Skip to main content

Towards the Engineering of Chemical Communication Between Semi-Synthetic and Natural Cells

  • Chapter

Abstract

The recent advancements in semi-synthetic minimal cell (SSMC) technology pave the way for several interesting scenarios that span from basic scientific advancements to applications in biotechnology. In this short chapter we discuss the relevance of establishing chemical communication between synthetic and natural cells as an important conceptual issue and then discuss it as a new bio/chemical-information and communication technology. To this aim, the state of the art of SSMCs technology is shortly reviewed, and a possible experimental approach based on bacteria quorum sensing mechanisms is proposed and discussed.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-642-37577-4_18

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nakano, T., Moore, M., Enomoto, A., Suda, T.: Molecular communication technology as a biological ICT. In: Sawai, H. (ed.) Biological Functions for Information and Communication Technologies, Studies in Computational Intelligence, pp. 49–86. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Luisi, P.L., Ferri, F., Stano, P.: Approaches to semi-synthetic minimal cells: a review. Naturwissenschaften 93, 1–13 (2006)

    Article  Google Scholar 

  3. Stano, P., Rampioni, G., Carrara, P., Damiano, L., Leoni, L., Luisi, P.L.: Semi-synthetic minimal cells as a tool for biochemical ICT. Biosystems 109, 24–34 (2012)

    Google Scholar 

  4. Maturana, H.R., Varela, F.J.: De Máquinas y Seres Vivos. Editorial Universitaria, Santiago (1973)

    Google Scholar 

  5. Maturana, H.R., Varela, F.J.: Autopoiesis: the organization of the living. In: Maturana, H.R., Varela, F.J. (eds.) Autopoiesis and Cognition, pp. 59–134. Reidel Publishing Company, Dordrecht (1980)

    Chapter  Google Scholar 

  6. Maturana, H.R., Varela, F.J.: The Three of Knowledge. The Biological Roots of Human Understanding. Shimbhala, Boston (1987)

    Google Scholar 

  7. Cronin, L., Krasnogor, N., Davis, B.G., Alexander, C., Robertson, N., Steinke, J.H., Schroeder, S.L., Khlobystov, A.N., Cooper, G., Gardner, P.M., Siepmann, P., Whitaker, B.J., Marsh, D.: The imitation game – a computational chemical approach to recognizing life. Nat. Biotechnol. 24, 1203–1206 (2006)

    Article  Google Scholar 

  8. Gardner, P.M., Winzer, K., Davis, B.G.: Sugar synthesis in a protocellular model leads to a cell signalling response in bacteria. Nat. Chem. 1, 377–383 (2009)

    Article  Google Scholar 

  9. Morowitz, H.J., Heinz, B., Deamer, D.W.: The chemical logic of a minimum protocell. Orig. Life Evol. Biosph. 18, 281–287 (1988)

    Article  Google Scholar 

  10. Morowitz, H.J.: Beginnings of Cellular Life. Yale University Press, New Haven and London (1992)

    Google Scholar 

  11. Stano, P., Luisi, P.L.: Achievements and open questions in the self-reproduction of vesicles and synthetic minimal cells. Chem. Commun. 46, 3639–3653 (2010)

    Article  Google Scholar 

  12. Rasmussen, S., Bedau, M.A., Chen, L., Deamer, D., Krakauer, D.C., Packard, N.H., Stadler, P.F. (eds.): Protocells. Bridging Nonliving and Living Matter. The MIT Press, Cambridge (2009)

    Google Scholar 

  13. Forster, A.C., Church, G.M.: Towards synthesis of a minimal cell. Mol. Syst. Biol. 2, 45 (2006)

    Article  Google Scholar 

  14. Stano, P., Carrara, P., Kuruma, Y., Souza, T., Luisi, P.L.: Compartmentalized reactions as a case of soft-matter biotechnology: synthesis of proteins and nucleic acids inside lipid vesicles. J. Mater. Chem. 21, 18887–18902 (2011)

    Article  Google Scholar 

  15. Oberholzer, T., Nierhaus, K.H., Luisi, P.L.: Protein expression in liposomes. Biochem. Biophys. Res. Commun. 261, 238–241 (1999)

    Article  Google Scholar 

  16. Souza, T., Stano, P., Luisi, P.L.: The minimal size of liposome-based model cells brings about a remarkably enhanced entrapment and protein synthesis. Chembiochem 10, 1056–1063 (2009)

    Article  Google Scholar 

  17. Luisi, P.L., Allegretti, M., Souza, T., Steineger, F., Fahr, A., Stano, P.: Spontaneous protein crowding in liposomes: a new vista for the origin of cellular metabolism. Chembiochem 11, 1989–1992 (2010)

    Article  Google Scholar 

  18. Yu, W., Sato, K., Wakabayashi, M., Nakatshi, T., Ko-Mitamura, E.P., Shima, Y., Urabe, I., Yomo, T.: Synthesis of functional protein in liposome. J. Biosci. Bioeng. 92, 590–593 (2001)

    Article  Google Scholar 

  19. Hosoda, K., Sunami, T., Kazuta, Y., Matsuura, T., Suzuki, H., Yomo, T.: Quantitative study of the structure of multilamellar giant liposomes as a container of protein synthesis reaction. Langmuir 24, 13540–13548 (2008)

    Article  Google Scholar 

  20. Pautot, S., Frisken, B.J., Weitz, D.A.: Production of unilamellar vesicles using an inverted emulsion. Langmuir 19, 2870–2879 (2003)

    Article  Google Scholar 

  21. The, S.-Y., Khnouf, R., Fan, H., Lee, A.P.: Stable, biocompatible lipid vesicle generation by solvent extraction-based droplet microfluidics. Biomicrofluidics 5, 044113 (2011)

    Article  Google Scholar 

  22. Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K., Ueda, T.: Cell free translation reconstituted with purified components. Nat. Biotechnol. 19, 751–755 (2001)

    Article  Google Scholar 

  23. Kuruma, Y., Stano, P., Ueda, T., Luisi, P.L.: A synthetic biology approach to the construction of membrane proteins in semi-synthetic minimal cells. Biochim. Biophys. Acta 1788, 567–574 (2009)

    Article  Google Scholar 

  24. Noireaux, V., Libchaber, A.: A vesicle bioreactor as a step toward an artificial cell assembly. Proc. Natl. Acad. Sci. U. S. A. 101, 17669–17674 (2004)

    Article  Google Scholar 

  25. Parsek, M.R., Greenberg, E.P.: Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 13, 27–33 (2005)

    Article  Google Scholar 

  26. West, S.A., Griffin, A.S., Gardner, A., Diggle, S.P.: Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4, 597–607 (2006)

    Article  Google Scholar 

  27. Fuqua, W.C., Winans, S.C., Greenberg, E.P.: Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176, 269–275 (1994)

    Google Scholar 

  28. Atkinson, S., Williams, P.: Quorum sensing and social networking in the microbial world. J. R. Soc. Interface 6, 959–978 (2009)

    Article  Google Scholar 

  29. Leduc, P.R., Wong, M.S., Ferreira, P.M., Groff, R.E., Haslinger, K., Koonce, M.P., Lee, W.Y., Love, J.C., McCammon, J.A., Monteiro-Riviere, N.A., Rotello, V.M., Rubloff, G.W., Westervelt, R., Yoda, M.: Towards an in vivo biologically inspired nanofactory. Nat. Nanotechnol. 2, 3–7 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work derived from our recent involvement in studies on the construction of semi-synthetic minimal cells, funded by the FP6-EU Program (SYNTHCELLS: 043359), HFSP (RGP0033/2007–C), ASI (I/015/07/0), PRIN2008 (2008FY7RJ4); and further expanded thanks to networking initiatives as SynBioNT (UK), and the COST Systems Chemistry action (CM0703). Studies about quorum sensing were founded by the Italian Ministry of University and Research (PRIN-2008-232P4H_003 and FIRB-2010-RBFR10LHD1_002) and by the Italian Cystic Fibrosis Research Foundation (Projects FFC 14/2010 and FFC 13/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Stano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stano, P. et al. (2014). Towards the Engineering of Chemical Communication Between Semi-Synthetic and Natural Cells. In: Cagnoni, S., Mirolli, M., Villani, M. (eds) Evolution, Complexity and Artificial Life. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37577-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37577-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37576-7

  • Online ISBN: 978-3-642-37577-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics