedure. To further
make the training more efficient and scalable, we also propose a fast co-
ordinate descent method for solving the optimization problem at each
boosting iteration. The proposed coordinate descent method is concep-
tually simple and easy to implement in that it is a closed-form solution
for each coordinate update. Experimental results on a variety of datasets
show that, compared to a range of existing multi-class boosting meth-
ods, the proposed method has much faster convergence rate and better
generalization performance in most cases. We also empirically show that
the proposed fast coordinate descent algorithm needs less training time
than the MultiBoost algorithm in Shen and Hao [1].

1 Introduction

Boosting methods combine a set of weak classifiers (weak learners) to form a
strong classifier. Boosting has been extensively studied [3, 4] and applied to a
wide range of applications due to its robustness and efficiency (e.g., real-time
object detection [5–7]). Despite that fact that most classification tasks are inher-
ently multi-class problems, the majority of boosting algorithms are designed for
binary classification. A popular approach to multi-class boosting is to split the
multi-class problem into a bunch of binary classification problems. A simple ex-
ample is the one-vs-all approach. The well-known error correcting output coding
(ECOC) methods [8] belong to this category. AdaBoost.ECC [9], AdaBoost.MH
[10] and AdaBoost.MO [10] can all be viewed as examples of the ECOC approach.
The second approach is to directly formulate multi-class as a single learning task,
which is based on pairwise model comparisons between different classes. Shen
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and Hao’s direct formulation for multi-class boosting (referred to as MultiBoost)
is such an example [1]. From the perspective of optimization, MultiBoost can be
seen as an extension of the binary column generation boosting framework [11, 4]
to the multi-class case. Our work here builds upon MultiBoost. As most existing
multi-class boosting, for MultiBoost of [1], different classes share the same set of
weak learners, which leads to a sparse solution of the model parameters and hence
slow convergence. To solve this problem, in this work we propose a novel formu-
lation (referred to as MultiBoostcw) for multi-class boosting by using separate
weak learner sets. Namely, each class uses its own weak learner set. Compared
to MultiBoost, MultiBoostcw converges much faster, generally has better gener-
alization performance and does not introduce additional time cost for training.
Note that AdaBoost.MO proposed in [10] uses different sets of weak classifiers
for each class too. AdaBoost.MO is based on ECOC and the code matrix in Ad-
aBoost.MO is specified before learning. Therefore, the underlying dependence
between the fixed code matrix and generated binary classifiers is not explic-
itly taken into consideration, compared with AdaBoost.ECC. In contrast, our
MultiBoostcw is based on the direct formulation of multi-class boosting, which
leads to fundamentally different optimization strategies. More importantly, as
shown in our experiments, our MultiBoostcw is much more scalable than Ad-
aBoost.MO although both enjoy faster convergence than most other multi-class
boosting.

In MultiBoost [1], sophisticated optimization tools like Mosek or LBFGS-B
[12] are needed to solve the resulting optimization problem at each boosting iter-
ation, which is not very scalable. Here we propose a coordinate descent algorithm
(FCD) for fast optimization of the resulting problem at each boosting iteration
of MultiBoostcw. FCD methods choose one variable at a time and efficiently
solve the single-variable sub-problem. CD(coordinate decent) has been applied
to solve many large-scale optimization problems. For example, Yuan et al. [13]
made comprehensive empirical comparisons of `1 regularized classification algo-
rithms. They concluded that CD methods are very competitive for solving large-
scale problems. In the formulation of MultiBoost (also in our MultiBoostcw), the
number of variables is the product of the number of classes and the number of
weak learners, which can be very large (especially when the number of classes
is large). Therefore CD methods may be a better choice for fast optimization of
multi-class boosting. Our method FCD is specially tailored for the optimization
of MultiBoostcw. We are able to obtain a closed-form solution for each variable
update. Thus the optimization can be extremely fast. The proposed FCD is easy
to implement and no sophisticated optimization toolbox is required.

Main Contributions 1) We propose a novel multi-class boosting method
(MultiBoostcw) that uses class specified weak learners. Unlike MultiBoost shar-
ing a single set of weak learners across different classes, our method uses a
separate set of weak learners for each class. We generate K (the number of
classes) weak learners in each boosting iteration—one weak learner for each
class. With this mechanism, we are able to achieve much faster convergence.
2) Similar to MultiBoost [1], we employ column generation to implement the
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boosting training. We derive the Lagrange dual problem of the new multi-class
boosting formulation which enable us to design fully corrective multi-class al-
gorithms using the primal-dual optimization technique. 3) We propose a FCD
method for fast training of MultiBoostcw. We obtain an analytical solution for
each variable update in coordinate descent. We use the Karush-Kuhn-Tucker
(KKT) conditions to derive effective stop criteria and construct working sets of
violated variables for faster optimization. We show that FCD can be applied
to fully corrective optimization (updating all variables) in multi-class boosting,
similar to fast stage-wise optimization in standard AdaBoost (updating newly
added variables only).

Notation Let us assume that we have K classes. A weak learner is a func-
tion that maps an example x to {−1,+1}. We denote each weak learner by
~: ~y,j(·, ·) ∈ F, (y = 1 . . .K, and j = 1 . . . n). F is the space of all the weak
learners; n is the number of weak learners. We define column vectors hy(x) =
[~y,1(x), · · · , ~y,n(x)]> as the outputs of weak learners associated with the y-th
class on example x. Let us denote the weak learners’ coefficients wy for class y.
Then the strong classifier for class y is Fy(x) = w>hy(x). We need to learn K
strong classifiers, one for each class. Given a test data x, the classification rule
is y? = argmax Fy(x). 1 is a vector with elements all being one. Its dimension
should be clear from the context.

2 Our Approach

We show how to formulate the multi-class boosting problem in the large mar-
gin learning framework. Analogue to MultiBoost, we can define the multi-class
margins associate with training data (xi, yi) as

γ(i,y) = w>yi
hyi

(xi)−w>yhy(xi), (1)

for y 6= yi. Intuitively, γ(i,y) is the difference of the classification scores between
a “wrong” model and the right model. We want to make this margin as large as
possible. MultiBoostcw with the exponential loss can be formulated as:

min
w≥0,γ

‖w‖1 +
C

p

∑
i

∑
y 6=yi

exp(−γ(i,y)),∀i = 1 · · ·m;∀y ∈ {1 · · ·K}\yi. (2)

Here γ is defined in (1). We have also introduced a shorthand symbol p =
m× (K − 1). The parameter C controls the complexity of the learned model.

The model parameter is w = [w1;w2; . . . ,wK ]> ∈ RK·n×1.
Minimizing (2) encourages the confidence score of the correct label yi of a

training example xi to be larger than the confidence of other labels. We de-
fine Y as a set of K labels: Y = {1, 2, . . . ,K}. The discriminant function F :
X×Y 7→ R we need to learn is: F (x, y;w) = w>yhy(x) =

∑
jw(y,j)~(y,j)(x). The

class label prediction y? for an unknown example x is to maximize F (x, y;w)
over y, which means finding a class label with the largest confidence: y? =
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Algorithm 1 CG: Column generation for MultiBoostcw

1: Input: training examples (x1; y1), (x2; y2), · · · ; regularization parameter C; termi-
nation threshold and the maximum iteration number.
2: Initialize: Working weak learner set Hc = ∅(c = 1 · · ·K); initialize ∀(i, y 6= yi) :
λ(i,y) = 1 (i = 1, . . . ,m, y = 1, . . . ,K).
3: Repeat
4: − Solve (4) to find K weak learners: ~?c(·), c = 1 · · ·K; and add them to the working
weak learner set Hc.
5: − Solve the primal problem (2) on the current working weak learner sets: ~c ∈
Hc, c = 1, . . . ,K.
to obtain w (we use coordinate descent of Algorithm 2).
6: − Update dual variables λ in (5) using the primal solution w and the KKT con-
ditions (5).
7: Until the relative change of the primal objective function value is smaller than the
prescribed tolerance; or the maximum iteration is reached.
8: Output: K discriminant function F (x, y;w) = w>yhy(x), y = 1 · · ·K.

argmax y F (x, y;w) = argmax yw
>
yh(x). MultiBoostcw is an extension of Multi-

Boost [1] for multi-class classification. The only difference is that, in MultiBoost,
different classes share the same set of weak learners h. In contrast, each class
associates a separate set of weak learners. We show that MultiBoostcw learns a
more compact model than MultiBoost.

Column generation for MultiBoostcw To implement boosting, we need
to derive the dual problem of (2). Similar to [1], the dual problem of (2) can be
written as (3), in which c is the index of class labels. λ(i,y) is the dual variable
associated with one constraint in (2):

max
λ

∑
i

∑
y 6=yi

λ(i,y)
[
1− log p

C − log λ(i,y)
]

(3a)

s.t. ∀c = 1, . . . ,K :∑
i(yi=c)

∑
y 6=yi

λ(i,y)hyi
(xi)−

∑
i

∑
y 6=yi,y=c

λ(i,y)hy(xi) ≤ 1, (3b)

∀i = 1, . . . ,m : 0 ≤
∑
y 6=yi

λ(i,y) ≤ C
p . (3c)

Following the idea of column generation [4], we divide the original problem (2)
into a master problem and a sub-problem, and solve them alternatively. The
master problem is a restricted problem of (2) which only considers the generated
weak learners. The sub-problem is to generate K weak learners (corresponding
K classes) by finding the most violated constraint of each class in the dual form
(3), and add them to the master problem at each iteration. The sub-problem for
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finding most violated constraints can be written as:

∀i =1 · · ·K :

~?c(·) = argmax
~c(·)

∑
i(yi=c)

∑
y 6=yi

λ(i,y)hyi
(xi)−

∑
i

∑
y 6=yi,y=c

λ(i,y)hy(xi). (4)

The column generation procedure for MultiBoostcw is described in Algorithm 1.
Essentially, we repeat the following two steps until convergence: 1) We solve the
master problem (2) with ~c ∈ Hc, c = 1, . . . ,K, to obtain the primal solution w.
Hc is the working set of generated weak learners associated with the c-th class.
We obtain the dual solution λ? from the primal solution w? using the KKT
conditions:

λ?(i,y) =
C

p
exp

[
w?>

y hy(xi)−w?>
yi
hyi

(xi)
]
. (5)

2) With the dual solution λ?(i,y), we solve the sub-problem (4) to generate K
weak learners: ~?c , c = 1, 2, . . . ,K, and add to the working weak learner set Hc.
In MultiBoostcw, K weak learners are generated for K classes respectively in
each iteration, while in MultiBoost, only one weak learner is generated at each
column generation and shared by all classes. As shown in [1] for MultiBoost, the
sub-problem for finding the most violated constraint in the dual form is:

[~?(·), c?] = argmax
~(·), c

∑
i(yi=c)

∑
y 6=yi

λ(i,y)h(xi)−
∑
i

∑
y 6=yi,y=c

λ(i,y)h(xi). (6)

At each column generation of MultiBoost, (6) is solved to generated one weak
learner. Note that solving (6) is to search over all K classes to find the best
weak learner ~?. Thus the computational cost is the same as MultiBoostcw.
This is the reason why MultiBoostcw does not introduce additional training cost
compared to MultiBoost. In general, the solution [w1; · · · ;wK ] of MultiBoost is
highly sparse [1]. This can be observed in our empirical study. The weak learner
generated by solving (6) actually is targeted for one class, thus using this weak
learner across all classes in MultiBoost leads to a very sparse solution. The
sparsity of [w1, · · · ,wK ] indicates that one weak learner is usually only useful
for the prediction of a very few number of classes (typically only one), but useless
for most other classes. In this sense, forcing different classes to use the same set
of weak learners may not be necessary and usually it leads to slow convergence.
In contrast, using separate weak learner sets for each class, MultiBoostcw tends
to have a dense solution of w. With K weak learners generated at each iteration,
MultiBoostcw converges much faster.

Fast coordinate descent To further speed up the training, we propose
a fast coordinate descent method (FCD) for solving the primal MultiBoostcw
problem at each column generation iteration. The details of FCD is presented
in Algorithm 2. The high-level idea is simple. FCD works iteratively, and at
each iteration (working set iteration), we compute the violated value of the
KKT conditions for each variable in w, and construct a working set of violated
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variables (denoted as S), then pick variables from the S for update (one variable
at a time). We also use the violated values for defining stop criteria. Our FCD
is a mix of sequential and stochastic coordinate descent. For the first working
set iteration, variables are sequentially picked for update (cyclic CD); in later
working set iterations, variables are randomly picked (stochastic CD). In the
sequel, we present the details of FCD. First, we describe how to update one
variable of w by solving a single-variable sub-problem. For notation simplicity,
we define: δhi(y) = hyi

(xi)⊗Γ (yi)−hy(xi)⊗Γ (y). Γ (y) is the orthogonal label
coding vector: Γ (y) = [δ(y, 1), δ(y, 2), · · · , δ(y,K)]> ∈ {0, 1}K . Here δ(y, k) is
the indicator function that returns 1 if y = k, otherwise 0. ⊗ denotes the tensor
product. MultiBoostcw in (2) can be equivalently written as:

min
w≥0

‖w‖1 + C
p

∑
i

∑
y 6=yi

exp
[
−w>δhi(y)

]
. (7)

We assume that binary weak learners are used here: ~(x) ∈ {+1,−1}. δhi,j(y)

denotes the j-th dimension of δhi(y), and δĥi,j(y) denotes the rest dimensions
of δhi(y) excluding the j-th. The output of δhi,j(y) only takes three possi-

ble values: δhi,j(y) ∈ {−1, 0,+1}. For the j-th dimension, we define: Dj
v =

{ (i, y) | δhji (y) = v, i ∈ {1, . . . ,m}, y ∈ Y /yi }, v ∈ {−1, 0,+1}; so Dj
v is a set

of constraint indices (i, y) that the output of δhi,j(y) is v. wj denotes the j-th
variable of w; ŵj denotes the rest variables of w excluding the j-th. Let g(w)
be the objective function of the optimization (7). g(w) can be de-composited as:

g(w) = ‖w‖1 + C
p

∑
i

∑
y 6=yi

exp
[
−w>δhi(y)

]
= ‖ŵj‖1 + ‖wj‖1 + C

p

∑
i,y 6=yi

exp
[
− ŵ>j δĥi,j(y)− w>j δhi,j(y)

]
= ‖ŵj‖1 + ‖wj‖1 + C

p

{
exp(w>j )

∑
(i,y)∈Dj

−1

exp
[
− ŵ>j δĥi,j(y)

]
+

exp(−w>j )
∑

(i,y)∈Dj
+1

exp
[
− ŵ>j δĥi,j(y)

]
+

∑
(i,y)∈Dj

0

exp
[
− ŵ>j δĥi,j(y)

]}
= ‖ŵj‖1 + ‖wj‖1 + C

p

[
exp(w>j )V− + exp(−w>j )V+ + V0

]
. (8)

Here we have defined:

V− =
∑

(i,y)∈Dj
−1

exp
[
− ŵ>j δĥi,j(y)

]
, V0 =

∑
(i,y)∈Dj

0

exp
[
− ŵ>j δĥi,j(y)

]
, (9a)

V+ =
∑

(i,y)∈Dj
+1

exp
[
− ŵ>j δĥi,j(y)

]
. (9b)

In the variable update step, one variable wj is picked at a time for updating and
other variables ŵj are fixed; thus we need to minimize g in (8) w.r.t wj , which
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is a single-variable minimization. It can be written as:

min
wj≥0

‖wj‖1 + C
p

[
V− exp(w>j ) + V+ exp(−w>j )

]
. (10)

The derivative of the objective function in (10) with wj > 0 is:

∂g

∂wj
= 0 =⇒ 1 + C

p

[
V− exp(w>j )− V+ exp(−w>j )

]
= 0. (11)

By solving (11) and the bounded constraint wj ≥ 0, we obtain the analytical
solution of the optimization in (10) (since V− > 0):

w?
j = max

{
0, log

(√
V+V− + p2

4C2 − p
2C

)
− log V−

}
. (12)

When C is large, (12) can be approximately simplified as:

w?
j = max

{
0,

1

2
log

V+
V−

}
. (13)

With the analytical solution in (12), the update of each dimension of w can be
performed extremely efficiently. The main requirement for obtaining the closed-
form solution is that the use of discrete weak learners.

We use the KKT conditions to construct a set of violated variables and de-
rive meaningful stop criteria. For the optimization of MultiBoostcw (7), KKT
conditions are necessary conditions and also sufficient for optimality. The La-
grangian of (7) is: L = ‖w‖1+ C

p

∑
i

∑
y 6=yi

exp
[
−w>δhi(y)

]
−α>w. According

to the KKT conditions, w? is the optimal for (10) if and only if w? satisfies
w? ≥ 0,α? ≥ 0,∀j : α?

jw
?
j = 0 and ∀j : ∇jL(w?) = 0. For wj > 0,

∂L

∂wj
= 0 =⇒ 1− C

p

∑
i

∑
y 6=yi

exp
[
−wδhi(y)

]
δhi,j(y)− αj = 0.

Considering the complementary slackness: α?
jw

?
j = 0, if w?

j > 0, we have α?
j = 0;

if w?
j = 0, we have α?

j ≥ 0. The optimality conditions can be written as:

∀j :

{
1− C

p

∑
i

∑
y 6=yi

exp
[
−w?δhi(y)

]
δhi,j(y) = 0, if w?

j > 0;

1− C
p

∑
i

∑
y 6=yi

exp
[
−w?δhi(y)

]
δhi,j(y) ≥ 0, if w?

j = 0.
(14)

For notation simplicity, we define a column vector µ as in (15). With the op-
timality conditions (14), we define θj in (16) as the violated value of the j-th
variable of the solution w?:

µ(i,y) = exp
[
−w>δhi(y)

]
(15)

θj =

{
|1− C

p

∑
i

∑
y 6=yi

µ(i,y) δhi,j(y)| if w?
j > 0

max{0, C
p

∑
i

∑
y 6=yi

µ(i,y) δhi,j(y)− 1} if w?
j = 0.

(16)
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At each working set iteration of FCD, we compute the violated values θ, and
construct a working set S of violated variables; then we randomly (except the
first iteration) pick one variable from S for update. We repeat picking for |S|
times; |S| is the element number of S. S is defined as

S = {j |θj > ε } (17)

where ε is a tolerance parameter. Analogue to [14] and [13], with the definition
of the variable violated values θ in (16), we can define the stop criteria as:

max
j
θj ≤ ε, (18)

where ε can be the same tolerance parameter as in the working set S definition
(17). The stop condition (18) shows if the largest violated value is smaller than
some threshold, FCD terminates. We can see that using KKT conditions is
actually using the gradient information. An inexact solution for w is acceptable
for each column generation iteration, thus we place a maximum iteration number
(τmax in Algorithm 2) for FCD to prevent unnecessary computation. We need to
compute µ before obtaining θ, but computing µ in (15) is expensive. Fortunately,
we are able to efficiently update µ after the update of one variable wj to avoid
re-computing of (15). µ in (15) can be equally written as:

µ(i,y) = exp
[
− ŵ>j δĥi,j(y)− wjδhi,j(y)

]
. (19)

So the update of µ is then:

µ(i,y) = µold
(i,y) exp

[
δhi,j(y)(wold

j − wj)
]
. (20)

With the definition of µ in (19), the values V− and V+ for one variable update
can be efficiently computed by using µ to avoid the expensive computation in
(9a) and (9b); V− and V+ can be equally defined as:

V− =
∑

(i,y)∈Dj
−1

µ(i,y) exp(−wj), V+ =
∑

(i,y)∈Dj
+1

µ(i,y) exp(wj). (21)

Some discussion on FCD (Algorithm 2) is as follows: 1) Stage-wise optimiza-
tion is a special case of FCD. Compared to totally corrective optimization which
considers all variables of w for update, stage-wise only considers those newly
added variables for update. We initialize the working set using the newly added
variables. For the first working set iteration, we sequentially update the new
added variables. If setting the maximum working set iteration to 1 (τmax = 1
in Algorithm 2), FCD becomes a stage-wise algorithm. Thus FCD is a general-
ized algorithm with totally corrective update and stage-wise update as special
cases. In the stage-wise setting, usually a large C (regularization parameter) is
implicitly enforced, thus we can use the analytical solution in (13) for variable
update.

2) Randomly picking one variable for update without any guidance leads to
slow local convergence. When the solution gets close to the optimality, usually
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Algorithm 2 FCD: Fast coordinate decent for MultiBoostcw

1: Input: training examples (x1; y1), · · · , (xm; ym); parameter C; tolerance: ε ; weak
learner set Hc, c = 1, . . . ,K; initial value of w; maximum working set iteration: τmax.
2: Initialize: initialize variable working set S by variable indices in w that correspond
to newly added weak learners; initialize µ in (15); working set iteration index τ = 0.
3: Repeat (working set iteration)
4: τ = τ + 1; reset the inner loop index: q = 0;
5: While q < |S| (|S| is the size of S)
6: q = q + 1; pick one variable index j from S:

if τ = 1 sequentially pick one, else randomly pick one.
7: Compute V− and V+ in (21) using µ.
8: update variable wj in (12) using V− and V+.
9: update µ in (20) using the updated wj .
10: End While
11: Compute the violated values θ in (16) for all variables.
12: Re-construct the variable working set S in (17) using θ.
13: Until the stop condition in (18) is satisfied or maximum working set iteration
reached: τ >= τmax.
14: Output: w.

only very few variables need update, and most picks do not “hit”. In column
generation (CG), the initial value of w is initialized by the solution of last CG
iteration. This initialization is already fairly close to optimality. Therefore the
slow local convergence for stochastic coordinate decent (CD) is more serious in
column generation based boosting. Here we have used the KKT conditions to
iteratively construct a working set of violated variables, and only the variables
in the working set need update. This strategy leads to faster CD convergence.

3 Experiments

We evaluate our method MultiBoostcw on some UCI datasets and a variety
of multi-class image classification applications, including digit recognition, scene
recognition, and traffic sign recognition. We compare MultiBoostcw against Multi-
Boost [1] with the exponential loss, and another there popular multi-class boost-
ing algorithms: AdaBoost.ECC [9], AdaBoost.MH [10] and AdaBoost.MO [10].
We use FCD as the solver for MultiBoostcw, and LBFGS-B [12] for MultiBoost.
We also perform further experiments to evaluate FCD in detail. For all experi-
ments, the best regularization parameter C for MultiBoostcw and MultiBoost is
selected from 102 to 105; the tolerance parameter in FCD is set to 0.1 (ε = 0.1);
We use MultiBoostcw-1 to denote MultiBoostcw using the stage-wise setting of
FCD which only uses one iteration (τmax = 1 in Algorithm 2). In MultiBoostcw-
1, we fix C to be a large value: C = 108.

All experiments are run 5 times. We compare the testing error, the total train-
ing time and solver time on all datasets. The results show that our MultiBoostcw
and MultiBoostcw-1 converge much faster then other methods, use less training
time then MultiBoost, and achieve the best testing error on most datasets.
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Fig. 1: Results of 2 UCI datasets: VOWEL and ISOLET. CW and CW-1 are our
methods. CW-1 uses stage-wise setting. The number after the method name is the
mean value with standard deviation of the last iteration. Our methods converge much
faster and achieve competitive test accuracy. The total training time and the solver
time of our methods both are less than MultiBoost of [1].

AdaBoost.MO [10] (Ada.MO) has a similar convergence rate as our method,
but it is much slower than our method and becomes intractable for large scale
datasets. We run Ada.MO on some UCI datasets and MNIST. Results are shown
in Fig. 1 and Fig. 2. We set a maximum training time (1000 seconds) for Ada.MO;
other methods are all below this maximum time on those datasets. If maximum
time reached, we report the results of those finished iterations.

UCI datasets: we use 2 UCI multi-class datasets: VOWEL and ISOLET.
For each dataset, we randomly select 75% data for training and the rest for
testing. Results are shown in Fig. 1.

Handwritten digit recognition: we use 3 handwritten datasets: MNIST,
USPS and PENDIGITS. For MNIST, we randomly sample 1000 examples from
each class, and use the original test set of 10,000 examples. For USPS and
PENDIGITS, we randomly select 75% for training, the rest for testing. Results
are shown in Fig. 2.

3 Image datasets: PASCAL07, LabelMe, CIFAR10: For PASCAL07,
we use 5 types of features provided in [15]. For labelMe, we use the subset:
LabelMe-12-50k1 and generate GIST features. For these two datasets, we use
those images which only have one class label. We use 70% data for training, the
rest for testing. For CIFAR102, we construct 2 datasets, one uses GIST features

1 http://www.ais.uni-bonn.de/download/datasets.html
2 http://www.cs.toronto.edu/˜kriz/cifar.html



Fast Training of Multi-class Boosting 11

100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

iterations [USPS]

T
es

t e
rr

or

 

 

ADA.MO(0.057±0.006)
ADA.MH(0.056±0.003)
ADA.ECC(0.061±0.007)
MultiB(0.053±0.004)
CW(ours)(0.046±0.001)
CW−1(ours)(0.042±0.002)

100 200 300 400 500
0

200

400

600

800

1000

iterations [USPS]

T
ra

in
in

g 
tim

e 
(s

ec
on

ds
)

 

 

ADA.MO (990.8±8.8)
MultiB (847.1±126.5)
CW(ours) (518.4±86.5)
CW−1(ours) (394.3±7.5)

100 200 300 400 500
0

100

200

300

400

500

iterations [USPS]

S
ol

ve
r 

tim
e 

(s
ec

on
ds

)

 

 

MultiB (408.1±69.9)
CW(ours) (188.4±36.0)
CW−1(ours) (110.8±2.5)

100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

iterations [PENDIGITS]

T
es

t e
rr

or

 

 

ADA.MO(0.042±0.004)
ADA.MH(0.035±0.003)
ADA.ECC(0.035±0.003)
MultiB(0.022±0.001)
CW(ours)(0.023±0.003)
CW−1(ours)(0.019±0.003)

100 200 300 400 500
0

200

400

600

800

1000

iterations [PENDIGITS]

T
ra

in
in

g 
tim

e 
(s

ec
on

ds
)

 

 

ADA.MO (976.7±25.0)
MultiB (936.5±153.1)
CW(ours) (592.9±96.3)
CW−1(ours) (404.9±2.9)

100 200 300 400 500
0

100

200

300

400

500

iterations [PENDIGITS]

S
ol

ve
r 

tim
e 

(s
ec

on
ds

)

 

 

MultiB (477.6±80.2)
CW(ours) (238.8±34.3)
CW−1(ours) (121.6±1.5)

100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

iterations [MNIST]

T
es

t e
rr

or

 

 

ADA.MO(0.110±0.001)
ADA.MH(0.109±0.002)
ADA.ECC(0.121±0.003)
MultiB(0.104±0.004)
CW(ours)(0.097±0.004)
CW−1(ours)(0.092±0.001)

100 200 300 400 500
0

200

400

600

800

1000

iterations [MNIST]

T
ra

in
in

g 
tim

e 
(s

ec
on

ds
)

 

 

ADA.MO (981.3±14.6)
MultiB (956.5±56.8)
CW(ours) (730.1±99.3)
CW−1(ours) (577.6±5.9)

100 200 300 400 500
0

100

200

300

400

500

iterations [MNIST]

S
ol

ve
r 

tim
e 

(s
ec

on
ds

)

 

 

MultiB (468.4±18.3)
CW(ours) (255.7±27.4)
CW−1(ours) (163.6±3.2)

Fig. 2: Experiments on 3 handwritten digit recognition datasets: USPS, PENDIGITS
and MNIST. CW and CW-1 are our methods. CW-1 uses stage-wise setting. Our meth-
ods converge much faster, achieve best test error and use less training time. Ada.MO
has similar convergence rate as ours, but requires much more training time. With a
maximum training time of 1000 seconds, Ada.MO failed to finish 500 iterations on all
3 datasets.

and the other uses the pixel values. We use the provided test set and 5 training
sets for 5 times run. Results are shown in Fig. 3.

Scene recognition: we use 2 scene image datasets: Scene15 [16] and SUN
[17]. For Scene15, we randomly select 100 images per class for training, and the
rest for testing. We generate histograms of code words as features. The code
book size is 200. An image is divided into 31 sub-windows in a spatial hierarchy
manner. We generate histograms in each sub-windows, so the histogram feature
dimension is 6200. For SUN dataset, we construct a subset of the original dataset
containing 25 categories. For each category, we use the top 200 images, and
randomly select 80% data for training, the rest for testing. We use the HOG
features described in[17]. Results are shown in Fig. 4.
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Fig. 3: Experiments on 3 image datasets: PASCAL07, LabelMe and CIFAR10. CW
and CW-1 are our methods. CW-1 uses stage-wise setting. Our methods converge much
faster, achieve best test error and use less training time.

Traffic sign recognition: We use the GTSRB3 traffic sign dataset. There
are 43 classes and more than 50000 images. We use the provided 3 types of HOG

3 http://benchmark.ini.rub.de/
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Fig. 4: Experiments on 2 scene recognition datasets: SCENE15 and a subset of SUN.
CW and CW-1 are our methods. CW-1 uses stage-wise setting. Our methods converge
much faster and achieve best test error and use less training time.

features; so there are 6052 features in total. We randomly select 100 examples
per class for training and use the original test set. Results are shown in Fig.5.

3.1 FCD evaluation

We perform further experiments to evaluate FCD with different parameter set-
tings, and compare to the LBFGS-B [12] solver. We use 3 datasets in this section:
VOWEL, USPS and SCENE15. We run FCD with different settings of the max-
imum working set iteration(τmax in Algorithm 2) to evaluate how the setting of
τmax (maximum working set iteration) affects the performance of FCD. We also
run LBFGS-B [12] solver for solving the same optimization (2) as FCD. We set
C = 104 for all cases. Results are shown in Fig. 6. For LBFGS-B, we use the
default converge setting to get a moderate solution. The number after “FCD” in
the figure is the setting of τmax in Algorithm 2 for FCD. Results show that the
stage-wise case (τmax = 1) of FCD is the fastest one, as expected. When we set
τmax ≥ 2, the objective value of the optimization (2) of our method converges
much faster than LBFGS-B. Thus setting of τmax = 2 is sufficient to achieve
a very accurate solution, and at the same time has faster convergence and less
running time than LBFGS-B.

4 Conclusion

In this work, we have presented a novel multi-class boosting method. Based on
the dual problem, boosting is implemented using the column generation tech-
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Fig. 5: Results on the traffic sign dataset: GTSRB. CW and CW-1 (stage-wise setting)
are our methods. Our methods converge much faster, achieve best test error and use
less training time.

nique. Different from most existing multi-class boosting, we train a weak learner
set for each class, which results in much faster convergence.

A wide range of experiments on a few different datasets demonstrate that
the proposed multi-class boosting achieves competitive test accuracy compared
with other existing multi-class boosting. Yet it converges much faster and due
to the proposed efficient coordinate descent method, the training of our method
is much faster than the counterpart of MultiBoost in [1].
Acknowledgement. This work was supported by ARC grants LP120200485
and FT120100969.
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