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Novel Adaptive Eye Detection and Tracking

for Challenging Lighting Conditions

Mahdi Rezaei and Reinhard Klette

The .enpeda.. Project, Tamaki Campus
The University of Auckland, New Zealand

Abstract. The paper develops a novel technique that significantly im-
proves the performance of Haar-like feature-based object detectors in
terms of speed, detection rate under di�cult lighting conditions, and
reduced number of false-positives. The method is implemented and val-
idated for driver monitoring under very dark, very bright, and normal
conditions. The framework includes a fast adaptive detector designed to
cope with rapid lighting variations, as well as an implementation of a
Kalman filter for reducing the search region and indirect support of eye
monitoring and tracking. The proposed methodology e↵ectively works
under low-light conditions without using infrared illumination or any
other extra lighting support. Experimental results, performance evalu-
ation, and comparing a standard Haar-like detector with the proposed
adaptive eye detector, show noticeable improvements.

1 Introduction

Since the early 2000s, researchers such as Viola and Jones [13], Jesorsky et al. [7],
or Hsu et al. [6] made important progress in model- and learning-based object
detection methods. Despite of general improvements in detection methods, face
and especially eye detection under non-ideal lighting conditions still requires fur-
ther improvements. Even in recent e↵orts such as [10, 12, 15], limited verification
tests have been applied for normal situations only. Driver-behaviour monitoring
is an example for a challenging environment for eye analysis, where the light
source is not uniform, symmetric, or the light intensity may rapidly and repeat-
edly change (e.g. due to entering a tunnel, shadow, turning into very bright light,
or even sun strike). Although recent techniques for frontal face detection under
normal lighting conditions are quite robust and precise [9, 15, 14, 18], sophisti-
cated and sensitive tasks such as driver eye-status monitoring (open, closed) and
gaze analysis, are still far away from being solved accurately.

Among related work, there are publications on single and multi-classifier
approaches for the addressed area of applications. Brandt et al. [2] designed a
coarse-to-fine approach for face and eye detection using Haar wavelets to measure
driver blinking with satisfactory results under ideal conditions. Majumdar [10]
introduced a hybrid approach to detect facial features using Haar-like classifiers
in HSV colour space but tested it on a very limited number of frontal faces only.
Zhua and Ji [17] introduced robust eye detection and tracking under variable
lighting conditions; however, their method is not e↵ective without support of IR
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Fig. 1. Driver awareness monitoring: brief flowchart.

illumination. Research results in the field often su↵er from a lack of verification
and performance analysis on a wide-range of video or image data.

In this paper, we pursue four goals, (1) to improve noisy measurements of a
Haar-classifier by a more stable solution for detecting and localizing features in
the image plane, (2) to reduce the total computational cost by minimizing the
search region based on a Kalman-filter face tracker, therefore indirectly reducing
the “eye status” detection cost, (3) to minimize false detections by having a
limited operational area within the image plane, and most importantly, (4) to
overcome issues of eye-detection failures due to sophisticated lighting conditions,
by introducing a novel technique, an adaptive Haar detector.

Section 2 outlines the main idea. Section 3 discusses our adaptive detection
method. Section 4 informs about the implementation of the tracking module
along with technical considerations for face and eye tracking. Section 5 discusses
details of experimental and validation results with a performance analysis, com-
paring our method with the Viola-Jones method. Section 6 concludes.

2 Main Idea and Brief Methodology

Figure 1 illustrates the overall structure of our approach. Using Haar-feature
based classifiers, two possible options are considered. In Option 1 we quantify
the region of interest (ROI1) as 100% for each classifier, which means that the
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Fig. 2. Optimized ROIs for eye tracking, after successful face detection.

whole area of an input image needs to be searched, from top left to the bottom
right. Generally, such a full search needs to be repeated three times via three
individual Haar classifiers in order to detect “face”, “open eyes”, or “closed eye”
status. However, utilizing ground truth information for eye localization on two
standard databases of FERET [3] and YALE [16], we estimated the eye location
in a range of 0.55-0.75 as shown in Fig. 2. In case of head tilt, the eye location
may vary in a range of 0.35-0.95 on one side of the face. Therefore, assuming
an already detected face, an eye classifier can perform on regions A and B only
(ROI2), which are only 5.2% of the input image. If face detection fails, then a
second full search in the image plane is required for eye classification (ROI3),
as we do not have any prior estimation for face location. This causes a total
search cost of 200%. If the open-eye classifier detects at least one eye in segment
A within the last five frames, then the closed-eye classifier is called to look
at region C (ROI4). This region covers about 3% of an VGA image. In brief,
assuming an already detected face in the first stage, we have a maximum search
area of 108.2% (ROI1 + ROI2 + ROI4) for complete eye status analysis, while
a face detection failure leads to a search cost of 203% (ROI1 + ROI3 + ROI4).

Assessing 1,000 recorded frames and ground truth faces, we measured the
mean size of the detected faces as 185 ⇥ 185 pixels which covers only 11% of a
VGA image plane. Based on this idea we plan for a partial search that potentially
defines a limited search region as Option 2 instead of Option 1.

As shown in Fig. 1, implementing a face tracker reduces the search region for
face detection, thus a faster eye analyses through the tracked face region. Later
we discuss that using a tracking solution as Option 2, the total search cost can
be reduced to around 34.6% (ROI1 1 + ROI2 + ROI4) which is at least 6 times
faster than Option 1.

In addition to an optimized search policy, we require proper face localization
from the first step, followed by robust eye status detectors to be applicable for all
lighting conditions. Figure 3 shows examples that point to a need for robust eye
detectors to be adaptive under extremely challenging lighting conditions. This

Fig. 3. Examples of “unusual” lighting conditions while driving, causing di�culties for
driver’s eye monitoring (images in the public domain).



4 Mahdi Rezaei and Reinhard Klette

requirement is considered in the left feedback cycle in Fig. 1, called classifier
tuning and adaptation phase, which introduces adaptive Haar-like eye detection
to overcome the weakness of a standard Viola-Jones detector [13].

3 Adaptive Classification and Detection

The adaptation module is detailed in three sub-sections, addressing the recog-
nition of weakness of a Viola-Jones detector [13], statistical analysis of intensity
changes around the eye region, and dynamic parameter adaptation to overcome
ine�ciency of Haar-feature based detectors under non-ideal conditions.

3.1 Weakness of Viola-Jones for Challenging Lighting Conditions

We tried five well-recognized and publicly available [11] Haar classifiers devel-
oped by Castrillon, Lienhart, Yu, and Hameed, in our nominated application,
driver monitoring. Although they are quite robust for non-challenging and nor-
mal lighting scenes, we realized that due to frequent shadows and artificial light-
ing in day and night, those Haar-like classifiers are likely to fail. The situation
becomes even more complicated when a part of the driver’s face is brighter than
the other part (due to light falling in through a side-window), making eye status
detection extremely di�cult. We also compiled and trained our own classifier
based on a large dataset of +12,000 positive images from YALE [16], FERET
[3], BioID [1], and FTD [5]. Applying an AdaBoost machine learning technique
[4], we obtained best results for our trained Haar-like classifier with the following
parameters:

– Positive images of size 21⇥ 21 pixel
– Number of weak classifiers (stages): 15
– Minimum expected hit rate for each stage: 99.8%
– Maximum acceptable false alarm at each stage: 40%
– Trimming threshold: 0.95

After training and creation of the classifier, we had to utilize the classifier in the
real-world with parameters which are normally similar to the trained parameters.
Main parameters are:

– Initial search window size (SWS) which should normally be the same as the
scale size of positive images (i.e. 21⇥ 21 as above)

– Scale factor (SF) to increase the SWS in each subsequent search iteration
(e.g. 1.2 which means 20% increase in window size for each search iteration)

– Minimum expected number of detected neighbours (MNN) which is needed
to confirm an object, when there are multiple object candidates in a small
region (e.g. 3)

In general, a smaller SF means a more detailed search in each iteration, but it
also causes higher computational costs.

Decreasing MNN, causes increase of detection rate; however, it increase false
detection rate as well. Larger values for MNN lead to more strictness to confirm
a candidate for face or eye, thus a reduced detection rate.
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Fig. 4. Left: Initial results of eye detection. Right: Finally detected eyes after trimming
by di↵erent MNN factors.

Figure 4 shows potential issues related to the MNN parameter in Viola-Jones
techniques. The figure shows 10 initial eye candidates before trimming by the
MNN parameter. Detections are distributed in 5 regions, each region shows 1 to
4 overlapping candidates. In order to minimize this problem, it is common to
assign a trade-o↵ value for the MNN parameter to gain the best possible results.
Figure 4, top right, shows one missed detection with MMN equals 3 or 4, and
Fig. 4, bottom right, shows one false detection with MMN equals 2. MMN equals
1 causes 3 false detections, and any MMN greater than 4 will lead to no detection
at all; so there is no optimum MNN value for this example.

We conclude that although we can define trade-o↵ values for SWS, SF, and
MNN to obtain the optimum detection rate for “ideal” video sequences, however,
a diversity of changes in light intensity over the target object can still significantly
a↵ect the performance of the given classifier in terms of TP and FP rates.

3.2 Hybrid Intensity Averaging

To cope with the above mentioned issues, we propose that Haar-classifier pa-
rameters have to be adaptive, varying with time depending on lighting changes.
Figures 5 and 6 illustrate that we cannot measure illumination changes by sim-
ple intensity averaging over the input frame: In the driving application, there
can be strong back-light from the back windshield, white pixel values around
the driver’s cheek or forehead (due to light reflections), or dark shadows on the
driver’s face. All these conditions may negatively a↵ect the overall mean inten-
sity measurement. Analysing various recorded sequences, we realized that pixel
intensities around eyes can change independently from surrounding regions in
the input sequence. Focusing on a detected face region, Fig. 5, right, shows very
dark and very bright spots in two sample faces (in a grey-level range of 0-35
and 210-255, respectively). It also shows a considerable illumination di↵erence
for the left and right side of a driver’s face. Apart from the iris intensity (for
dark or light eyes), the surrounding eye intensities play a very crucial role in
eye detection. Thus, proper classifier parameter adjustment based on proper in-
tensity measurement in the region surrounding an eye can guaranty robust eye
detection. Following this consideration, we defined white rectangles around eyes
(Fig. 5, right) which can not only provide a good approximation of both vertical
and horizontal light intensities around the eyes, but they are also very marginally
influenced by green or blue (very bright or very dark) regions.

Considering an already detected face, and expected eye regions A and C
based on Fig. 2, we can geometrically define C

r

, F
r

, C
l

, and F
l

as being the
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Fig. 5. Mean intensity measurement for eye detection, by excluding very bright and
very dark regions. Green: thresholding range 210-255. Blue: thresholding range 0-35.

optimum regions in order to gain an accurate estimation of light intensity around
the eyes (see Fig. 6). We also consider independent classifier parameters for the
left and right half of the face, as each half of the face may receive di↵erent and
non-uniform light exposures.

Performing a further analytical step, Fig. 5, right, shows that a few small
green or blue segments (extreme dark or light segments) have entered the regions
of white rectangles. This can a↵ect the actual mean intensity calculations in the
C or F regions. Thus, in order to reduce the a↵ect of this kind of noise into our
measurements, we apply a hybrid averaging by combining mean and mode (Mo)
of pixel intensities as follows:
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where I
r

(↵) is the hybrid intensity value of the right eye region of the face, m
and n are the total numbers of pixels in C

r

and F
r

regions; C
r

and F
r

are in
[0, 255] point to cheek and forehead light intensity, respectively.

An ↵-value of 0.66 assumes a double importance of mode intensity measure-
ment compared to mean intensity; Integration of mode reduces the impact of
eye iris colour (i.e. blue segments) as well as of very bright pixels (i.e. green
segments) for our adaptive intensity measurement. Similarly, we can calculate
I
l

(↵) as hybrid intensity value of left eye region.

3.3 Parameter Adaptation

The final step of the detection phase is classifier parameter adjustment based
on the measured I

r

and I
l

values, to make our classifier adaptive for every sin-
gle input frame. Now we need to find optimum parameters (SWS, SF, MNN)
for all the intensity ranges between 0 to 255, which is a highly time-consuming
practical tasks. Instead, we defined optimum parameters for 10 selected intensi-
ties, followed by a data interpolation method to extend those parameters to all
intensity ranges.

Fig. 6. Selected regions to sum up the mean intensity around eyes. Images Source: Yale
database.
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Table 1. Optimum parameters for 10 selected intensity levels in terms of Search Win-

dow Size, Scale Factor, and Minimum Number of Neighbours. FS: detected Face Size.

Light Intensity SWS SF MNN

0 FS/5.0 1.10 1
20 FS/4.5 1.12 2
50 FS/3.5 1.30 9
75 FS/4.0 1.15 7
90 FS/4.0 1.30 10
120 FS/4.2 1.25 16
155 FS/5.0 1.35 15
190 FS/4.5 1.30 14
220 FS/4.6 1.25 9
255 FS/4.0 1.35 7

Table 1 shows optimum parameter values for 10 data points obtained from
20 recorded videos in di↵erent weather and lighting conditions. These factors
are adjusted to lead to the highest rate of true positives for each of the 10 given
intensities. The parameter values in Table 1 show a non-linear behaviour over
intensity changes; therefore we apply non-linear cubic interpolation and Lagrange
interpolation to extend adapted values to an intensity range from 0 to 255.

4 Tracking and Search Minimization

This section pursues the goals of minimizing the search region for eye status
detection, time e�ciency, less computational cost, more precise detections, and
lower rate of false detection.

4.1 Tracking Considerations

A simple tracking around the previously detected face can easily fail due to a
fast change in both face size and moving trajectory (Fig. 7). Therefore we need
to perform a dynamic and intelligent tracking strategy to minimize the search
region. We apply a Kalman filter.

Figure 8 shows the brief structure of Kalman filter [8] including time update
and measurement steps, where x̂�

k

and x̂+
k

are priori and posteriori states esti-
mated for centre of the detected face, z

k

is a Haar-classifier measurement vector,
A is an n⇥ n matrix referred to as state transition matrix which transforms the
previous state at time step k � 1 into the current state at time step k, B is

Fig. 7. Sample movement trajectory: simultaneous changes in face position and size.
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Fig. 8. Kalman filter in a nutshell.

an n ⇥ l matrix referred to as control input transition matrix which relates to
optional control parameter u 2 <l, w

k

is process noise which is assumed to be
Gaussian and white, and H is an m ⇥ n matrix called measurement transition
matrix which relates to state to the measurement. P�

k

and P+
k

are the priori and
posteriori estimation error covariance based on predicted and measured values
(by Haar-classifier), and K

k

is the Kalman gain.

4.2 Filter Modelling and Implementation

There are many di↵erent motion equations such as linear acceleration, circular
acceleration, or Newton mechanics; however, for a driver’s face movements we
simply consider a linear dynamic system and assume constant acceleration in a
short �t time frame. We implemented and modelled the filter with the following
elements. First, the state vector is defined as x

t

= [x y w v
x

v
y

a
x

a
y

]T .
Also based on the theory of motion we have that

p(t+ 1) = p(t) + v(t)�t+ a(t)
�t2

2
(2)

v(t+ 1) = v(t) + a(t)�t (3)

where p, v, a, �t are position, velocity, acceleration, and time di↵erence between
input images, respectively. �t is the average processing time which is the time
between starting the process of face detection on a given frame at time k until
end of the eye detection process and accepting the next frame at time k + 1.
Relying on the definition of state transition in equation T.1, we modelled the
transition matrix A as a 7⇥7 matrix. Thus, the next state is estimated as below:
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Before running the filter in the real world, we need to have a few initializations
including x̂+

0 , P̂+
0 , R, Q, and H. R directly depends on measurement accu-

racy of our camera along with the accuracy of our face/eye detection algorithm.
Comparing the ground truth information and the result of our face detection
method, we determined the variance of the measurement noise in our system as
R = rand(1e� 4). The determination of Q is generally more di�cult than of R,
and needs to be tuned manually. A good tuning of R and Q stabilizes K

k

and
P
k

very quickly after a few iteration of filter recursion. We got the best system
stability when we set the process noise to Q = rand(2e� 3).

We take H = 1 because the measurement is composed of only the state value
and some noise. Matrix B is omitted as there is no external control for driver
face movement. For x̂+

0 and P̂+
0 we assumed the initial position of a face at

position x = 0 and y = 0, with an initial speed of zero, as well as posteriori error
covariance of 0. We also considered �t as being between 33 and 170ms, based
on computation cost and a processing rate between 6 to 30Hz.

5 Experiments and Validation

A grey-level VGA camera at a distance of 60cm to the driver seat is used to
take continuous recording of the driver seat area. Figures 9-11 show results of
eye status detection before and after implementation of the adaptation module.
The images have been selected from 20 recorded video sequences with extremely
varying lighting. Table 2 provides details of TP and FP detection rates performed
on 2 sample videos (5 minutes each) and 2 face datasets (2,000 images each).

Figure 12 illustrates partial face tracking results and error indices in x-
coordinates, for 450 recorded sequences while driving. Using adaptive Haar-like
detectors, we rarely faced detection failure for more than 5 continued frames;

Fig. 9. Video 1: Face and eye detection under sun-strike; standard classifier (top) vs.
adaptive classifier (bottom).
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Fig. 10. Video 2: Face detection with sunglasses under light-varying conditions; stan-
dard classifier (top) vs. adaptive classifier (bottom).

Fig. 11. Face and eye detection under di�cult lighting conditions; standard classifier
(top) vs. adaptive classifier (bottom). Image source: Yale database.

however, we intentionally deactivated the detection module for up to 15 con-
tinued frames to see the tracking robustness (grey bars, Fig. 12). Results show
promising tracking without any tracking divergence. Similar results were ob-
tained for y-coordinates and face size tracking. Comparing ground truth and
tracking results, the average error index was ± 0.04. Adding a safety margin of
4% around the tracking results, we can recursively define an optimized rectan-
gular search region for the adaptive Haar-classifier instead of a blind search in
the whole image plane. We define P1

k

= (x1
k�1�0.04⇥640, y1

k�1�0.04⇥480)
and P2

k

= (x2
k�1 + 0.04⇥ 640 + 1.4w, y2

k�1 + 0.04⇥ 480 + 1.4w) as the opti-
mized search region, where P1

k

and P2
k

point to the upper-left and lower-right
corners of search regions at time k; pairs of (x1

k�1, y1k�1) and (x2
k�1, y2k�1)

are upper-left and lower-right coordinates of predicted faces at time k � 1; w is
the predicted face width at time k � 1.

Figure 13.a shows good tracking after 5 frames, and 13.b shows perfect track-
ing after 10 frames. Figure 13.c displays failed face detection due to face occlusion
while steering; however, successful face tracking (yellow frame) lead to proper
eye detection. Figure 13.d shows another good “match” of detection and track-

Table 2. Performance analysis for standard and adaptive classifier.

Standard V-J Classifier Proposed Adaptive Classifier
Face Open Closed Face Open Closed

TP FP TP FP TP FP TP FP TP FP TP FP
Video 1 97.5 0.01 82 3.2 86 4.4 99.3 0 96.1 0.27 95.7 0.32
Video 2 81.1 1.02 - 0.5 - 0.32 94.6 0.01 - 0.01 - 0
Yale DB 86.3 0.05 79.4 0.1 - 0.07 98.8 0.02 97.3 0 - 0.01

Closed Eye DB 92.2 0.06 87.5 3.7 84.2 3.9 99.5 0.02 99.2 0.4 96.2 0.18
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Fig. 12. Tracking results with and without accelerations. Grey blocks: No detections,
but still good tracking results.

ing with accurate closed-eye detection. Figure 14 shows very good results for eye
detection and tracking at night when having sharp back-lights, strong shades,
and very dark conditions.

6 Conclusions

The paper introduced a fast and e↵ective detection framework that enables ac-
curate facial feature tracking under di�cult lighting, performing clearly better
than standard Viola-Jones classifiers. While the tracking module minimized the
search region, the adaptive module focused on the given limited region to adapt
the SWS, SF, MNN parameters depending on pixel by pixel intensity changes

Fig. 13. Face, open eye, and closed eye detection and tracking while driving in daylight.

Fig. 14. Face, open eye, and closed eye detection and tracking at night under di�cult
lighting. (e) detection failure due to motion blur; however still robust tracking.
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in eye-pair surrounding areas. Both modules recursively boosted each other; the
face tracking module provides an optimum search area for eye detection, and
in turn, the adaptive eye detection module provides geometrical face location
estimation to support a Kalman tracker in case of tracking failure. We gained
six times faster processing and more accurate results using only a low-resolution
VGA camera, without any application of IR light, or any preprocessing or illumi-
nation normalization techniques. Our solution is suggested to be an amendment
for any kind of a Haar-like classifier, to improve in challenging environments.
For future work we suggest integration of pre-processing techniques and a com-
parison with illumination invariant methods such as SIFT or LBP.
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