
Hand-Eye Calibration without Hand Orientation
Measurement Using Minimal Solution

Zuzana Kukelova1 Jan Heller1 Tomas Pajdla2

1Center for Machine Perception, Department of Cybernetics
Faculty of Elec. Eng., Czech Technical University in Prague

166 27 Prague 6, Technicka 2, Czech Republic
2Neovision, s.r.o., Barrandova 409
143 00 Prague 4, Czech Republic

Abstract. In this paper we solve the problem of estimating the relative
pose between a robot’s gripper and a camera mounted rigidly on the grip-
per in situations where the rotation of the gripper w.r.t. the robot global
coordinate system is not known. It is a variation of the so called hand-eye
calibration problem. We formulate it as a problem of seven equations in
seven unknowns and solve it using the Gröbner basis method for solv-
ing systems of polynomial equations. This enables us to calibrate from
the minimal number of two relative movements and to provide the first
exact algebraic solution to the problem. Further, we describe a method
for selecting the geometrically correct solution among the algebraically
correct ones computed by the solver. In contrast to the previous itera-
tive methods, our solution works without any initial estimate and has no
problems with error accumulation. Finally, by evaluating our algorithm
on both synthetic and real scene data we demonstrate that it is fast,
noise resistant, and numerically stable.

1 Introduction

The problem of estimating the relative position and orientation of a robot grip-
per and a camera mounted rigidly on the gripper, known as hand-eye calibra-
tion problem, has been studied extensively in the past [23, 24, 17, 2, 25, 9]. This
problem arises in wide range of applications not only in robotics but also in
automotive or medical industries.

The standard formulation of this problem leads to solving a system of equa-
tions of the form

AX = XB, (1)

where known A and B and unknown X are homogeneous transformation matrices
of the form [

R t
0> 1

]
, (2)

with 3× 3 rotation matrix R ∈ SO(3) and 3× 1 translation vector t ∈ R3. It has
been shown in [24] that at least two motions with non-parallel rotation axes are
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Fig. 1: The relative movement of the camera-gripper rig

required to solve hand-eye calibration problem. In practice, several motion are
performed and the overconstrained system

AiX = XBi, i = 1, . . . , n (3)

is solved as a minimization problem, with every method trying to minimize a
different error criteria. The existing methods can be divided into three groups.

The first group of methods [23, 24, 17, 2, 15] solves System 3 by decomposing
it into matrix equations depending only on rotations and vector equations de-
pending both on rotations and translations. In this way the methods decouple
the rotation from the translation and solve for them separately, i.e., first for
the rotation and then for the translation. The drawback of such an approach
is that the rotation estimation errors propagate to the translation errors. To
address the problem of error propagation several methods for simultaneous esti-
mation of rotation and translation appeared [25, 9, 5, 21]. These methods search
for the the unknown transformation X by solving the overconstrained System 3
using different linear or non-linear minimization methods. The methods mostly
differ in the error function which is minimized and in the used minimization
method. Methods that use iterative optimization techniques suffer from the in-
herent problems of iterative algorithms, i.e., problems with convergence and the
necessity of a good initial estimate of X. In [19] authors proposed a method that
uses tracked image points rather than matrices Ai. Recently, another group of
methods appeared [8, 7, 16]. These methods use image correspondences instead of
matrices Ai and employ global optimization to minimize different error functions
in L∞-norm.

In this paper we are concerned with a variation of hand-eye calibration prob-
lem that has been scarcely addressed in the literature so far—hand-eye calibra-
tion with unknown hand rotation. This problem arises when the robot is not
calibrated or the information from the robot is not available. In these situation
one has to measure the robot’s pose by an external measurement device. In
many cases such a measurement device is not able to measure the whole pose,
but only the translational part of it, since translation is much easier to measure
than rotation. Without the hand rotation measurements none of the previously
discussed methods can be used. A method presented in [25] addresses this prob-



Hand-Eye Calibration without Hand Orientation Using Minimal Solution 3

lem by nonlinear optimization and estimates simultaneously both rotational and
translational parts. However, it requires a good initial estimate of X.

In case of two relative motions, we solve this problem by formulating it as a
system of seven equations in seven unknowns and solving it using the Gröbner
basis method for solving systems of polynomial equations. This provides an exact
algebraic solution and has none of the problems of the former numerical mini-
mization methods, i.e., problems with convergence or the necessity of having a
good initial estimate. In case of three of more motions, we use a residual func-
tion to select an initial solution among the candidates provided by the Gröbner
basis method to initialize the method of [25]. By evaluating our solution on
both synthetic and real scene data, we demonstrate that it is efficient, fast, and
numerically stable. Further, we show that in case of more than two motions it
provides a good estimate for nonlinear optimization.

2 Problem Formulation

First, let us consider the classical hand-eye calibration problem. The goal is to
estimate the relative pose, i.e., the rotation and the translation of the camera
w.r.t. the gripper, see Figure 1. We will describe this transformation by the
homogeneous transformation matrix

X =

[
RX tX
0> 1

]
, (4)

where RX ∈ SO(3) is the unknown rotation from the camera to the gripper and
tX ∈ R3 the unknown translation.

Let us consider the ith pose of the robot and denote the transformation
matrix from the camera to the world coordinate system by A′i and the transfor-
mation matrix from another coordinate system in the world—usually placed in
the robot’s base—to the robot’s gripper by B′i, see Figure 1. Camera’s transfor-
mations A′i can be obtained using the well known absolute pose solvers [6, 14]
and transformations B′i from the robot’s positioning software.

Figure 1 shows that by knowing two poses of the robot we can get X from
the following equation

AiX = XBi, (5)

where Ai = A′−1
i A′i+1 and Bi = B′i+1B

′−1
i are homogeneous transformation matri-

ces representing the respective relative movements. Equation 5 can be decom-
posed into a matrix and a vector equation

RAiRX = RXRBi , (6)
RAitX + tA = RXtBi + tX. (7)

At least two motions with non-parallel rotation axes are required to solve
this system of equations. With two or more motions known, we obtain an over-
constrained system of polynomial equations.
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In situations where one does not have the information from the robot’s po-
sitioning software or the robot is not precisely calibrated transformations B′i are
not readily known. To recover them, one has to use some external measurement
equipment. In this paper we are interested in situations where such a measure-
ment device does not allow to recover the whole pose of the robotic gripper, but
only its translational part.

Typically, the external measurement devices are able to recover absolute grip-
per’s positions t′B w.r.t. robot’s base. However, in Equation 7 relative translations
tB appear. In order to compute the relative translations tB there has to be at least
one position where the full pose of the robot can be recovered, i.e., where the
rotation R′B is known as well. Even for an uncalibrated robot, the robot’s home
position can be used as such a priori known pose. By constructing the relative
movements in such a way as to always end in a position with a known rotation
R′B, relative translations tB can be recovered. Since the positions with a priori
known poses are usually hard to come by, it is advantageous for a method to be
able to calibrate from a minimal number of movements possible.

3 Minimal Problem

First, let us suppose that we can measure two gripper’s relative translations tBi

and tBj
and two respective relative camera motions Ai and Aj . Now, let us note

that the vector Equation 7 does not contain the unknown gripper’s rotations RBi .
By parametrizing the rotation RX by the unit quaternion q = a+ bi+ cj + dk as

RX ≡ Rq
X =

 a2 + b2 − c2 − d2 2bc− 2ad 2ac+ 2bd
2ad+ 2bc a2 − b2 + c2 − d2 2cd− 2ab
2bd− 2ac 2ab+ 2cd a2 − b2 − c2 + d2

 (8)

and substituting it into the vector Equation 7 we get three polynomial equations
in seven unknowns, i.e., three translation parameters for tX and four rotation
parameters a, b, c, and d. Now we can apply this substitution to the two motions
i and j and by adding the equation defining the unit quaternion q we obtain the
following system of equations:

Problem 1 (Minimal Hand-Eye Calibration)

Given RAi
, RAj

, tAi
, tAj

, tBi
, tBj

find RX ∈ SO(3), tX ∈ R3

subject to RAi
tX + tAi

= Rq
XtBi

+ tX,

RAj
tX + tAj

= Rq
XtBj

+ tX,

a2 + b2 + c2 + d2 = 1.



Hand-Eye Calibration without Hand Orientation Using Minimal Solution 5

Problem 1 is a well-constrained system of seven equations in seven unknowns.
To solve it for the unknown hand-eye calibration X, the Gröbner basis method
can be readily used. This leads to a fast and non-iterative solution with no need
for an initial solution estimate. Note that the minimal number of two relative
movements without rotations RBi

and RBj
is needed to construct the system.

In case rotations RBi
and RBj

need to be recovered as well, by substituting
the solutions for the rotation RX into the Equation 6 we get the rotations as

RBi
= R−1

X RAi
RX, (9)

RBj
= R−1

X RAj
RX. (10)

3.1 Gröbner Basis Method

The Gröbner basis method for solving systems of polynomial equations has re-
cently became popular in computer vision and it has been used to create very
fast, efficient and numerically stable solvers to many difficult problems. The
method is based on polynomial ideal theory and is concerned with special bases
of these ideals called Gröbner bases [3]. Gröbner bases have the same solutions
as the initial system of polynomial equations defining the ideal but are often eas-
ier to solve. Gröbner bases are usually used to construct special multiplication
(action) matrices [18], which can be viewed as a generalization of the companion
matrix used in solving one polynomial equation in one unknown. The solutions
to the system of polynomial equations is then obtained from the eigenvalues
and eigenvectors of such action matrices. See [3, 4] for more on Gröbner basis
methods and [20, 10, 1] for their applications in computer vision.

Since general algorithms [3] for computing Gröbner basis are not very efficient
for solving problems which appear for example in computer vision, an automatic
generator of specific polynomial equations solvers based on the Gröbner basis
method has been proposed in [11]. These specific solvers often provide very
efficient solutions to a class of systems of polynomial equations consisting of the
same monomials and differing only in the coefficients.

Computer vision problems—like the hand-eye calibration problem presented
in this paper—share the convenient property that the monomials appearing in
the set of initial polynomials are always the same irrespective of the concrete
coefficients arising from non-degenerate measurements. Therefore it is possible
to use efficient specific solvers instead of less efficient general algorithms [3] for
constructing the Gröbner bases.

The process of creating the specific solvers consists of two phases. In the first
“offline” phase, the so-called “elimination templates” are found. These tem-
plates decide the elimination sequence in order to obtain all polynomials from
the Gröbner basis or at least all polynomials necessary for the construction of
the action matrix. This phase is performed only once for a given problem. In
the second “online” phase, the elimination templates are used with coefficients
arising from the specific measurements to construct the action matrix. Then,
eigenvalues and eigenvectors of the action matrix provide solutions to the orig-
inal polynomial equations. The automatic generator presented in [11] performs
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the offline phase automatically and for an input system of polynomial equations
outputs an efficient online solver.

3.2 Gröbner Basis Solver

To create an efficient solver for Problem 1 we used the automatic generator
proposed in [11]. The Gröbner basis solver of the proposed hand-eye calibration
problem starts with seven equations in seven unknowns, i.e., three translation
parameters for tX and four rotation parameters a, b, c, and d.

From the generator we obtained an elimination template which encodes how
to multiply the seven input polynomials by the monomials and then how to
eliminate the polynomias using the Gauss-Jordan (G-J) elimination process to
obtain all polynomials necessary for the construction of the action matrix. In
our case the automatic generator created the action matrix Ma for multiplication
by a.

To get the elimination template the generator first generated all monomial
multiples of the initial seven polynomial equations up to the total degree of four.
This resulted in 252 polynomials in 330 monomials. Then the generator removed
all unnecessary polynomials and monomials, i.e., polynomials and monomials
that do not influence the resulting action matrix. This resulted in matrix a
182 × 203 Q representing the polynomials for the construction of the action
matrix Ma, i.e., the elimination template.

The online solver then only performs one G-J elimination of matrix Q from
the elimination template identified in the offline stage. This matrix contains
coefficients which arise from specific measurements, i.e., rotations RAi

and RAj

and translations tAi
,tAj

,tBi
, and tBj

. After G-J elimination of matrix Q, action
matrix Ma can be created from its rows. The solutions to all seven unknowns can
be found from the eigenvectors of the action matrix Ma. The online stage takes
about 1 ms to finish in case of Problem 1.

This gives us a set Xij of up to 16 real solutions of X. However each of these
solutions appears twice, i.e., there are double roots. Therefore we have only up to
8 different real solutions. Usually only one to four of them are geometrically fea-
sible, i.e., are real and of a reasonable length of the translation. The correct one
can be chosen from the feasible solutions manually using some prior knowledge
about the transformation X or automatically using an additional set of solu-
tions for different relative movements. The next section describes an automatic
procedure for selecting the correct transformation.

4 Automatic Solution Selection

In order to automatically select the geometrically correct solution among the
algebraically correct ones in Xij , at least one more set of solutions to Problem 1
for a different combination of relative movements is needed. Let Xk` be such
a set for two additional movements k and `. Supposing that the movements
i, j and k, ` form a geometrically non-degenerate configuration, we will find the
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geometrically correct solution as Xij ∩ Xk`. In the presence of noise however,
the intersection Xij ∩Xk` will most likely be an empty set. In this case we have
to select a solution from the union Xij ∪ Xk` that best fits the equations of
Problem 1 for different motions. We will measure the fitness of a solution X by
the residual error of Equation 7

ei(X) = RAitX + tAi − RXtBi − tX. (11)

Now let us formalize the idea of selecting the best solution and to extend it to
the case of more that two solution sets. Let n be the number of available relative
movements and let I be a set of pairs of indexes of the relative movements

I ⊂ {{i, j} : i, j ≤ n} , |I| ≥ 2. (12)

Let X be a set of solutions to Problem 1 for the pairs from the index set I,

X =
⋃
{i,j}∈I

Xij . (13)

We select the geometrically correct solution among the solutions in X by solving
the following problem:

Problem 2 (Minimal Hand-Eye Calibration for n Movements)

Given RAi
, tAi

, tBi
, I, i = 1, . . . , n

and a set of solutions X =
⋃
{i,j}∈I Xij

find X? = arg minX∈X
∑n

i=1 ei(X)>ei(X)

As we can see from the above formulation, solving Problem 2 amounts to select-
ing a minimum from a set of |X | real numbers.

In the presence of noise and in case n > 2, we can further refine the solution
by an optimization method. For our experiments, we chose the method of Zhuang
and Shiu [25] which requires a good initial estimate X0. By setting X0 ≡ X?, we
can refine the solution by solving the following minimization problem:

Problem 3 (Zhuang [25])

Given RAi , tAi , tBi , i = 1, . . . , n

and an initial solution estimate X0

find X?
opt = arg min

∑n
i=1 ei(X)>ei(X)

subject to RX ∈ SO(3)
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Fig. 2: log10 angular error of the estimated rotation RX (Left) and log10 translation error
of tX (Right) for noise free data.

5 Experiments

To experimentally validate the proposed solutions, we use both synthetically gen-
erated and real word calibration scenarios. First, we use synthetically generated
ground truth scenes to study the numerical stability of the proposed solution to
Problem 1. Next, we study the behavior of the solutions to Problem 2 and Prob-
lem 3 on synthetic scenes consisting of 4 non-degenerate poses. Finally, we show
the viability of the minimal solution in a real life experiment with a Mitsubishi
MELFA-RV-6S serial manipulator with four draw-wire encoders attached to its
end effector to recover the translations tBi .

In all of the experiments we scaled the lengths of the input translation vectors
tBi

and tAi
by the length of the largest one of them prior to running the Gröbner

basis solver. We observe that this scaling improves the numerical stability of the
solution.

The experiments were run on a 3GHz Intel Core i7 based desk-
top computer running 64-bit Linux. The Matlab implementation
of the proposed method used in the experiments is available at
http://cmp.felk.cvut.cz/minimal/handeye.php.

5.1 Experiments with Synthetic Data

Numerical Stability Experiment. First, we studied the behavior of the pro-
posed Gröbner basis solver of Problem 1 to check its numerical stability. We
generated 1000 random scenes with 100 points Pk, k = 1, . . . , 100, evenly dis-
tributed in the unit ball. Each scene consisted of 3 random absolute camera poses
A′i. The cameras were positioned to (i) be facing the center of the scene, (ii) see
the scene points from the field of view (FOV) ranging from 40◦ to 80◦. For ev-
ery scene ground truth transformation Xgt was generated so that the angle and
the axis of RXgt were random and uniformly distributed and that

∥∥tXgt∥∥ ≈ 0.1.
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Fig. 3: Relative error of recovered translation tX for different levels of Gaussian noise.

Absolute robot poses B′i were determined by chaining X−1
gt and the generated

absolute camera positions. For every combination of ground truth RXgt , tXgt and
the recovered RX, tX we measured the error of the rotation as the angle θ of the
rotation R>X RXgt , such that 0 ≤ θ ≤ π and the error of translation as the relative
error

∥∥tX − tXgt
∥∥ / ∥∥tXgt∥∥. Figure 2 shows the histograms of the respective errors,

certifying the numerical stability of the solver.

Calibration Experiment. In this experiment we analyzed the performance
with respect to image noise. We used the same scheme to generate random scenes
as in Numerical Stability Experiment. This time, we generated four absolute
robot poses in each scene and recovered the absolute camera positions by P3P
algorithm [14].

We started by computing Pk
i —the positions of the 100 random points Pk

with respect to the coordinate systems of the cameras A′i, i = 1, . . . , 4. Further,
we normalized Pk

i to get only the directional vectors pk
i that were progressively

corrupted with angular Gaussian noise. Finally, we used P3P in RANSAC loop
to obtain noise corrupted absolute camera poses A′i, i = 1, . . . 4 .

We experimented with 11 levels of angular Gaussian noise with the standard
deviation σ ranging from 0 to 0.5 degrees, with the highest noise level translat-
ing to σ of ca. 20–40 pixels for a 8MP camera with 40◦–80◦ field of view. We
generated and recovered camera poses for 1000 random scenes for every noise
level.

We recovered hand-eye calibrations X by four different methods. The first
method MHEC identifies the results obtained by the Gröbner basis solver with
the solution selected according to Problem 2. The second method MHEC+ZH
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Fig. 4: Angular error of recovered rotation RX for different levels of Gaussian noise.

stands for the results obtained by the method [25] (Problem 3) when initialized
by the results of MHEC. For completeness sake, we include results obtained by
the methods [24] labeled as TSAI and [5] labeled in the figures as DAN. These
methods are not the direct competitors, since they require known robot rotations
RB. However, they can be used to gauge the accuracy of the results obtained by
MHEC and MHEC+ZH.

Figures 3, 4, and 5 show the statistics of the obtained solutions using the
Matlab boxplot function depicting values 25% to 75% quantile as a box with
horizontal line at median. Figures 3 and 4 show the respective errors of tX and
RX using the same measures as described in Numerical Stability Experiment.
Figure 5 shows the mean distance between the points Pk

i transformed into the
coordinate system of the gripper using the ground truth hand-eye transformation
and the same points transformed into the coordinate system of the gripper using
the estimated X. Note that the points were generated into the unit ball, i.e.,
considering the diameter of this ball to be one meter means that the errors in
Figure 5 are in meters.

5.2 Real Scene Data Experiment

In order to acquire a real scene calibration data, four draw-wire encoders were
connected to the gripper of a Mitsubishi MELFA-RV-6S serial manipulator. A
Canon 350D digital SLR camera with a Sigma 8 mm lens (cca. 130◦ field of
view) was also attached to the gripper to form a hand-eye system.

The robot was instructed to move the gripper to (i) the home position with
the known rotation w.r.t. the robot base, (ii) the four positions (backward, for-
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Fig. 5: Euclidean error of recovered calibration X for different levels of Gaussian noise.

ward, left, right) distant approximately 400 mm at 10 degree pitch, (iii) the same
four positions at 20 degree pitch, (iv) the position approximately 250 mm under
the home position, and (v) the four positions at this height at 10 and 20 degree
pitch again. While the robot was moving, the camera was remotely triggered to
acquire 2,592×1,728 pixels large images of a circular view field with 1,040 pixels
radius.

The internal calibration of the camera in the form of a 2-parameter equi-
angular model [12] was obtained using an image of a checkerboard with man-
ually labeled corners. Then, a state-of-the-art sequential structure-from-motion
pipeline [22] was used to automatically generate MSER, SIFT, and SURF feature
points, perform approximate nearest neighbor matching in the descriptor space,
verify the matches by pairwise epipolar geometries estimated by the 5-point al-
gorithm [13] in a RANSAC loop, and create tracks and triangulated 3D points
from verified matches spanning several images. The reconstructed 3D model was
scaled to millimeter units by knowing the real dimensions of the checkerboard
and measuring the distance of the corresponding 3D points in the model.

We used the system of four draw-wire encoders to determine the absolute
positions of the gripper w.r.t. the robot base. For the experiment we chose 2
motions ending in the robots home position. Since the rotation of the robot in
the home position is known, it is possible to transform the positions provided
by the draw-wire encoders into the home position coordinate system and obtain
translations tB1 and tB2 . We used tB1 and tB2 in combination with A1, A2 obtained
from structure-from-motion to compute the hand-eye transformation X and the
relative gripper rotations RB1 and RB2 .
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(a) (b)

(c) (d)

Fig. 6: Real data experiment. (a) A Mitsubishi MELFA-RV 6S serial manupulator used
to acquire the data for the experiment. (b) The 3D model obtained from SfM. (c)
Sample images of our scene taken by the camera mounted on the gripper of the robot.
(d) Close up of the camera-gripper rig with draw-wire encoders.

For comparison, we also used tBgt2 and tBgt2 from robots positioning software
with the same camera motions A1 and A2 to compute hand-eye transformation
X̄, R̄B1 , and R̄B2 .

Since the robot was calibrated, we can also compare the computed gripper
rotations RB1 , RB2 , R̄B1 , and R̄B2 with the rotations RBgt1 and RBgt2 from the robots
positioning software, see Table 1.

Table 1: Angular rotation errors of estimated gripper rotations in degrees.

RB1 RB2 R̄B1 R̄B2

RBgt1 0.84 — 0.89 —

RBgt2 — 0.61 — 1.09

Finally, let us express the obtained translations from the gripper to the
camera center using the translation from the draw-wire encoders −R>X tX =
(110.2, 26.2, 47.9), and using the translation from the robot, −R>X̄ tX̄ =
(126.5, 28.7, 51.1).
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These result are consistent with each other as well as with the rough physical
measurement of the mechanical reduction and show the validity of the obtained
results.

6 Conclusion

We presented the first minimal problem of hand-eye calibration for the situations
where the gripper’s rotations are not known. We formulated the problem as a
system of seven equations in seven unknowns and solved it using the Gröbner
basis method for solving systems of polynomial equations providing the first
exact algebraic solution to the problem. This solution uses the minimal number
of two relative movements. Further, we showed how to select the geometrically
correct solution using additional relative movements. Finally, our experiments
showed that the proposed solver is numerically stable, fast and—since it can
handle noisy inputs—that its results can be successfully used as initialization of
subsequent minimization methods.
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