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Abstract

In recent years, there have been increasing efforts in
applying association rule mining to build Associa-
tive Classification (AC) models. However, the similar
area that applies association rule mining to build As-
sociative Regression (AR) models has not been well
explored. In this work, we fill this gap by presenting
a novel regression model based on association rules
called AREM. AREM starts with finding a set of re-
gression rules by applying the instance based prun-
ing strategy, in which the best rules for each instance
are discovered and combined. Then a probabilistic
model is trained by applying the EM algorithm, in
which the right hand side of the rules and their im-
portance weights are updated. The extensive experi-
mental evaluation shows that our model can perform
better than both the previously proposed AR model
and some of the state of the art regression models, in-
cluding Boosted Regression Trees, SVR, CART and
Cubist, with the Mean Squared Error (MSE) being
used as the performance metric.

Keywords: association rule; regression rule; as-
sociative regression; probabilistic model; EM algo-
rithm; instance based pruning;

1 Introduction

In recent years, there have been increasing efforts in
applying association rule mining to build classifica-
tion models [1] [2] [3] [4] [5], which have resulted
in the area of Associative Classification (AC) mod-
eling. Several studies [1] [2] [3] have provided empiri-

cal evidence that AC classifiers can outperform tree-
based [6] and rule-induction based models [7] [8]. The
good performance of the AC models can be attributed
to the fact that by using a bottom-up approach to
rule discovery (either via frequent itemset mining or
instance-based rule mining) they can discovery better
rules than the traditional heuristic-driven top-down
approaches.

Regression is a data mining task that is applica-
ble to a wide-range of application domains. How-
ever, despite the success of association rule min-
ing for classification, it has not been extensively ap-
plied to develop models for regression. We are only
aware of the Regression Based on Association (RBA)
method developed by Ozgur et al. [9] that uses asso-
ciation rule mining to derive a set of regression rules.
Since regression models need to predict a continuous
value, whereas the classification models need to pre-
dict a categorical value, the methods developed for
AC modeling are in general not applicable for solv-
ing regression problems.

Motivated by the success of AC modeling, we study
the problem of applying the association rule mining
to build an Associative Regression (AR) model. We
believe this is an important problem for the following
two reasons: First, an AR model is built upon a set
of regression rules, which in many cases, can be eas-
ily interpreted by domain experts and thus provide
valuable insights. Second, the good performance of
the well studied AC classifiers leads us to believe that
the AR model may potentially perform better than
the tree-based [10] [11] and rule-induction based [12]
regression models.

We present an associative regression model utiliz-



ing expectation maximization [13], called AREM. An
AR model consists of three major components: (i) the
method used to identify the sets of itemsets that form
the left hand sides of the rules, (ii) the method used to
estimate the right hand sides of the rules, and (iii) the
method used to compute a prediction. Drawing upon
approaches used for developing AC models, AREM
uses an instance-based approach to select a subset of
frequent itemsets that are used to form the left hand
side of the rules. However, unlike existing AC and AR
models, it develops and utilizes a probabilistic model
coupled with an EM-based optimization approach to
determine the right hand side of the rules and also
assign a weight to each rule that is used during pre-
diction. The advantage of this probabilistic model is
that it allows AREM to capture the interactions of
the various rules and to learn the parameters that
lead to more accurate predictions. Our experimen-
tal evaluation shows that AREM outperforms several
state of the art regression models including RBA [9],
Boosted Regression Trees [10], SVR [14], CART [11]
and Cubist [12] on many data sets, with the Mean
Square Error (MSE) being used as the performance
metric.

The remainder of this paper is organized as fol-
lows. Section 2 introduces some notations and defi-
nitions. Section 3 presents the related work in this
area. AREM is formally presented in Section 4. In
Section 5, we explain the experimental design and
results for model evaluation. And finally Section 7
concludes.

2 Notations And Definitions

The methods developed in this work apply to datasets
whose instances are described by a set of features that
are present. Such datasets occur naturally in mar-
ket basket transactions (features represent the set of
products purchased) or bag-of-word modeling of doc-
uments (features correspond to the set of words in the
document). We will refer to these features as items.
Note that other types of datasets can be converted to
the above format via discretization techniques [15].
Let the data set D = {(7;,v:)|i = 1,2,...,N} be a
set of N instances. The instance (with index) 7 is a

tuple (7;,v;), where 7; is a set of items (or, an item-
set), and y; is the real-valued target variable. Given
an itemset x, and an instance (7;,y;), we say, x is
contained in (7;,¥;), or, (7;,y;) contains z, if  C 7;.
The support of itemset x, is defined as the number of
instances in D that contain x. The itemset z is fre-
quent if its support is not less than sg, where sq is the
user specified parameter. For itemset x, we define its
mean (y,) and standard deviation (o) as computed
from the set of target variables from instances in D
that contain z.

A regression rule is of the form r, : x — «a,. The
rule’s left hand side (LHS) z is an itemset.The rule’s
right hand side (RHS) «, is the target value predicted
by this rule. Each rule is also associated with a posi-
tive value w, which is used as the weight when com-
bining multiple rules together for making predictions.
The rule r, is frequent if its itemset x is frequent.

3 Related Work

To our best knowledge, the RBA [9] model is the only
previous work on associative regression. It starts with
mining the set of frequent itemsets which form the
set of rules’ LHS. For each frequent itemset z, RBA
computes the rule’s RHS as the mean of z. It also
computes the standard deviation o, of . These rules
are then ranked by variance (i.e., ¢2) from small to
large. The database sequential coverage is applied to
prune rules which are ranked low. For making predic-
tions, three weighting schemes for w, are developed:
(1) equal, where rules are equally weighted, (2) supp,
where the rule r, is weighted by the support of =z,
and (3) inv-var, where the rule’s weight is inverse
proportional to the variance o2.

Associative Classification (AC) [16] is an area that
applies similar techniques, but the focus is on the
Classification task. Among the many methods devel-
oped for AC modeling [1] [2] [3] [5], Harmony [4] is
the model that employs a similar rule pruning strat-
egy to AREM: it mines the highest confidence rules
for each instance and combines them to the final rule
set.

AR and AC models are descriptive in that they can
be easily interpreted by end users. Tree based and



rule induction based models are another two groups
of descriptive models. The classification and regres-
sion tree (CART) [11] partitions the input space into
smaller, rectangular regions, and assigns the average
of the target variables as the predicted value to each
region. Cubist [12] is a rule based algorithm and fits a
linear regression model to each of the regions. Boost-
ing [10] is a technique to build ensemble models by
training each new model to emphasize the training in-
stances that previous models misclassified. Boosted
regression trees have shown to be arguably the best
algorithms for web-ranking [17].

4 The AREM Model

The AREM model training consists of two major
components. First, it discovers a set of frequent re-
gression rules r, : * — p,, where p, is the mean
value of z in D. We denote this set of rules by R.
Second, for each r, € R, AREM updates its RHS to a
new value «, by learning a probabilistic model. The
EM algorithm is applied for model learning where a,.
is learned together with the rule’s weight w,. AREM
allows users to specify a parameter M to control the
number of EM iterations.

For the rule discovery component (i.e., the first
component above), AREM follows a two-step ap-
proach to find the rule set R. First, it uses the
FP Growth algorithm [18] to find all frequent item-
sets z in D. For each frequent itemset z, AREM
generates the rule r, : x — u,, where u, is the mean
value of x in D. AREM also computes the standard
deviation o, of z in D. Let F be this set of fre-
quent rules. Second, for each training instance ¢, let
F; be the set of rules r, from F such that z C 7;.
AREM selects K rules from F; to form the set R;.
Finally, R is the union of these rules R; over all train-
ing instances 4 in D. Since R will in general contain
fewer rules than F, this step applies instance based
approach to prune the initial set of frequent rules.

Using this set of updated rules R with the associ-
ated weights, AREM predicts the target variable of
a new itemset 7 as follows. First, it identifies the
set of rules R, = {ry,...,72,,} € R whose LHS
are subsets of T (i.e., (z; = ag,) € R, if z; C 7),

then it eliminates from R, all but the k& rules that
have the highest w,, values among them. This set
of rules, denoted by R, is then used to predict the

target variable using the formula
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which is nothing more than the average of the RHS
of the k rules weighted by their corresponding w,,
values.

AREM model requires the specification of four pa-
rameters: (i) the minimum support sg, (ii) the num-
ber of rules K that are selected for each training in-
stance, (iii) the number of EM steps M for rule pa-
rameter learning, and (iv) the number of rules k from
R that are used for predicting the target variable.
Even though the optimal values of these parameters
need to be determined using a cross-validation frame-
work, our experience has been that the performance
of AREM remains consistently good for a wide range
of these values.

In the rest of this section we describe the proba-
bilistic model that we developed for estimating from
D the a, and w, parameters of the rules in R and
the method used to select for each training instance
i the K rules from F;.

4.1 The Probabilistic Model

Let X be the set of itemsets of rules in R (i.e.,
X = {z|r, € R}). Consider an arbitrary training
instance (7,y). The goal of the probabilistic model is
to specify the probability of target variable y given
7, i.e., Ply|T]. We want to relate this quantity to the
set of itemsets in X. To this end, we treat itemset
x as a random variable that takes values in X and
write P[y|7] as

Plylr] =Y Ply,z|r] = Y Plylr, 2] Pla|7],

where P[y|7,x] is the probability of generating the
target variable y given 7 and x, which is generated
from 7 with probability P[z|7]. Our goal then be-
comes to specify Ply|7, z] and Plz|r] and relate them
to a, and w,.



In order to specify Ply|r,x], we first assume the
conditional independency Ply|r,z] = Ply|z]. This
is, we assume that once the itemset x is known, the
probability of y is not dependent on 7, which sim-
plifies our model so that the dependency of 7 is fully
captured in P[z|7]. Given that, we then model Py|z]
as a Normal distribution whose mean is the RHS of
the rule z — «, and standard deviation S,. That is,

(2) Plylz] = N (y|az, 82).

Next, we specify P[z|7] by considering how AREM
makes predictions. In order to simplify this discus-
sion we ignore the fact that AREM picks the top k
rules (i.e., it uses the set of rules in R¥) and assume
that it predicts the target value by using all the rules
in R.. Specifically, Equation 1 now becomes
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where I.c - is the indicator function which takes value
1 (0) when z C 7 is true (false).

From the probabilistic modeling point of view, we
predict the target variable as the expected value of y
given 7, that is,

(4) §=Elylr] = ZE y|7, x| Pla|r].
From Equation 2, we get E[y|r,z] = a,. To specify
P[z|7], we compare Equation 3 with 4, and get
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To summarize, we have reached a two step model
Ply, z|t] = Ply|z]Plz|r]. In the first step, a regres-
sion rule’s LHS = € & is generated based on 7 with
probability P[z|7] given by Equation 5. In the sec-
ond step, the target variable y is generated by x with
probability P[y|z] given by Equation 2.

5) Plafr] =

4.2 EM Algorithm: Learning o, [,
and w,

Denote by 0 = {ay, B2, w.|xr € X'} the complete set
of model parameters. The maximum likelihood esti-

mation of @ given the training data set is to maximize

(6)
Zlog = Zlog(zp[yi,wih’me}%

i|Ti, 6]

where we have introduced z; to denote the item-
set generated by our probabilistic model for instance
1. The difficulty of this optimization problem comes
from the summation inside the logarithmic function.
This is due to the existence of the hidden variables
x;, which are not directly observable from the train-
ing data set. EM algorithm is the standard approach
to solve this problem.

EM algorithm is an iterative optimization tech-
nique. In the following, we add a subscript ¢ to all
model parameters to denote the parameters used by
EM algorithm at iteration t. For each iteration t, EM
algorithm finds the updated set of parameters 6,1
given the current parameter estimations 6. This is
accomplished by maximizing the function
(7)

Q(0111,0;) =

This optimization problem is much easier than the
original one for Equation 6, due to the fact that the
logarithmic function is now inside the summation.
The EM algorithm at iteration t is splitted into an
E-step which computes m; 5, = Plzi|7i,yi, 0¢] and
an M-step which optimizes Q(6;11,0;) given m; 4, ¢.
After each iteration, the log-likelihood function L is
guaranteed to be increased, that is, £(0:11) > L(6y).

At iteration ¢ = 0, we initialize the weight wy o to
one and g, Bg,0 to the mean and standard devia-
tion of x in D. For the E-step, we first apply Bayes’
Theorem so that

Tzt = P[$i|7—iyyi70t]
Plyi|7i, i, 0¢| Plzi|7s, 04]
Plyi|7i, 04]
o Plyi|m, xi, 0] Pla;|Ti, 0y].

According to Equations 5 and 2, we have
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Combining these two Equations, we get

s o N(yi|a1i,t7 Bgi,t)wiivt‘[wigﬂ
1,2t Zx'gn N(yi|ax/,taﬂ§',t)wxﬁt'

For the M-step, we split Ply;,x;|mi,0:41] as
Ply;|xi, 0¢11]Plx;|7;, 0141], so that @ = Qq + Qo,
where Q; contains only o ¢41, Bz t4+1 and Qs con-
tains only wy ¢41.

Next, we optimize Q; which is given by

Qi = Z Z T2, 108(P[Yil i, Or41]).

i x;CT

(8)

By changing the order of summation, we can write

Q1 =), Qa, where

Q= Z Tzt 10g(Plyi|z, 0¢11]).

1:xCT;

One can see that different itemsets are decoupled
from each other, so we only need to solve Q, for
Ve € X. Observe that Q, is nothing but the
weighted version of the log-likelihood function of
model Plylz,0;11] = N (ylag,41,52,,1), where the
weights are given by ; , ; for instance ¢. The solution
is straightforward:

Zi:xgn T, tYi

(9) Qg t+1 =
’ Zi:wgn it ,
and,
(10) 2 - Zi:zgf, Tr’i@yt(yi - ax’tJrl)Q
i+l =

Zi:wgn it

In Equations 9 and 10, the parameters o, and 3, are
the weighted mean and standard deviation where the
weight of instance 7 at iteration ¢ is given by m; 4 ¢.
This weighting mechanism can help to remove the
outlier instance whose m; ; ; is small.

Now, we optimize Qs which is given by

Q2 = Z Z iz, 108 (P[] T, 0141]).
v x;C7

By plugging Equation 5 into Qs, and taking the
derivative, we get

09>
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One can see that different weights wy ;1 are cou-
pled in the above equation. So the exact analytical
solution becomes impossible. To ensure the simplic-
ity and computational efficiency of our approach, we
make an approximation here by replacing ¢ + 1 by
t in the second term of RHS. Then by setting the
derivative to zero, we get

Zi:xgﬂ Ti,x,t

W - Wy, t N
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C7; ’
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From Equations 9, 10 and 11, we see that m; , plays
the key role of relating parameters a, and [, to
weights w,, so that they can interact with each other
and be optimized consistently.

Finally, we note that AREM introduces a parame-
ter M which controls the number of EM-steps. After
the EM algorithm is completed, the rule’s RHS and
weight are finalized to be ., p and wgy .

4.3 Instance Based Rule Mining

The instance based rule mining is applied in the rule
discovery component of AREM discussed at the be-
ginning of Section 4, which selects K rules from F; to
form R; for each training instance i. For this, AREM
first ranks rules in F; by some “quality” metric, and
then select the top K rules. The “quality” metric
captures the quality of a rule from an instance’s per-
spective. From our probabilistic model, P[x|7;,y;] is
the natural choice for the “quality” metric: a rule is
better if it has a higher probability of being generated
by the instance. We use the initialized rule param-
eters wg 0, Qg0 and By for computing Plz|r;, ;).
From P[z|7;,yi] oc Pz, ys|7i] oc N(yilaw,0, 87 0)wa 0,
We have that for the ranking’s purpose P[z|7;,y;]
is equivalent to /\/’(yi|a$,0,ﬁg,0), where w0 = 1 is
dropped. Thus, AREM uses N (y;|ag,0, 82 ) for rule
ranking for each instance.

5 Experimental Design

5.1 Data Sets

We evaluate the performance of AREM on 10 data
sets summarized in Table 1.



Table 1: Data Set Summary

Data Set dE;StBUny Sétg/Searcvl;f depYelp = Airline | Socmob | Pollen | Spacega
# of instances 10k 10k 10k 10k 10k 10k 10k 1156 3848 3107
# of items 1347 | 1010 | 1530 | 1080 | 2273 | 1662 676 44 17 24
density (%)* 1.29 1.52 1.36 1.95 1.35 1.94 1.63 11.36 23.53 25.00
# of trials? 20 20 20 20 20 20 20 200 50 60

% The “density” captures how sparse the data set is. It is the percentage of non-zero entries if the data is

converted into the matrix format.

b Number of trials the data set is randomized and then splitted into 80% training set, 10% validation set and

10% testing set.

Reviews Data The first six data sets are ran-
domly sampled from user reviews downloaded from
three websites: “BestBuy” [19], “CitySearch” [20],
and “Yelp” [21]. Each instance corresponds to the
review of a product where the target variable to pre-
dict is the user’s rating which ranges from one to
five. The review text is parsed and a set of features,
or items, is extracted. We constructed two types of
features: “dep” and “wf”. For “dep”, the Stanford
dependencies [22] between words in each sentence are
extracted. Each dependency is a triplet containing
the name of the relation, the governor and the de-
pendent. For “wf”, words in the review text are ex-
tracted. We remove the infrequent items whose rel-
ative supports (that is, the support divided by |D|)
are less than 0.5%.

Airline The “Airline” data set is downloaded from
DataExpo09 competition [23]. The “Airline” data
set describes flight arrival and departure details for
all commercial flights within the USA, from Oc-
tober 1987 to April 2008. We randomly sampled
10k instances out of the 2008 data set. We chose
the arrival delay, normalized to have mean zero
and variance one, as the target variable to predict.
Input features include “month”, “day of month”,
“day of week”, “scheduled departure hour”, “sched-
uled arrival hour”, “carrier”, “origin”, “destination”,
“scheduled elapsed time” discretized into 11 inter-
vals, “departure delay” discretized into 11 intervals,
and “distance” discretized into 10 intervals.

Socmob The last three data sets are downloaded
from CMU StatLib [24]. The counts for son’s cur-
rent occupation, normalized to have mean zero and
variance one, is selected as the target variable. In-

put features include “father’s occupation”, “son’s oc-
cupation”, “family structure”,“race”,and “son’s first
occupation” discretized into 6 intervals.

Pollen “Pollen” is a synthetic dataset about the
geometric features of pollen grains. We chose “Den-
sity”, normalized to have mean zero and variance
one, as the target variable. Other four variables
“RIDGE”, “NUB”, “CRACK”, and “WEIGHT” are
discretized into 5, 4, 5, and 3 intervals, respectively.
Spacega “Spacega” contains election data includ-
ing spatial coordinates on 3107 US counties. We
chose In(VOTES/POP), normalized to have mean
zero and variance one, as the target variable. Other
variables “POP”, “EDUCATION”, “HOUSES”, “IN-
COME”, “XCOORD” and “YCOORD” are dis-
cretized into 4, 3, 4, 4, 4 and 5 intervals respectively.

5.2 Models

For model comparison’s purpose, we focus on descrip-
tive models and select several state of the art tree-
based and rule-based regression models. The sup-
port vector regression (SVR) [14] is an exception. It
is included because it is one of the best known and
standard models for regression.

SVR We use “libsvin” [25] for SVR, and use only
the linear kernel. Model parameters tuned are: C
and e, where € is the size of e-insensitive tube, and C'
controls the model complexity.

CART); This group of models contain the Classi-
fication And Regression Tree (CART) [11] and the
Boosted Regression Tree [10] where CART of fixed
size is acting as the weak learners. So, CART}, stands
for CART being boosted k times [26]. We tuned three



parameters for CARTy: depth, leaf and Irate, where
depth is the maximum depth of the tree, leaf is the
minimum number of leaf samples of the tree, and Ilrate
is the learning rate of the gradient boosting method.
CUBIST;, Cubist [12] is a rule based algorithm
which has the option of building committee models.
The number of members in the committee is captured
in k. We tuned two binary parameters for CUBISTy:
UB (unbiased), and CP (composite). Parameter UB
instructs CUBIST to make each rule approximately
unbiased. Parameter CP instructs CUBIST to con-
struct the composite model.
RBA; We implemented the RBA model following
[9]. Here k is the number of top ranked rules used for
prediction. We tuned two parameters for RBAy: sg
and weight, where sg is the minimum support thresh-
old, and weight is the weighting scheme used for pre-
diction, which can take three values supp, inv-var and
equal.
AREM, Here, k is the number of top ranked rules
used for prediction. We tuned three parameters for
AREMy: s9, K and M, where sy is the minimum
support threshold, K is the number of high quality
rules for each training instance during pruning, and
M is the number of EM steps during model training.
The parameter k in the above models (except SVR)
can be uniformly interpreted as the number of rules
used for making predictions. For our experimental
study, we choose k to be 1, 5, 10, 15 and 20 for all four
models. The rationale of choosing these values comes
from the following: if k is too large, these models’
strength of being interpretable essentially disappears;
on the other hand, if k is too small, the performance
may not be satisfactory. We choose the maximum
k value to be 20 as a compromise from these two
extreme case considerations.

5.3 Evaluation

We used the Mean Squared Error (MSE) between the
actual and predicted target variable’s values as the
performance metric. For each (model, data) pair,
we first identified a set of parameter configurations
that was likely to achieve the best performance. The
model was then trained on the training set and MSE
was calculated on the validation set for each of the

Table 2: Data Independent Model Parameters

SVR € from 0.1 to 0.9 with 0.1 intervals.
CARTy
CUBISTy
RBA, k 1, 5, 10, 15, 20
AREM;
CARTy lrate 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7
UB Y, N
CUBISTy cp Y. N
RBA weight equal, supp, inv-var
K 1, 5, 10, 15, 20
AREM, M 1,2,3,4,5

parameter configurations. Then we selected the pa-
rameter configuration that gives the best MSE on
the validation set, and computed the corresponding
MSE on the testing set. This process is repeated for
the number of trials shown in Table 1. Finally, we
reported the average MSE on all testing trials.

For a given data set, in order to compare model
my to model mo, we take into account the distribu-
tion of the MSE values computed on multiple testing
trials for each model. Let w1, o1, n1 (u2, o2, n2)
be the mean, standard deviation and the number of
observations of the set of MSE values for model mq
(ma), respectively. We introduce fipm, —m, = o — i1
and 0, —m, = +/02/n1+05/na.  The quantity
Hmy—ma/Tm,—m, 1s used in statistical testing [27] for
the comparison of two population means. Under the
null hypothesis that two population means are the
SAMe, [y —mo/Om,—m, Can be assumed to have the
Normal distribution A(0,1). So the more deviated
from zero this quantity is, the more likely that two
models are performing differently.

6 Experimental Results

6.1 Parameter Study

To ensure fair model comparison, it is important to
tune each model to its best performance. Identifying
the appropriate set of parameter values is a critical
step for this goal. We split the set of parameters into
two groups: data independent and data dependent.



Table 3: Data Dependent Model Parameters

Data Set SVR CART), RBAy, | AREM,,
C depth leaf S0

BestBuy.dep 300, 350, 400, 450, 500 35,40,45,50,55 | 15, 20, 25, 30 20, 40

BestBuy.wf 400, 450, 500, 550, 600 35,40,45,50,55 | 10,15,20,25,30 20,40

CitySearch.dep 170, 200, 220, 250, 300 35,40, 45, 50,55 | 20, 25,30, 35,40 20, 40

CitySearch.wf 200, 250, 300, 350, 400 35,40,45,50,55 | 20,25,30,35,40 30, 60

Yelp.dep 50, 75, 100, 150, 200 25,30, 35,40, 45 | 25,30, 35,40, 45 40, 60

Yelp.wf 50, 80, 100, 120, 150, 200 25,30, 35,40,45 | 30,35,40,45, 50 60, 80

airline 250, 300, 400, 500, 600 5,10, 15, 20 15,20, 25, 30, 35 20, 30, 40

socmob 50, 100, 250, 500, 750 15,18, 20, 22, 25 1,2,3 3,5,10

pollen 500, 750, 1000, 1250, 1500 8,10,12,15 3,5,8,10,12,15 3,5,10

spacega 1500, 2000, 2500, 3000, 3500 3,5,8,10 2,3,5,8 3,5,10

Table 4: Model Parameters Giving The Lowest MSE On Testing Data
Data Set SVR CARTy, CUBISTy, RBAj, AREM
C € k | depth | leaf | lrate k| UB| CP | so k weight | so k| K| M

BestBuy.dep 450 | 0.7 | 20 45 20 0.2 1 Y N | 40 | 15 supp | 40 | 10 1 2
BestBuy.wf 550 | 0.6 | 20 50 20 0.2 1 Y N | 15 | 20 supp | 40 | 10 5 2
CitySearch.dep 200 | 0.8 | 20 50 30 0.2 1 Y N | 40 | 20 equal | 40 | 15 1 3
CitySearch.wf 300 | 0.8 | 15 45 30 0.3 5 N N | 30 | 20 supp | 30 | 20 1 3
Yelp.dep 100 | 0.5 | 20 40 40 0.3 5 Y N | 40 | 20 | 4nv-var | 40 | 10 1 3
Yelp.wf 100 | 0.8 | 20 25 40 03 | 15 N Y | 60 | 20 equal | 60 | 15 1 3
airline 400 | 0.5 | 20 10 25 0.2 1 Y N | 30 5 | tnv-var | 20 | 20 | 20 2
socmob 250 | 0.6 | 20 20 2 0.2 1 N Y 5 1 NA 5| 15 5 5
pollen 1000 | 0.5 5 10 8 0.5 | 15 N Y 3 5 | dnv-var | 10 | 20 5 5
spacega 2500 | 0.6 5 8 5 0.5 1 N Y | 10 5 | tnv-var | 10 | 20 1 3




Table 5: Model Comparison: Average MSE

model\data dl:;stBuy T Ség/Searchwf depYelp = Airline | Socmob | Pollen | Spacega
SVR 0.945 0.810 0.961 0.814 | 0.935 0.770 | 0.643 0.535 | 0.469 0.480
CART, 1.014 | 0.875 1.131 0.974 1.118 | 0.924 | 0.649 0.440 0.487 0.488
CARTs 0.937 0.815 0.997 0.847 0.994 0.804 0.640 0.349 0.481 0.480
CART1o 0.921 0.799 0.962 0.827 | 0.962 0.782 0.642 0.349 0.482 0.481
CART15 0.913 0.790 0.956 0.809 0.946 0.765 0.640 0.349 0.483 0.482
CART>o 0.909 0.787 | 0.949 0.814 | 0.939 | 0.755 0.640 0.341 0.483 0.484
CUBIST, 1.043 0.880 1.210 0.990 1.130 | 0.959 0.658 0.363 0.501 0.490
CUBISTs 1.070 0.937 1.213 0.966 1.129 0.949 0.663 0.367 0.500 0.494
CUBIST10 1.074 0.943 1.216 0.973 1.138 | 0.946 0.664 0.370 0.499 0.492
CUBIST5 1.080 0.947 1.218 0.976 1.138 | 0.944 0.664 0.369 0.499 0.493
CUBIST29 1.081 0.951 1.221 0.985 1.137 | 0.944 0.664 0.369 0.499 0.493
RBA; 1.111 1.004 1.200 1.141 1.156 1.023 0.730 0.533 0.507 0.530
RBAs 0.969 0.898 1.044 | 0.928 1.026 | 0.930 0.682 0.562 0.496 0.496
RBA10 0.964 0.878 1.041 0.894 1.019 | 0.915 0.685 0.594 0.497 0.496
RBA15 0.962 0.872 1.040 0.893 1.015 0.904 0.685 0.603 0.497 0.497
RBA>g 0.964 0.872 1.038 0.890 1.013 | 0.903 0.685 0.603 0.497 0.497
AREM; 1.248 1.235 1.354 1.248 1.311 1.241 0.754 0.421 0.581 0.628
AREMs 0.875 0.763 0.908 0.844 | 0.953 | 0.799 0.670 0.307 0.499 0.529
AREM;o 0.862 | 0.751 | 0.896 0.784 | 0.920 | 0.753 0.657 0.299 0.483 0.507
AREM;5 0.864 | 0.753 | 0.894 | 0.773 | 0.921 | 0.748 0.652 0.299 0.481 0.490
AREMago 0.865 | 0.758 | 0.899 | 0.770 | 0.926 | 0.749 0.646 0.300 0.481 0.483
Table 6: Compare AREM), To Other Models: i, —ms/Tm; —ma
Model\Data dESStBu}v,vf g:I;;)ySearclivf depYelp g Airline | Socmob | Pollen | Spacega
CARTy, 2.86 | 2.71 4.26 2.65 1.73 0.56 -0.61 2.29 0.09 -0.12
SVR 4.65 | 4.16 4.97 2.95 1.26 1.80 -0.35 10.51 -2.14 -0.11
RBA, 4.98 | 8.15 | 10.18 8.11 8.64 | 12.17 3.15 9.68 2.74 0.52
CART 7.89 | 8.36 | 16.78 | 11.48 | 16.50 | 13.84 0.23 6.77 1.15 0.23
CUBIST}, 8.04 | 7.50 | 20.25 | 11.49 | 16.43 | 13.76 1.03 3.49 3.15 0.31

A model parameter is data independent, if it sat-
isfies one of the following three criteria. First, it can
only take a small set of pre-determined categorical
values, such as UB and CP for CUBISTy, and weight
for RBA. Second, the set of parameter values is
pre-selected and the same across data sets. The pa-
rameter k and K are two examples: we fixed the set
of values to be 1, 5, 10, 15 and 20 without putting
more efforts to optimize it. Third, the optimal pa-
rameter values for all data sets are likely to fall into
similar ranges, so that, the same set of values can be
identified to be used for all data sets. We identified
three parameters in this category: e for SVR, lrate
for CARTy, and M for AREM,;. It requires some

efforts to determined whether a parameter falls into
this category and what is the appropriate set of val-
ues. But it is generally not too difficult, since the
performance across data sets are consistent. The set
of data independent parameters and the associated
set of values are summarized in Table 2.

A model parameter is data dependent, if its opti-
mal values differ dramatically based on the character-
istics of the data set. These parameters are the most
time consuming to tune. We identified four parame-
ters falling into this category: C for SVR, depth and
leaf for CART},, and the minimum support threshold
so for RBAy, and AREM,;. We followed a two-step
approach to identify the set of most relevant values



Table 7: Compare AREMj,

To Other Models: win-tie-loss

comparing criteria®\model | CART), | SVR, | RBA, | CART; CUBIST},
[ty —ms| = Omi—ma 6-4-0 7-2-1 9-1-0 8-2-0 9-1-0
[Hmy —mal = 20my —ma 5-5-0 5-4-1 9-1-0 7-3-0 8-2-0
iy —ms| = 30 my —ms 1-9-0 | 460 | 820 | 730 8-2-0

@It is a tie if |m; —msy| < NOm; —my. Otherwise, it is a win or loss depending on

the sign of pn —mo-

for each (parameter, data set) pair (sg is an excep-
tion, whose values are pre-selected for each data set).
The first step is coarse tuning. We pick a set of val-
ues varying dramatically in magnitude, and narrow
down the range into which the optimal value might
fall. The second step is fine tuning, in which we sam-
ple a set of values in the range determined from the
first step. If the value giving the best MSE is on the
border of the range, we extend the range by adding
more points into the values set. We reported a subset
of the fine tuning parameter values in Table 3.

In Table 4, the optimal parameter values that
achieve the lowest MSE on the testing data are pre-
sented. We can observe that for almost all the cases
where the range of the parameter needs to be deter-
mined, the optimal value is within the determined
range (not on the border). This gives us confidence
that our models have been tuned to be close to the
best performance.

6.2 Performance Study

The average MSE for the discussed set of models on
the various data sets are shown in the Table 5, where
the best results have been highlighted. Table 6 shows
the quantity fim, —my/0m, —m, for comparing A REMj,
to the rest of the models. Note that CART; is the
standard CART model, in contrast to CART} which
stands for the boosted regression tree. For easy com-
parison, we derive the win-tie-loss from Table 6 and
present them in Table 7.

Tables 6 and 7 show that AREM is performing bet-
ter than all competing methods on most of the data
sets. For almost all cases, AREM is either better or
at least as good as the competing method (with the
only exception on “Pollen” when compared to SVR).
Tt is also interesting to observe that AREM performs

almost uniformly well on the review data sets, but
not as uniform on the rest of the data sets. Given
that the review data sets have much larger number
of items (see Table 1), we think this is an indication
that AREM is more suitable for high-dimensional
and sparse data sets. Finally, from Table 5, we can
see how different k values affect the AREM’s perfor-
mance. When k = 1, the performance is not satisfac-
tory. This is not surprising because our probabilistic
model is optimized for large number of rules. How-
ever, as k becomes sufficiently large, the performance
improves considerably and remains quite stable.

7 Conclusions

We have proposed a novel regression model based on
association rules called AREM. AREM is based on a
probabilistic framework, in which rule’s parameters
are learned by the EM algorithm. Experiments based
on 10 in house and public datasets show our model
can perform better than RBA [9], Boosted Regres-
sion Trees [10], SVR [14], CART [11] and Cubist [12].
We believe the superiority of our model comes from
the novel modeling techniques that we applied, in-
cluding: instance based rule mining which discovers
high quality rules, the weighted version of the rule’s
RHS which is able to remove outliers, and the fact
that rule’s weight is learned together with rule’s RHS
consistently within the EM framework.
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