Skip to main content

Spectral Decomposition for Optimal Graph Index Prediction

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7818))

Included in the following conference series:

Abstract

There is an ample body of recent research on indexing for structural graph queries. However, as verified by our experiments with a large number of random and scale-free graphs, there may be a great variation in the performances of indexes of graph queries. Unfortunately, the structures of graph indexes are often complex and ad-hoc, so deriving an accurate performance model is a daunting task. As a result, database practitioners may encounter difficulties in choosing the optimal index for their data graphs. In this paper, we address this problem by proposing a spectral decomposition method for predicting the relative performances of graph indexes. Specifically, given a graph, we compute its spectrum. We then propose a similarity function to compare the spectrums of graphs. We adopt a classification algorithm to build a model and a voting algorithm for predicting the optimal index. Our empirical studies on a large number of random and scale-free graphs, using four structurally distinguishable indexes, demonstrate that our spectral decomposition method is robust and almost always exhibits an accuracy of 70% or above.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management of transitive relationships in large data and knowledge bases. In: SIGMOD, pp. 253–262 (1989)

    Google Scholar 

  2. Bramandia, R., Choi, B., Ng, W.K.: Incremental maintenance of 2-hop labeling of large graphs. TKDE 22, 682–698 (2010)

    Google Scholar 

  3. Brouwer, A.E., Haemers, W.H.: Spectra of Graphs. Springer (2012)

    Google Scholar 

  4. Cheng, J., Ke, Y., Ng, W., Lu, A.: Fg-index: towards verification-free query processing on graph databases. In: SIGMOD, pp. 857–872 (2007)

    Google Scholar 

  5. Chung, F.: Spectral Graph Theory. Conference Board of the Mathematical Sciences (1997)

    Google Scholar 

  6. Deng, J., Liu, F., Peng, Y., Choi, B., Xu, J.: Predicting the optimal ad-hoc index for reachability queries on graph databases. In: CIKM, pp. 2357–2360 (2011)

    Google Scholar 

  7. Dhillon, I.S., Guan, Y., Kulis, B.: Weighted graph cuts without eigenvectors: A multilevel approach. TPAMI 29, 1944–1957 (2007)

    Article  Google Scholar 

  8. Hendrickson, B., Leland, R.: An improved spectral graph partitioning algorithm for mapping parallel computations. SIAM J. Sci. Comput. 16(2), 452–469 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yellen, J., Gross, J.L.: Handbook of Graph Theory. CRC Press (2004)

    Google Scholar 

  10. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: NIPS, pp. 849–856. MIT Press (2001)

    Google Scholar 

  11. Peng, Y., Choi, B., Xu, J.: Selectivity estimation of twig queries on cyclic graphs. In: ICDE, pp. 960–971 (2011)

    Google Scholar 

  12. Schenkel, R., Theobald, A., Weikum, G.: Efficient creation and incremental maintenance of the hopi index for complex xml document collections. In: ICDE, pp. 360–371 (2005)

    Google Scholar 

  13. Song, L., Peng, Y., Choi, B., Xu, J., He, B.: Spectral decomposition for optimal graph index prediction. Technique Report (2012), http://www.comp.hkbu.edu.hk/~ypeng/papers/TechRep2012.pdf

  14. Spielman, D.A.: Spectral graph theory and its applications. In: FOCS, pp. 29–38 (2007)

    Google Scholar 

  15. Spielman, D.A.: Spectral graph theory. In: Combinatorial Scientific Computing, pp. 1–23. Chapman and Hall/CRC Press (2011)

    Google Scholar 

  16. Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: ICDM, pp. 721–724 (2002)

    Google Scholar 

  17. Yan, X., Yu, P.S., Han, J.: Graph indexing: a frequent structure-based approach. In: SIGMOD, pp. 335–346 (2004)

    Google Scholar 

  18. Yildirim, H., Chaoji, V., Zaki, M.J.: Grail: scalable reachability index for large graphs. PVLDB 3(1-2), 276–284 (2010)

    Google Scholar 

  19. Zhu, L., Choi, B., He, B., Yu, J.X., Ng, W.K.: A uniform framework for ad-hoc indexes to answer reachability queries on large graphs. In: Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds.) DASFAA 2009. LNCS, vol. 5463, pp. 138–152. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Song, L., Peng, Y., Choi, B., Xu, J., He, B. (2013). Spectral Decomposition for Optimal Graph Index Prediction. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2013. Lecture Notes in Computer Science(), vol 7818. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37453-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37453-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37452-4

  • Online ISBN: 978-3-642-37453-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics