Skip to main content

Epipolar Geometry Estimation for Urban Scenes with Repetitive Structures

  • Conference paper
  • 4789 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7727))

Abstract

Algorithms for the estimation of epipolar geometry from a pair of images have been very successful in recent years, being able to deal with wide baseline images. The algorithms succeed even when the percentage of correct matches from the initial set of matches is very low. In this paper the problem of scenes with repeated structures is addressed, concentrating on the common case of building facades. In these cases a large number of repeated features is found and can not be matched initially, causing state-of-the-art algorithms to fail. Our algorithm therefore clusters similar features in each of the two images and matches clusters of features. From these cluster pairs, a set of hypothesized homographies of the building facade are generated and ranked mainly according the support of matches of non-repeating features. Then in a separate step the epipole is recovered yielding the fundamental matrix. The algorithm then decides whether the fundamental matrix has been recovered reliably enough and if not returns only the homography. The algorithm has been tested successfully on a large number of pairs of images of buildings from the benchmark ZuBuD database for which several state-of-the-art algorithms nearly always fail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)

    Article  Google Scholar 

  2. Fischler, M., Bolles, R.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  3. Chum, O., Matas, J., Kittler, J.: Locally optimized random sample consensus. In: German Pattern Recognition Symposium, pp. 236–243 (2003)

    Google Scholar 

  4. Tordoff, B., Murray, D.W.: Guided Sampling and Consensus for Motion Estimation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 82–96. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Chum, O., Matas, J.: Matching with PROSAC progressive sample consensus. In: CVPR, pp. 220–226 (2005)

    Google Scholar 

  6. Goshen, L., Shimshoni, I.: Guided sampling via weak motion models and outlier sample generation for epipolar geometry estimation. IJCV 80, 275–288 (2008)

    Article  Google Scholar 

  7. Brahmachari, A., Sarkar, S.: BLOGS: Balanced local and global search for non-degenerate two view epipolar geometry. In: ICCV, pp. 1685–1692 (2009)

    Google Scholar 

  8. Schaffalitzky, F., Zisserman, A.: Multi-view Matching for Unordered Image Sets, or How Do I Organize My Holiday Snaps? In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 414–431. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Chum, O., Matas, J., Obdrzalek, S.: Enhancing RANSAC by generalized model optimization. In: ACCV, pp. II:812–II:817 (2004)

    Google Scholar 

  10. Goshen, L., Shimshoni, I.: Balanced exploration and exploitation model search for efficient epipolar geometry estimation. PAMI 30(7), 1230–1242 (2008)

    Article  Google Scholar 

  11. Wu, C., Frahm, J.-M., Pollefeys, M.: Detecting Large Repetitive Structures with Salient Boundaries. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 142–155. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Wenzel, S., Drauschke, M., Forstner, W.: Detection of repeated structures in facade images. PRAI 18, 406–411 (2008)

    Google Scholar 

  13. Jiang, N., Tan, P., Cheong, L.: Multi-view repetitive structure detection. In: ICCV (2011)

    Google Scholar 

  14. Liu, Y., Collins, R., Tsin, Y.: A computational model for periodic pattern perception based on frieze and wallpaper groups. PAMI 26, 354–371 (2004)

    Article  Google Scholar 

  15. Hays, J., Leordeanu, M., Efros, A.A., Liu, Y.: Discovering Texture Regularity as a Higher-Order Correspondence Problem. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 522–535. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Lee, J., Yow, K., Chia, A.S.: Robust matching of building facades under large viewpoint changes. In: ICCV, pp. 1258–1264 (2009)

    Google Scholar 

  17. Baatz, G., Köser, K., Chen, D., Grzeszczuk, R., Pollefeys, M.: Handling Urban Location Recognition as a 2D Homothetic Problem. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 266–279. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Schindler, G., Krishnamurthy, P., Lublinerman, R., Liu, Y., Dellaert, F.: Detecting and matching repeated patterns for automatic geo-tagging in urban environments. In: CVPR, pp. 1–7 (2008)

    Google Scholar 

  19. Robertson, D., Cipolla, R.: An image-based system for urban navigation. In: BMVC, pp. 819–828 (2004)

    Google Scholar 

  20. Roberts, R., Sinha, S., Szeliski, R., Steedly, D.: Structure from Motion for Scenes with Large Duplicate Structures. In: CVPR, pp. 3137–3144 (2011)

    Google Scholar 

  21. Serradell, E., Özuysal, M., Lepetit, V., Fua, P., Moreno-Noguer, F.: Combining Geometric and Appearance Priors for Robust Homography Estimation. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 58–72. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Rabin, J., Delon, J., Gousseau, Y., Moisan, L.: MAC-RANSAC: a robust algorithm for the recognition of multiple objects. In: 3DPVT (2010)

    Google Scholar 

  23. Sur, F., Noury, N., Berger, M.O.: Image point correspondences and repeated patterns. Technical Report RR-7693, INRIA (2011)

    Google Scholar 

  24. Zhang, W., Kosecka, J.: Generalized RANSAC framework for relaxed correspondence problems. In: 3DPVT, pp. 854–860 (2006)

    Google Scholar 

  25. Shao, H., Svoboda, T., Gool, L.: ZuBuD Zurich Buildings Database for Image Based Recognition. In: Technical Report 260, CVL, ETH Zurich (2003)

    Google Scholar 

  26. Hartley, R., Zisserman, A.: Mltiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004)

    Google Scholar 

  27. Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer vision algorithms (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kushnir, M., Shimshoni, I. (2013). Epipolar Geometry Estimation for Urban Scenes with Repetitive Structures. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7727. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37447-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37447-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37446-3

  • Online ISBN: 978-3-642-37447-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics