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Hierarchical Scan Line Dynamic Programming
for Optical Flow using Semi-Global Matching

Simon Hermann and Reinhard Klette

The .enpeda.. Project, Department of Computer Science
The University of Auckland, New Zealand

Abstract. Dense and robust optical flow estimation is still a major
challenge in low-level computer vision. In recent years, mainly varia-
tional methods contributed to the progress in this field. One reason
for their success is their suitability to be embedded into hierarchical
schemes, which makes them capable of handling large pixel displace-
ments. Matching-based regularization techniques, like dynamic program-
ming or belief propagation concepts, can also lead to accurate optical flow
fields. However, results are limited to short- or mid-scale optical flow vec-
tors, because these techniques are usually not coupled with coarse-to-fine
strategies. This paper introduces fSGM, a novel algorithm that is based
on scan-line dynamic programming. It uses the cost integration strat-
egy of semi-global matching, a concept well known in the area of stereo
matching. The major novelty of fSGM is that it embeds the scan-line dy-
namic programming approach into a hierarchical scheme, which allows
it to handle large pixel displacements with an accuracy comparable to
variational methods. We prove the exceptional performance of fSGM by
comparing it to current state-of-the-art methods on the KITTI Vision
Benchmark Suite.

1 Introduction

The objective of optical flow algorithms is to estimate a vector field that de-
scribes the 2D pixel displacement between two consecutive frames of an image
sequence. The observed 2D motion in the image plane represents the projected
3D object motion of a real-world scene. Currently the most successful optical
flow algorithms use variational calculus to minimize a global error function. In
order to handle large displacements, variational optical flow methods are em-
bedded into hierarchical schemes, refining an optimal prior solution successively
at subsequent levels, see for example Brox et al. [1, 2], Zach et al. [22], and
Werlberger et al. [20].

Discrete optimization techniques for optical flow estimation have already
been published. See, for example, Quénot [15], Sun [17], Felzsenszwalb and Hut-
tenlocher [3], Gong and Yang [6], Lempitsky et al. [11], and Lei and Yang [12].
None of them however report on large-scale optical flow results (i.e. flow vectors
around 100 pixels). The main reason is that correspondence costs for the finite
set of all potential pixel displacements need to be calculated, which increases
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quadratically, when the search distance is extended. This limits the maximum
amount of optical flow displacements that can be handled within reasonable
run-time.

In this paper we present fSGM, a novel algorithm that is based on the scan-
line dynamic programming principle (scan-line DP). It regularizes correspon-
dence costs via cost accumulation and integrates accumulated costs following
the concept of semi-global matching (SGM), as proposed by Hirschmüller [8] for
the task of stereo matching. The major novelty of fSGM is that it embeds scan-
line DP into a hierarchical scheme. As a result, it can estimate even large optical
flow displacements with similar accuracy as variational methods and within rea-
sonable run-time.

Lei and Yang [12] also propose a coarse-to-fine concept for a discrete op-
timization technique. However, they employ the coarse-to-fine concept in their
region-tree-based refinement method “to accommodate the sampling inefficiency
problem” and not to overcome large pixel displacements. Gong and Yang [6] use
scan-line DP to calculate optical flow, and this is probably the closest approach
to ours. However, their method is limited to a maximum displacement of 25
pixels.

This paper is structured as follows. Section 2 recalls the regularization pro-
cess as known from SGM for stereo analysis. Section 3 provides the outline of
the proposed novel method for optical flow calculation. Evaluation results are
discussed in Section 4, followed by conclusions in Section 5.

2 Semi-Global Matching for Stereo

The SGM concept [8] generalizes single-line dynamic stereo matching [14] into a
multi-line integration strategy. It can be described as two-step approach: First,
the cost of pixel correspondences is established for all possible disparity labels
d (or simply disparities) in the defined search space D = {0, . . . , dmax} of non-
negative integers. Second, these calculated costs are regularized along scan-lines
that run across the image domain by employing an accumulative dynamic pro-
gramming scheme. Accumulated regularization costs from multiple scan-lines
with different directions are then integrated. Optimal disparities are selected
based on a winner-takes-all cost evaluation.

2.1 Cost Regularization

The cost regularization procedure implements cost accumulation along an ori-
ented scan-line, which is a 1D linear path identified by a direction vector a. The
cost La, defined for a pixel location p and a disparity d, is accumulated between
image border and p. Consider the segment p0, p1, . . . , pn of the path defined by
a, with p0 on the image border, and pn = p. The cost at pixel pi, for disparity
d ∈ D, on the scan-line defined by a is for i = 1, 2, . . . , n recursively defined as

La(pi, d) =C(pi, χ(d)) +Mi −min
η∈D

La(pi−1, η) (1)
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In this definition, we have

Mi = min


La(pi−1, d)

La(pi−1, d− 1) + P1

La(pi−1, d+ 1) + P1

minη∈D La(pi−1, η) + P2

(2)

where C(p, χ(d)) is the data cost when matching p for disparity d. The function

χ(d) =

{
(−d, 0), if the left image is chosen as base image

(d, 0), if the right image is chosen as base image
(3)

defines the sign of the column offset as a 2D displacement of the corresponding
pixel. Regularization penalties P1 and P2 enforce piecewise disparity consistency
along a scan-line. In this paper we use eight uniformly distributed path directions
a for accumulation (i.e. to the right, left, up, down, and the four in-between
angles).

2.2 Penalty Adjustment

Penalties P1 and P ?2 are given as external parameters. They implement the Potts
model as follows. For a solution d, a constant penalty cost of P2 is assigned to
all disparity labels g 6= d starting at p. By penalizing all labels equally, disparity
jumps at depth discontinuities are preserved. In order to model smooth transi-
tions of non-fronto parallel surfaces, a smaller penalty P1 < P2 is assigned to all
labels g with |g− d| = 1 which lie within the immediate disparity neighborhood
of d. P2 is constant for all labels, but it is locally adjusted for each pixel pi as
follows:

P2(pi) = max

{
P ?2

|I(pi−1)− I(pi)|
, P1 + δ

}
(4)

where δ > 0. This adjustment links the regularization procedure with the un-
derlying image data since the magnitude of the forward difference in direction
a scales the penalty at each pi. The rationale behind this is to improve per-
formance at depth discontinuities as they are more likely to occur at intensity
edges. Another motivation is to reduce the streaking effect which is inherent to
scan-line optimizations.

3 Optical Flow with Semi-Global Matching

The previous section describes the accumulation procedure of semi-global match-
ing for the stereo case. SGM is assumed to operate on rectified image pairs. Thus,
in order to calculate the data cost for a disparity d at (i, j), the disparity value
itself defines the column offset that needs to be added to (or subtracted from)
the pixel location of the base image B to find the corresponding pixel in the



4 Simon Hermann, Reinhard Klette

match image M [i.e. B(i, j) = M(i± d, j)]. As already mentioned above, this
stereo correspondence problem is defined for a 1D search range.

For unconstrained optical flow estimation, however, the corresponding task is
set within a 2D search domain since any 2D displacement is potentially possible.
Next, we outline how to embed the SGM concept into a coarse-to-fine approach
in order to robustly solve mid- and large-scale optical flow displacements. We
refer to it as fSGM, where ’f’ is short for ’flow’.

3.1 1D Stereo to 2D Optical Flow Search Space

We describe the SGM extension from the 1D stereo to the 2D optical flow search
space by using a bijective discrete mapping

φ : D −→ O ⊂ Z2, with φ(d) = (∆u,∆v) (5)

that translates a disparity label into a unique 2D pixel offset φ(d). The offset
domain O ⊂ Z2 is defined by a positive integer fm specifying the maximum
possible discrete flow, such that

O = {(∆u,∆v) | |∆u| ≤ fm ∧ |∆v| ≤ fm} (6)

where the offset (∆u,∆v) describes a pixel-accurate flow estimate. The inverse
mapping is:

φ−1 : O −→ D, with φ−1(∆u,∆v) = d (7)

We now adjust Eqn. (1) as follows:

La(pi, d) = C(pi, φ(d)) +Mi −min
η∈D

La(pi−1, η) (8)

with

Mi = min
η∈D
{La(pi−1, d) + Pκ||φ(η)− φ(d)||1} (9)

In the Potts model, see Eqn. (2), a step function is utilized for the cost reg-
ularization summand Mi. The effect is that piecewise constant solutions are
enforced. This model is sufficient for the stereo case but for the optical flow
a linear function is more appropriate. The reason is that optical flow vectors
are not piecewise constant but vary within small pixel distances. In Eqn. (9),
||φ(η)−φ(d)||1 refers to the L1 distance of two disparity values within the offset
domain O. Pκ is the penalty factor that scales the slope of the linear function.

3.2 Penalty Adjustment

Although optical flow vectors only tend to have small variations even for different
static objects, where one is occluding the other, they tend to ‘jump’ at occlusion
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edges if there is either a significant depth discontinuity, or an independently
moving object passing through the scene.

In such a case, the full linear model tends to over-regularize. Therefore, a
truncation of the linear model is more appropriate. Flow results η that lie within
a certain vicinity of the reference solution d are penalized depending on their rel-
ative distance within the offset domain O. Candidates outside this neighborhood
all are treated equally, as in the Potts Model, to maintain flow discontinuities.
The implementation of the truncated linear function follows Felzenszwalb and
Huttenlocher [3], for d = 0, . . . , dmax, and is implemented as follows:

La(pi, d) = max{LΓa (pi, d), LΛa (pi, d) + PτPκ} −min
η∈D

La(pi−1, η) (10)

with

LΛa (pi, d) = C(pi, φ(d)) + La(pi−1, d) (11)

where Pτ refers to the truncation factor. The term LΓ is calculated for every d
in a forward and a backward pass as follows:

LΥa (pi, φ
−1(∆u,∆v)) = min


LΛa (pi, φ

−1(∆u,∆v))

LΛa (pi, φ
−1(∆u− 1, ∆v)) + Pκ

LΛa (pi, φ
−1(∆u,∆v − 1)) + Pκ

(12)

for ∆u and ∆v running from −fm + 1, . . . , fm. The backward pass reads:

LΓa (pi, φ
−1(∆u,∆v)) = min


LΥa (pi, φ

−1(∆u,∆v))

LΥa (pi, φ
−1(∆u+ 1, ∆v)) + Pκ

LΥa (pi, φ
−1(∆u,∆v + 1)) + Pκ

(13)

with ∆u and ∆v running backwards from fm − 1, . . . ,−fm.

The implementation handles the quadratic formulation of the regularization
model with linear run-time complexity. However, the actual run-time of the
algorithm is still doubled when compared to a solution implementing the Potts
model because one extra pass through the offset domain O is required.

With the exception of using a truncated linear function instead of a step
function, there is in fact no significant difference to the stereo regularization
process. The only adaption is that data costs are calculated for a 2D search
space and not for 1D column offsets. This is possible because the accumulation
procedure only regularizes data costs that correspond to a unique label d. The
interpretation of label d is unimportant. The only requirement is that the data
costs at label d of neighboring pixels correspond to the same solution.

The optimal label dopt is identified by a winner-takes-all approach, as in
the stereo case. In other words, the label with the minimum aggregated cost is
selected and mapped via φ(d) to the corresponding 2D optical flow result.



6 Simon Hermann, Reinhard Klette

3.3 Coarse-to-Fine Scheme for Mid-Scale Optical Flow

In the previous section we outlined how to use the SGM integration process,
originally designed for the 1D stereo case, for optical flow calculation. Threshold
fm defines the maximum flow that can be calculated.

First we note that by increasing fm to fm + 1, we add 8 · (fm + 1) new
pixel positions that also need to be considered for a possible correspondence. To
maintain a reasonable run-time of the algorithm on current hardware, the search
space is limited to a value of fm = 7. This results in a maximum of dmax = 225
labels, which is insufficient for the number of labels required for optical flow
calculations. Therefore, we need to embed fSGM into a coarse-to-fine approach.

The following concept is adapted from the coarse-to-fine scheme that Gehrig
et al. [4] proposed for the stereo case. This concept can be applied for ’mid-scale
optical flow’ which we consider as a 2D displacement of up to 20 pixels. We
generate image pyramids Pt0 and Pt1 of the input images It0 and It1 and run
fSGM instances in parallel on each pyramid level l, with l = 0, ..., lmax. Flow
results of each level are filtered such that only valid flow vectors are kept. The
remaining vectors are then scaled up and merged with the next higher resolution
level. In cases where flow vectors from level l and l − 1 fall on the same pixel
location, the result from level l − 1 is favoured, assuming a higher accuracy for
the higher resolution at l − 1.

Filtering is performed as follows. First, we segment the displacement field
into homogeneous flow regions. To be precise, we label a valid optical flow
displacement (up, vp) at pixel p with an invalid label dinv if there is at least
one valid displacement (uq, vq) at a pixel q being 8-adjacent to p such that
||(up, vp)− (uq, vq)||2 > γ, for a given threshold γ.

In other words, if any two 8-adjacent flow vectors vary by more than γ then
both pixels are invalidated. We refer to the result of this process as being a
homogeneous flow map, homogenized by threshold γ. Using flood-fill segmenta-
tion we find the largest 8-connected homogeneous flow region and take this as
the valid flow result at the current level. Figure 1 shows some results using this
concept for mid-scale optical flow.

Problems arise if frame rates are not sufficiently high such that displacement
vectors are larger than 20 pixels. In these cases the mid-scale approach becomes
too inaccurate. Therefore, the standard coarse-to-fine concept should be con-
sidered which is based on the principle that flow vectors of level l are used to
initialize the estimation process at level l − 1.

So far, the regularization process handles a 2D search space instead of a 1D
search space, but it assumes that data costs of labels refer to the same optical
flow solution. This assumption is now violated, because data costs are calculated
around initial flow vectors which need to be added to the 2D pixel offset φ(d) of
label d. In other words, a regularization process for large-scale optical flow needs
to accommodate the situation in which two neighboring pixels are initialized by
different flow vectors. In that case data costs for label d at pixel pi refers to a
different solution than label d at pixel pi−1. This problem is addressed in the
following section.
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3.4 Regularization with Initial Flow Results

For the following adaptation of the regularization process, we consider it to be
embedded into a standard coarse-to-fine approach. The upscaled optical flow
vector at pixel pi from previous pyramid level l+ 1 is referred to as (ul+1

pi , vl+1
pi ).

We recall from the previous section that in case that initial flow vectors of
neighboring pixels are different, a label d does not represent an identical solution
for both pixels anymore. Depending on the initial flow differences, the solution for
label d at pixel pi is either located at another label d′ at pi−1, or there is simply
no data cost calculated at pi−1 for the solution represented by d. However, we
assume that changes in optical flow between neighboring pixels are either small
or large (at flow discontinuities).

For the first case we define a mapping ϑ that establishes a correspondence
between labels of neighboring pixels which represent the same solution. For the
latter case, this correspondence is not required as changes relate to flow discon-
tinuities.

Before defining a correspondence mapping ϑ, D is extended to Dinv by adding
a unique integer value dinv that lies outside the domain D. This integer identifies
a label that cannot be mapped. Now we define the mapping as

Θ : Z2 × D −→ Dinv, with ϑ(x, y, d) =

{
φ−1(x, y), if (x, y) ∈ O
dinv otherwise

(14)

The regularization process is now described by

La(pi, d) = max{LΓa (pi, d), LΛa (pi, d) + PτPκ} −min
η∈D

La(pi−1, η) (15)

with

LΛa (pi, d) = C(pi, (u
l+1
pi , vl+1

pi ) + φ(d)) + (16)

La(pi−1, ϑ(ul+1
pi − u

l+1
pi−1

, vl+1
pi − v

l+1
pi−1

, d)) (17)

In cases where a label has no corresponding solution at the previous pixel we
define a default cost with La(p, dinv) = cdef , with d ∈ D. The result of the
regularization process at level l corresponds to the optimal 2D translation w.r.t.
the initial flow results. In other words, (ul+1

pi , vl+1
pi ) + φ(dopt) is the solution at

pyramid level l.

4 Evaluation and Discussion

The previous section outlines a scan-line dynamic programming implementa-
tion that can be embedded into a coarse-to-fine scheme. Next, we specify the
algorithm’s configuration that we use for our evaluation.
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4.1 Algorithm Configuration

To calculate the data cost between pixels we use the census cost function. This
function has been identified [9] to be very descriptive and robust, especially
under strong illumination variations. Since this is a crucial feature for real-world
applications the function is increasingly applied for both, stereo [16] and optical
flow estimation methods [20].

The census cost is based on the census transform as introduced by Zabi
and Woodfill [21]. A binary signature vector is assigned to each pixel position
p = (i, j) of the base and match image. It is calculated based on the ordinal
characteristic of the intensity Ip = I(i, j) of an image I in relation to intensities
within a defined neighborhood. This transform is performed once on the base and
the match image prior to cost calculations. A signature is stored as a bit string
in an integer matrix of the same dimensions as the given image. The signature
sequence is generated as follows:

censussig(I(i, j)) =
{
Υ
[
I(i, j) ≥ I(i+x, j+y)

]}
(x, y)∈N

(18)

where Υ [·] returns 1 if true, and 0 otherwise; N denotes a neighborhood with
respect to the origin. In our implementation we use a 11 × 11 window. The
actual census cost is the Hamming distance of two signature vectors and can be
calculated very efficiently [18].

The data costs are calculated for the domain O specified by parameter
fm = 7. The regularization function is configured with Pκ = 12, and Pτ = 6.
Image pyramids with 15 levels are employed for the coarse-to-fine process. A
factor of ζ = 0.8 is used for down scaling. Outliers at each level are filtered by
a median filter. For mid-scale optical flow we employ pyramids with only three
levels and with scaling factor of ζ = 0.5. The flow map segmentation process
uses γ = 3and does not require median filtering.

4.2 Mid-Scale Optical Flow

Figure 1 shows results of our mid-scale optical flow algorithm on a dataset pro-
vided for the currently running HCI Bosch Robust Vision Challenge.1 The top
two image rows [13] show optical flow in the mid-scale range with good results.
The bottom row shows a frame from a sequence recorded on a motorway and is
dominantly defined by large-scale optical flow. This example shows inaccuracies
of calculated values on the road for the midscale optical flow method (center im-
age). These inaccuracies are compensated by the large scale optical flow (right
image). Clearly the mid-scale approach lacks accuracy but has the advantage
that all pyramid levels can be processed in parallel.

1 http://hci.iwr.uni-heidelberg.de/Static/challenge2012/
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Fig. 1. Mid-scale fSGM results on images of the HCI Bosch Challenge.

4.3 Large-Scale Optical Flow

Geiger et al. [5] recently introduced The KITTI Vision Benchmark Suite. It cur-
rently features 195 testing and 194 training stereo pairs with semi-dense ground
truth generated by a Velodyne HDL-64E laser range-finder. The images were
taken from recorded sequences of real-world driving scenarios and can be used
to evaluate stereo and optical flow methods. The algorithms, evaluated on this
dataset have to deal with realistic illumination conditions, a high image resolu-
tion of 1240× 376 pixels and large pixel displacements.

We submitted our results to this benchmark to be ranked against current
state-of-the-art optical flow algorithms. Table 1 shows the four top ranked algo-
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Rank Method Out-Noc Avg-Noc Setting Runtime

1 PCBP-Flow 5.88 % 1.7 px ms 180 s
2 fSGM 11.03 % 3.2 px - 60 s
3 TGV2CENSUS 11.14 % 2.9 px - 4 s
4 GC-BM-Bino 18.93 % 5.0 px ms 1.3 s
9 LDOF 21.86 % 5.5 px - 60 s
12 DB-TV-L1 30.75 % 7.8 px - 16 s

Table 1. Ranking of the KITTI flow benchmark on 10 October 2012.

rithms along with baseline results of the highly recognized work by Brox et al.
[2] (LDOF) and Zach et al. [22] (DB-TV-L1). This list refers to the state on 10
October 2012.

The algorithms that are listed in Table 1 need to be distinguished between
methods operating on monocular image sequences and those utilizing additional
information of the stereo pair. The latter are identified by the setting ms. The
table shows the reference evaluation error index (Out-Noc). For this index the
evaluation is performed on a 100% dense optical flow map and flow vectors at
all pixels with available ground truth are considered to be correct if they do not
deviate by more than a spatial distance of 3 pixels from the ground truth. If a
method does not provide 100% optical flow density, such as GC-BM-Bino [10],
a simple background interpolation technique is applied prior to evaluation. We
summarize that our method fSGM is currently ranked second w.r.t. the reference
index closely followed by TVG2CENSUS [19].

The algorithms PCBP-Flow and GC-BM-Bino (to appear) belong to the cat-
egory of algorithms employing stereo information. They both use the motion-
stereo constraint (setting ms). At the time of writing, all methods using addi-
tional stereo information are either anonymous or are still to appear. However,
according to information from the KITTI and the provided method descriptions
the constraint can be characterized by following two features. First, by using
epipolar geometry from the stereo pair, the 2D optical flow search space can be
reduced to a 1D search space. Second, because this constraint is employed, the al-
gorithms are not capable of handling independently moving objects. Therefore,
they may be hard to apply in applications such as driver assistance systems.
fSGM as well as TVG2CENSUS on the other hand do handle general motion
patterns.

Our fSGM implementation is C++ based. It is executed on an Intel Core2Duo,
and has currently a run-time of 60 seconds. The main reason for this compara-
tively slow run-time is that we do not utilize any parallel hardware processing
(such as multiple CPU cores, any SSE optimization, or GPU) and that we still
need very fine-scaled image pyramids to gain high-quality results.

Figure 2 shows a strong and a weak example of fSGM performing on the
KITTI testing dataset. Despite the already exceptional performance for a scan-
line DP algorithm on the KITTI benchmark, there are still many possibilities
left for further improvement.
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Fig. 2. fSGM results for frame 163 (strong performance) and frame 166 (weak perfor-
mance) of the KITTI testing dataset.

Future Research. We aim at the development of a robust optical flow treat-
ment at image borders and occlusions. Another focus of our research is on the
improvement of the run-time of fSGM while keeping its performance.

5 Conclusions

This paper presented fSGM as a novel technique and algorithm to calculate op-
tical flow. It is based on a scan-line dynamic programming concept that follows
the cost integration strategy of semi-global matching. The significant novelty is
that fSGM is the first scan-line DP algorithm for optical flow that is success-
fully embedded into a coarse-to-fine approach. This enables it to handle large
pixel displacements with a quality of performance that is usually only known
from variational methods. fSGM currently ranks second on the KITTI Vision
Benchmark Suite.
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