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Abstract. Inst-Gen is an instantiation-based reasoning method for first-order
logic introduced in [18]. One of the distinctive features of Inst-Gen is a mod-
ular combination of first-order reasoning with efficient ground reasoning. Thus,
Inst-Gen provides a framework for utilising efficient off-the-shelf propositional
SAT and SMT solvers as part of general first-order reasoning. In this paper we
present a unified view on the developments of the Inst-Gen method: (i) com-
pleteness proofs; (ii) abstract and concrete criteria for redundancy elimination,
including dismatching constraints and global subsumption; (iii) implementation
details and evaluation.

1 Introduction

The basic idea behind instantiation-based reasoning is to interleave smart generation
of instances of first-order formulae with propositional type reasoning. Instantiation-
based methods can be divided into two major categories: (i) fine-grain interleaving of
instantiation with efficient propositional inference rules, and (ii) modular combination
of instantiation and propositional reasoning. One of the most prominent examples from
the first category is the model evolution calculus (ME) [8] which interleaves instance
generation with DPLL style reasoning. The model evolution calculus is implemented in
a reasoning system called Darwin [6].

Our approach to instantiation-based reasoning [18] falls into the second category,
where propositional reasoning is integrated in a modular fashion and was inspired by
work on hyper-linking and its extensions (see, [24, 35, 43]). The main advantage of the
modular combination of propositional reasoning is that it allows one to use off-the-shelf
SAT and SMT solvers in the context of first-order reasoning. One of our main goals is
to develop a flexible theoretical framework, called Inst-Gen, for modular combination
of instantiation with propositional reasoning and more generally with ground reason-
ing modulo theories. This framework provides methods for proving completeness of
instantiation calculi, powerful redundancy elimination criteria and flexible saturation
strategies. All these ingredients are crucial for developing reasoning systems which can
be used in practical applications. We also show that most of the powerful machinery
developed in the resolution-based framework (see [3, 38]) can be suitably adapted for
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the Inst-Gen method. Based on these theoretical results we have developed and im-
plemented an automated reasoning system, called iProver [31]. iProver features state-
of-the-art implementation techniques such as unification and simplification indexes;
semantically-guided inferences based on propositional models; redundancy elimina-
tion based on dismatching constraints, blocking of non-proper instantiations and global
subsumption. For propositional reasoning iProver uses an optimised propositional SAT
solver MiniSAT [15].

One of the major success stories of instantiation-based methods is in reasoning
with the effectively propositional (EPR) fragment of first-order logic, also called the
Bernays-Schönfinkel class. All known instantiation-based methods are decision pro-
cedures for the EPR fragment and experimental results show that instantiation-based
methods considerably outperform other methods on this fragment. In particular, iProver
has been winning the EPR division of the world championship for automated theorem
proving (CASC)1 for the last four years. Recently it was shown that the EPR fragment
has a number of applications in areas such as bounded model checking, panning, logic
programming and knowledge representation [16, 17, 25, 39, 40, 49]. The importance of
the EPR fragment has triggered the development of a number of dedicated methods
[7, 12, 41], but these are yet to be extensively evaluated and compared with general-
purpose instantiation-based methods.

In this paper we present a unified view on the developments of the Inst-Gen method
from theoretical foundations to implementation and evaluation: (i) completeness proofs;
(ii) abstract and concrete criteria for redundancy elimination; and (iii) implementation
of Inst-Gen in iProver and evaluation.

This paper is structured as follows. Preliminaries are in Section 2. In Section 3 we
introduce the Inst-Gen calculus which is the basis of our framework. We show how
instantiation process can be guided by propositional models of ground abstractions in
Section 4. Simplifications and redundancy elimination which are crucial for practical
applicability of the method are described in Sections 5–7. A combination of instanti-
ation with resolution is described in Section 8. We discuss strategies for interleaving
application of inference rules, simplifications and propositional reasoning in Section 9.
In Section 10 we show that Inst-Gen is a decision procedure for the EPR fragment. In
Section 11 we discuss implementation of Inst-Gen in iProver. iProver is evaluated in
Section 12.

2 Preliminaries

We adopt standard terminology used in first-order reasoning [3, 38]. Let Σ = 〈P,F〉
be a first-order signature, where P is the set of predicate symbols and F is the set
of function symbols. We assume that F contains a designated constant ⊥ (not to be
confused with falsum). Let V be a set of variables. The set of terms over F and V will
be denoted as T (F ,V).

A substitution is a mapping from variables into terms which is the identity on all
but finitely many variables. Substitutions will be denoted by ρ, σ, τ , and θ.

1 http://www.cs.miami.edu/˜tptp/CASC/



A clause is a possibly empty multiset of literals denoting their disjunction and is
usually written as L1 ∨ . . . ∨ Ln, where a literal being either an atomic formula or
the negation thereof. We say that C is a subclause of D, and write C ⊆ D, if C is a
submultiset of D. Variables are usually denoted by x, y, and z, whereas, letters a, b and
c denote constants. If L is a literal, L denotes the complement of L.

A substitution is called a proper instantiator of an expression (a literal or clause)
if at least one variable of the expression is mapped to a non-variable term, otherwise
it is called a non-proper instantiator. Renamings are injective substitutions, mapping
variables to variables. Two clauses are variants of each other if one can be obtained
from the other by applying a renaming. We will ambiguously use ⊥ to denote also the
substitution mapping all variables to the constant ⊥. If S is a set of clauses, by S⊥ we
denote all ground clauses obtained by applying ⊥ to each clause in S.

We will be working with a refined notion of instances of clauses, called closures. A
closure is a pair consisting of a clause C and a substitution σ written C · σ. A closure
C · σ represents the clause Cσ. Let us note that a clause generally has more than one
representation by closures. A closure is called ground if it represents a ground clause. In
this paper we mainly consider ground closures and will implicitly assume that closures
are ground unless specified otherwise. We work modulo renaming, that is, we do not
distinguish between closures C · σ and D · τ for which C is a variant of D and Cσ is
a variant of Dτ . Let S be a set of clauses and C a clause in S, then a ground closure
C · σ is called a ground instance of C in S and we also say that the closure C · σ is a
representation of the clause Cσ in S.

Our restrictions on the instantiation calculus and completeness proofs are based
on an ordering on closures defined as follows. A closure ordering is any ordering �
on closures that is total, well-founded and satisfies the following condition. If C · σ
and D · τ are such that Cσ = Dτ and Cθ = D for some proper instantiator θ, then
C · σ � D · τ . In particular, more specific representations of the same ground clause
are smaller in this ordering than more general representations. For example, (A(x, y)∨
B(y)) · [f(c)/x, c/y] � (A(f(u), v)∨B(v)) · [c/u, c/v]. It is easy to see that any well-
founded ordering on ground clauses can be extended to a total well-founded closure
ordering. For the rest of this paper we assume that � is a closure ordering.

We consider Herbrand interpretations which are sometimes partial, given by con-
sistent sets I of ground literals. A ground literal L is called undefined in I if neither L
nor L is in I . I is called total if for each ground literal, I either contains the literal or its
complement. A clause C is true (or valid) in a partial interpretation I , written I |= C,
if C is true in every total extension of I , and is called false (not valid) in I , otherwise.
We say that an interpretation I is a model of a set of clauses S if all clauses in S are
true in I . We say that a set of clauses S entails a set of clauses S′, denoted by S |= S′,
if every Herbrand model of S is a model of S′. The truth value of a closure is defined
to be equal to the truth value of the clause it represents.

3 Instantiation Calculus

The basic idea behind the modular approach to instantiation-based reasoning is to ap-
proximate the unsatisfiability problem for sets of first-order clauses by a sequence of



propositional problems. This can be done in the following way. Let S be a set of first-
order clauses. We first abstract S by a set of propositional clauses S⊥, obtained by
mapping all variables into a distinguished constant ⊥. If the propositional abstraction
S⊥ is unsatisfiable (which can be shown by any propositional solver), then S is also
unsatisfiable and we are done. If S⊥ is satisfiable then it still possible that S is unsatisfi-
able and we need to add more instances of clauses to S witnessing the unsatisfiability of
S at the ground level. The process continues by refining the ground abstraction adding
appropriate instances of clauses to S, until either an unsatisfiable ground abstraction is
obtained or, possibly in the limit, a set of clauses that can not be refined further. In the
former case the initial set of first-order clauses is unsatisfiable and in the latter case we
can show that the initial set clauses is satisfiable.

There are three major issues to consider:

1. how to generate instances;
2. how to interleave propositional reasoning and instantiation;
3. how to guide instance generation and reduce the number of redundant instances.

For the generation instances we use the Inst-Gen calculus and its refinements de-
scribed below. In the later sections we address the rest of these issues. Informally, we
instantiate clauses in S by applying the Inst-Gen inference rule or its refinements, un-
til we either obtain: i) a set of clauses with unsatisfiable ground abstraction; or ii) a
saturated set, i.e. no new instances can be derived by Inst-Gen. In the former case the
soundness of the Inst-Gen calculus implies that S is unsatisfiable, in the latter case,
completeness of Inst-Gen implies that S is satisfiable (Theorem 1).

Consider a set of clauses S and assume that the ground abstraction S⊥ of S is
satisfiable.

Inst-Gen

L ∨ C L
′ ∨D

(L ∨ C)θ (L
′ ∨D)θ

where (i) θ is the most general unifier (mgu) of L and L′,
(ii) θ is a proper instantiator of L or L′.

The Inst-Gen inference rule resembles resolution but instead of resolving we instan-
tiate the premises, leaving to propositional reasoning to deal with the obtained instances.

The soundness of Inst-Gen is obvious: conclusions of Inst-Gen logically follow
from the premises. We say that a set of clauses S is Inst-Gen saturated if the conclusion
of any Inst-Gen inference with premises in S is also in S. In other words, if a set of
clauses S is Inst-Gen saturated, then we cannot refine our ground abstraction further
using Inst-Gen. Our first completeness Theorem 1 implies that in this case, satisfiabil-
ity of the ground abstraction S⊥ is equivalent to satisfiability of the set of first-order
clauses S.

Theorem 1. [18] Let S be an Inst-Gen saturated set of clauses. Then S is satisfiable if,
and only if, S⊥ is satisfiable.



Theorem 1 will follow from a more general Theorem 4 proved later. Let us consider a
simple example.

Example 1. Let S be the following set of clauses.

S S⊥

A(f(x), b) ∨B(x, y) (1)
¬A(f(f(x)), y) (2)
¬B(f(x), x) (3)

A(f(⊥), b) ∨B(⊥,⊥)
¬A(f(f(⊥)),⊥)
¬B(f(⊥),⊥)

First we note that the propositional abstraction S⊥ of S is satisfiable. Applying Inst-
Gen to (1) and (2) we obtain

S1 = S ∪ {A(f(f(x)), b) ∨B(f(x), y);¬A(f(f(x)), b)}.

Now it is easy to see that S1⊥ is unsatisfiable and we can use any propositional solver
to show this. On the other hand, if we consider a set of clauses S′ consisting of (1)
and (2), then after applying Inst-Gen we obtain an Inst-Gen saturated set of clauses and
Theorem 1 implies that S′ is satisfiable.

One can think of Inst-Gen instantiation inferences as refinements of the ground
abstraction in the following sense. Consider two closures C · σ and D · τ representing
the same ground clauseG, i.e.,Cσ = Dτ = G. We say thatC·σ is a finer representation
of G than D · τ if D · τ � C · σ. In particular, if C is a proper instance of D then all
ground closures of C are finer representations than corresponding ground closures of
D. A ground abstraction D⊥ of a clause D ∈ S is intended to represent all ground
instances of D which do not have a finer representation in S. Such an abstraction may
need to be refined if we have a clause (L∨C) ∈ S and a literal L

′ ∈ D such that L and
L′ share a common instance, i.e unifiable, but L and L′ have different abstractions, i.e.
L′⊥ 6= L⊥. Such refinements are reflected by the Inst-Gen inference system.

Inst-Gen is similar to resolution but instead of producing a resolvent we generate
corresponding instances of clauses, leaving the option of producing the resolvent to
the propositional reasoner. There are also subtle differences between Inst-Gen and res-
olution. First, resolution usually produce clauses with increasing number of literals.
Inst-Gen generates instances of the initial clauses and therefore the number of literals
in clauses does not increase. In particular, Inst-Gen is a decision procedure for the ef-
fectively propositional fragment – the clausal fragment where the signature is restricted
to contain only predicate symbols and constants (see Section 10). Second, there is no
recombination of clauses which can result in repeated work in the resolution setting
(see [35] and Example 5).

Let us observe that Inst-Gen uses most general unifiers to focus on relevant con-
flicting instances of clauses. Inst-Gen already features some restrictions on applicability
imposed by unification and requiring the unifier to be a proper instantiator; nevertheless
Inst-Gen is a very prolific inference system. One source of inefficiency is that any lit-
eral in a clause can participate in an Inst-Gen inference. Next, we show how to restrict
Inst-Gen to only selected literals based on a semantic criterion.



4 Semantic Selection and Hyper-inferences

Semantic selection is motivated by the following observation. Let S be a set of clauses
such that its propositional abstraction S⊥ is satisfiable. Let I⊥ be a propositional model
of S⊥. We try to extend I⊥ to a first-order model of all ground instances of clauses in S
by taking the truth value of a literal Lσ to be the truth value of L⊥ in I⊥. Such an exten-
sion can rise to conflicts. Let S be the set of clauses {A(f(x))∨C(x);¬A(y)∨D(y)}
and I⊥ a model of S⊥. A conflict arises if both A(f(⊥)) and ¬A(⊥) are true in I⊥,
as, e.g., assigning true to both A(f(a)) and ¬A(f(a)) would result in an inconsistent
interpretation. We can resolve this conflict by applying Inst-Gen inference obtaining
S1 = S ∪ {A(f(x)) ∨ C(x);¬A(f(y)) ∨ D(f(y))}. Now the propositional solver is
supplied with the necessary information about instances of clauses with conflicting lit-
erals and a propositional model of S1⊥ can be extended to a first-order model of S1.
This can be generalised to restrict Inst-Gen inferences to resolve only conflicts relevant
to a propositional model of the propositional abstraction of the current set of clauses.

A selection function sel for a set of clauses S is a mapping from clauses in S to
literals such that sel(C) ∈ C for each clause C ∈ S. We say that sel is based on a
model I⊥ of S⊥, if I⊥ |= sel(C)⊥ for all C ∈ S. Let S be a set of clauses such that
S⊥ is consistent and sel be a selection function based on a model I⊥ of S⊥. Then, the
instance generation calculus SInst-Gen based on sel, is defined as follows.

SInst-Gen

L ∨ C L
′ ∨D

(L ∨ C)θ (L
′ ∨D)θ

where (i) θ is the most general unifier of L and L′, and
(ii) sel(L ∨ C) = L and sel(L

′ ∨D) = L
′
.

Although we have omitted the requirement on θ to be a proper instantiator, this
condition always holds for SInst-Gen inferences.

Proposition 1. In any inference by SInst-Gen, the mgu θ is a proper instantiator for at
least one of the literals L or L′.

Proof. Literals L and L
′

are selected by sel. Therefore L⊥ and L
′⊥ are true in the

model I⊥ of S⊥. Assume that θ is not proper for both L and L′. Then, L⊥ = Lθ⊥ =

L′θ⊥ = L′⊥ contradicting that both L⊥ and L
′⊥ are true in I⊥. o

Selection functions can dramatically restrict the applicability of the inferences.

Example 2. Let S be the following set of clauses:

A(x1, x2, y) ∨ A(x2, x3, y) ∨ . . . ∨ A(xn, xn+1, y) (1)
¬A(c1, d, y) ∨ ¬A(c2, d, y) ∨ . . . ∨ ¬A(cn, d, y). (2)

Unrestricted applications of Inst-Gen will generate exponentially many (wrt. n) dif-
ferent instances of the first clause. Indeed, it is easy to see that using Inst-Gen one



can derive every instance of (1) where each variable xi with an odd index i is mapped
into one of the constants c1, . . . , cn and variables with even indexes are mapped into
d. There are exponentially many such instances. Let us now consider SInst-Gen on
this set of clauses. Consider a model I⊥ of S⊥. Assume that I⊥ |= A(⊥,⊥,⊥) and
I⊥ |= ¬A(c1, d,⊥). Let sel be a selection function based on I⊥ selecting A(x1, x2, y)
in clause (1) and ¬A(c1, d, y) in clause (2). Applying SInst-Gen to clauses (1) and (2)
we obtain the conclusion:

A(c1, d, y) ∨ A(d, x3, y) ∨ . . . ∨ A(xn, xn+1, y). (3)

Now, extending the model I⊥ to satisfy A(d,⊥,⊥) and the selection function to se-
lect A(d, x3, y) in (3) will block all further inferences by SInst-Gen. The completeness
Theorem 2, below, implies that S is satisfiable. This example is also interesting because
most state-of-the-art resolution-based provers (e.g., E, Metis, SPASS and Vampire in
the resolution mode) do not terminate on this set of clauses already for n = 7.

A natural generalisation of SInst-Gen is to consider hyper-inferences. For this we
need to extend selection functions to select sets of literals from a clause rather than one
literal. More formally, let S be a set of clauses such that S⊥ is consistent and I⊥ a
propositional model of S⊥. A hyper-selection function hsel for a set of clauses S is a
mapping from clauses in S to multisets of literals such that ∅ 6= hsel(C) ⊆ C for each
clause C ∈ S. Literals L in hsel(C) are called selected in C (by hsel). For each clause
C ∈ S let us define a multiset of literals sat⊥(C) = {L ∈ C | I⊥ |= L⊥}. We say that
a hyper-selection function hsel is based on I⊥ if hsel(C) ⊆ sat⊥(C) for every C ∈ S.
Thus, hyper-selection functions select some or all of the literals in a clause, whose ⊥-
instances are true in I⊥. Let hsel be a hyper-selection function based on a model I⊥ of
S⊥. Instance generation, based on hsel, is defined as follows.
SHInst-Gen

L
′
1 ∨ C1 . . . L

′
k ∨ Ck L1 ∨ . . . ∨ Lk ∨D

(L
′
1 ∨ C1)θ . . . (L

′
k ∨ Ck)θ (L1 ∨ . . . ∨ Lk ∨D)θ

where (i) θ is the most general unifier of (L1, L
′
1), . . . , (Lk, L

′
k), and

(ii) hsel(L1 ∨ . . . ∨ Lk ∨D) = {L1, . . . , Lk}, and
(iii) L

′
i ∈ hsel(L

′
i ∨ Ci), for 1 ≤ i ≤ k.

It is easy to see that SInst-Gen is a special case of SHInst-Gen when the hyper-
selection function is restricted to select exactly one literal in each clause. As in the case
of SInst-Gen, conditions on selection functions imply that θ is a proper instantiator for
each pairs of literals (Li, L

′
i), 1 ≤ i ≤ k.

Consider a set of clauses S such that S⊥ is satisfiable and a hyper-selection function
hsel based on a model of S⊥. A set of clauses S is SHInst-Gen saturated wrt. hsel if the
conclusion of any SHInst-Gen inference with premises in S is also in S. Now we can
formulate the completeness theorem for SHInst-Gen, which also applies to SInst-Gen
as a special case.

Theorem 2. [18] Let S be a set of clauses such that S⊥ is satisfiable. If S is SHInst-
Gen saturated wrt. a hyper-selection function based on a model of S⊥ then S is satis-
fiable.



5 Redundancy Elimination

Redundancy elimination is crucial for practical applicability of any calculus. Our frame-
work allows one to formulate a semantic-based notion of redundant clauses and redun-
dant inferences. We first formulate redundancy notions for ground closures, which play
a similar role to ground clauses in the resolution calculus.

Let � be a closure ordering. Consider a set of ground closures U . A ground closure
C · σ is called redundant in U if there exist ground closures C1 · σ1, . . . , Ck · σk in U
such that, (1) C1 · σ1, . . . , Ck · σk |= C · σ and (2) C · σ � Ci · σi for each 0 ≤ i ≤ k.
In other words, a ground closure is redundant in U if it logically follows from smaller
closures (w.r.t. �) in U .

We adapt this redundancy notion to be defined also on clauses by observing that a
clause C is representing the set of all its ground closures C ·σ. Let S be a set of clauses
and Ŝ the set of all ground closures represented by clauses in S. A clause C (possibly
non-ground) is called redundant in S if each ground closure C · σ is redundant in Ŝ.
This abstract redundancy criterion can be used to justify many standard redundancies.

Tautologies. Note that tautologies are implied by the empty set of closures and therefore
are redundant in any set of clauses.

Subsumption. A clause C strictly subsumes a clause C ′ if there is a substitution θ such
that Cθ ( C ′. For example, A(x, y) strictly subsumes A(x, a) ∨B(x). An ordering �
on ground clauses is called strict subsumption compatible if C ′ � C for each ground
clauses C and C ′ such that C is a strict sub-multiset of C ′, i.e., C ( C ′. A closure
ordering is strict subsumption compatible if its restriction to ground clauses is strict
subsumption compatible. It is easy to see that if the closure ordering � is strict sub-
sumption compatible, then strict subsumption is an admissible redundancy. One can
also eliminate non-strictly subsumed clauses in the case of non-proper instantiators as
follows. An ordering is called non-proper subsumption compatible if C ′ · σ � C · θσ
for every closures C ′ · σ and C · θσ where Cθ = C ′ and θ is a non-proper instantiator
and not a renaming. For example, if the closure ordering � is non-proper subsumption
compatible, then A(x, x)∨B(x) is redundant w.r.t. A(x, y)∨B(y). Closure orderings
which are strict and at the same time non-proper subsumption compatible are called
subsumption compatible orderings. It is easy to see that any subsumption compatible
ordering on ground clauses can be extended to a subsumption compatible closure or-
dering. Let us note that full subsumption is not an admissible redundancy. Indeed, all
clauses derived by Inst-Gen are subsumed by the initial clauses.

Instantiation-specific redundancy. Our semantic redundancy criteria can also be used
to define instantiation-specific redundancies. In particular, consider a clause C and a
proper instance of C, D = Cθ. Then, all ground closures of C, which are also repre-
sented byD, are redundant. We will discuss this redundancy in detail when we consider
dismatching constraints in Section 6.

An inference with premises C1, . . . , Cn and a unifier θ (thus deriving conclusions
C1θ, . . . , Cnθ) is redundant in S if for every substitution ρ grounding all the Ciθ there
exists an index i0 such that Ci0 · θρ is redundant in S.



Example 3. Let the set of function symbols in Σ consists of the constants a and b and
assume that � is subsumption compatible. Consider the following set of clauses:

A(x, y) ∨ B(y) (1) B(a) (2)

¬A(a, z) ∨ C(z) (3) C(b) (4)

Let us show that the SInst-Gen inference between clauses (1) and (3) is redundant. Let
θ = {a/x; z/y} be the mgu of atoms of the selected literals in clauses (1) and (3). Then,
for any grounding substitution ρ, either closure (A(x, y) ∨ B(y)) · θρ is redundant (in
the case zρ = a), or closure (¬A(a, z) ∨ C(z)) · θρ is redundant (in the case zρ = b).

An important property of the (SH)Inst-Gen calculus is that adding the conclusion of an
inference makes the inference redundant. The next proposition shows that in order to
make an inference redundant it is sufficient to add to the clause set at least one properly
instantiated clause from the conclusion (such a clause always exits, by Proposition 1).

Proposition 2. Let Cθ be a conclusion of an (SH)Inst-Gen inference and a proper in-
stance of its respective premise C. If Cθ is in S, or is redundant in S, then the inference
is redundant.

Proof. Immediately follows from the definition of redundant inference.

We can have additional flexibility with partial instantiations as follows. Let Cθ be as
in Proposition 2 and θ′ any substitution which is a proper instantiator for C and more
general than θ. Then, adding Cθ′ to S makes the inference redundant.

Example 4. Consider the following set of clauses S = {C,D} where C = A(x, y) ∨
B(x) and D = ¬A(f(a), b). The most general unifier of A(x, y) and A(f(a), b) is
θ = {f(a)/x, b/y}. Consider a proper instantiator of C which is more general than θ,
for example θ′ = {f(z)/x}. Then, adding Cθ′ = A(f(z), y) ∨ B(f(z)) to S makes
the inference between C and D redundant. Such partial instantiations can be useful
for keeping reasoning at a more general level and can be combined with dismatching
constraints (see Section 6).

The idea of partial instantiations is developed further in [18], where it is used to ap-
proximate first-order clauses by clauses from first-order fragments beyond propositional
logic.

A set of clauses S is called SHInst-Gen saturated up to redundancy if all inferences
in SHInst-Gen from premises in S are redundant in S. The next theorem shows that
completeness is preserved under redundancy elimination.

Theorem 3. [18] Let S be a set of clauses such that S⊥ is satisfiable. Let hsel be a
hyper-selection function based on a model of S⊥. If S is SHInst-Gen saturated up to
redundancy then S is satisfiable.

This theorem also applies to weaker systems SInst-Gen and Inst-Gen. We show below
that Theorem 3 is a consequence of a more general Theorem 4.

For a finer control over redundancy we consider the notion of inferences and satu-
ration at the level of ground closures. For a set of ground closures U let U denote the



set of clauses C such that C · σ is in U for some grounding substitution σ. Let hsel be
a hyper-selection function for U based on a model I⊥ of U⊥. A SHInst-Gen inference
on ground closures is defined as follows.

SHInst-Gen (ground closures)

(L
′
1 ∨ C1) · σ1 . . . (L

′
k ∨ Ck) · σk (L1 ∨ . . . ∨ Lk ∨D) · σ

(L
′
1 ∨ C1)θ · τ1 . . . (L

′
k ∨ Ck)θ · τk (L1 ∨ . . . ∨ Lk ∨D)θ · τ

where (i) θ is the most general unifier of (L1, L
′
1), . . . , (Lk, L

′
k),

(ii) hsel(L1 ∨ . . . ∨ Lk ∨D) = {L1, . . . , Lk}, and
(iii) L

′
i ∈ hsel(L

′
i ∨ Ci), for 1 ≤ i ≤ k, and

(iv) (L
′
1 ∨ C1)σ1 = (L

′
1 ∨ C1)θτ1, . . . , (L

′
k ∨ Ck)σk = (L

′
k ∨ Ck)θτk,

(L1 ∨ . . . ∨ Lk ∨D)σ = (L1 ∨ . . . ∨ Lk ∨D)θτ

A ground SHInst-inference with premises C1 ·σ1, . . . , Cn ·σn and conclusion C1θ ·
τ1, . . . , Cnθ · τn is redundant in a set of ground closures U if at least one of the closures
Ci · θτi = Ci ·σi is redundant in U , for 1 ≤ i ≤ n. We say that a set of ground closures
U is SHInst-Gen saturated up to redundancy wrt. hsel , if any ground SHInst-inference
with a premise in U is redundant in U .

Theorem 4. Let U be a set of ground closures such that U⊥ is satisfiable. Let hsel be
a hyper-selection function based on a model of U⊥. If U is SHInst-Gen saturated up to
redundancy wrt. hsel then U is satisfiable.

Proof. For simplicity of exposition we first prove the theorem for a special case of bi-
nary inferences (SInst-Gen) and later show how to modify the proof for hyper-inferences
(SHInst-Gen). The proof is based on an adaptation of the model-generation technique
(see [3, 38]).

Let U be a set of ground closures such that U⊥ is satisfiable. First, we construct
a candidate (partial) model IU of U and then show that if U is SInst-saturated up to
redundancy, any total extension of IU is indeed a model of U . Let I⊥ be a model of U⊥
and sel a selection function on clauses in U based on I⊥.

Informally, we construct the model IU by adding literals in a way to satisfy closures
in U . In order to construct IU we construct a sequence of partial models and sets of
literals by induction on closures ordered by � as follows. Let Ĉ = C · σ be a ground
closure. Suppose, as an induction hypothesis, we have defined sets of literals εD̂, for all
ground closures D̂ smaller than Ĉ wrt. �. Let IĈ denote the set

⋃
Ĉ�D̂ εD̂.

We define εĈ as follows. Assume Ĉ is in U and define L = sel(C). We define
εĈ = {Lσ}, if the following conditions hold:

1. IĈ 6|= Cσ, i.e., there is a total model extending IĈ in which Cσ is false, and
2. Lσ is undefined in IĈ , i.e., neither IĈ |= Lσ nor IĈ |= Lσ holds.

Otherwise, if either Ĉ is not in U or at least one of the conditions (1)–(2) is not satisfied,
we define εĈ = ∅. In the case when εĈ = {Lσ} we say that Lσ is produced by Ĉ.
Define IU =

⋃
Ĉ εĈ . It follows immediately from the construction that IU is consistent.



Now, let us assume that U is SInst-saturated up to redundancy. Let I be any total
extension of IU . In order to prove our theorem we show that I is a model of U .

First, we note that our model construction satisfies the following:

– monotonicity: if a ground closure Ĉ is true in some IĈ then Ĉ true in all IĈ′ for
Ĉ ′ � Ĉ and also true in I , and

– productiveness: if Ĉ is a productive closure then (i) IĈ 6|= Ĉ, and (ii) Ĉ is true in
IĈ ∪ εĈ and hence Ĉ true in I .

Now, by induction on � we show that every ground closure Ĉ in U is true in IĈ ∪ εĈ .
From this and monotonicity of the model construction our theorem follows. Assume
otherwise. Let Ĉ = C ·σ be the minimal ground closure inU such that IĈ∪εĈ 6|= Ĉ. Let
L = sel(C). As Ĉ is not productive and IĈ 6|= Ĉ we have Lσ ∈ IĈ . Indeed, otherwise
all conditions (1)–(2) of the model construction would be satisfied and Ĉ would be
productive. Let D̂ = D · τ be a closure producing Lσ into IĈ , where Ĉ � D̂. We have
D = L

′∨D′ where L
′

is selected by sel and L
′
τ = Lσ. Therefore, a ground SInst-Gen

inference is applicable to closures Ĉ and D̂ producing Cθ · σ′ and Dθ · τ ′, where (i) θ
is the most general unifier of L and L′, and (ii) Cθσ′ = Cσ and Dθτ ′ = Dτ . By the
assumption of the theorem U is SInst-saturated and hence this inference is redundant.
Therefore, at least one of the closures C · θσ′ = C · σ = Ĉ or Dθ · τ ′ = D · τ = D̂ is
redundant. Assume that Ĉ is redundant. Then, Ĉ follows from smaller (wrt.�) closures
Ĉ1, . . . , Ĉn in U . By induction hypothesis, we have that each Ĉi is true in IĈi

∪ εĈi
,

and by monotonicity is true in IĈ , for 1 ≤ i ≤ n. From this it follows that Ĉ is true
in IĈ , contradicting our assumption. Similarly, we arrive at a contradiction when we
assume that D̂ is redundant. Indeed, if D̂ follows from smaller closures in U , then by
induction hypothesis these closures are true in ID̂, hence D̂ is true in ID̂, contradicting
productiveness of D̂. This concludes the proof of this theorem for the case of SInst-Gen.

The case of hyper-inferences is similar, we only need to make the following mod-
ifications: (i) consider hyper-selection hsel in place of selection sel, (ii) in the model
construction, we define εĈ = {Lσ} if Ĉ is in U and L ∈ hsel(C) such that conditions
(1)–(2) are satisfied; if there are several such literals we can choose any of them to
define εĈ , (iii) we prove that I is a model for U in a similar way as above. o

Let us note that completeness Theorem 3 for clauses follows from Theorem 4 as
follows. Let S be a set of clauses such that S⊥ is satisfiable. Assume that S is SHInst-
Gen saturated up to redundancy wrt. a hyper-selection function hsel based on a model
of S⊥. Let U be the set of all ground instances of clauses in S. We have that U = S and
U is SHInst-Gen saturated up to redundancy wrt. hsel. By Theorem 4, U is satisfiable
and therefore S is satisfiable.

Next we describe how our abstract redundancy criteria can be used to justify practi-
cal redundancy elimination. We start by introducing dismatching constraints which are
used to discard redundant ground closures. Then we show how the reasoner for ground
clauses can be used to simplify clauses. Finally we show how the resolution calculus
can be combined with instantiation.



6 Dismatching Constraints

Let us consider a clause C ∈ S. As we have seen, adding a proper instance Cθ of a
clause C (e.g., as a result of applying an SInst-Gen inference) makes some ground clo-
sures represented by C redundant and consequently certain inferences with C redun-
dant. In particular, all closures C · σ such that Cσ = Cθτ for a grounding substitution
τ are redundant in the presence of Cθ. We can efficiently represent this information
about redundant closures using dismatching constraints. Let us note that in the context
of resolution and paramodulation various kinds of constraints have been considered
(see e.g. [10, 29, 38]). Dismatching constraints are particularly attractive: on the one
hand they provide powerful restrictions for the instantiation calculus, and on the other
hand, checking dismatching constraints can be efficiently implemented.

An atomic dismatching constraint is a pair of variable disjoint tuples of terms, de-
noted 〈s1, . . . , sn〉 6 〈t1, . . . , tn〉, or simply s̄ 6 t̄. A solution to a constraint s̄ 6 t̄ is
a substitution σ such that for every substitution γ, s̄σ 6≡ t̄γ. For example, consider
an atomic dismatching constraint ϕ(x, y) = 〈x〉 6 〈f(y)〉. Then, the substitution
σ1 = {a/x} is a solution to ϕ(x, y), but σ2 = {f(g(a))/x} is not since there is a
substitution γ = {g(a)/y} such that 〈x〉σ2 ≡ 〈f(y)〉γ. It is easy to see that an atomic
dismatching constraint s̄ 6 t̄ is satisfiable if and only if for all substitutions γ, s̄ 6≡ t̄γ.
In other words, an atomic dismatching constraint s̄ 6 t̄ is not satisfiable if and only if
there is a substitution γ such that s̄ ≡ t̄γ, which is a familiar matching problem.

A dismatching constraint ds(s̄, t̄) = ∧ni=1s̄i 6 t̄i is a conjunction of atomic dis-
matching constraints where every t̄i is variable disjoint from all s̄j , and t̄k , for i 6= k.
A substitution σ is a solution of a dismatching constraint ∧ni=1s̄i 6 t̄i if σ is a solution
of each s̄i 6 t̄i, for 1 ≤ i ≤ n.

Proposition 3. The satisfiability problem for dismatching constraints can be solved in
linear-time.

Proof. As we noted above, the satisfiability problem for dismatching constraints can be
reduced in linear-time to the matching problem which can be solved in linear-time (see,
e.g., [2]). o

A constrained clause C | [ ϕ ] is a clause C together with a dismatching constraint
ϕ. We will always assume that for a constrained clause C | [ ∧ni=1 s̄i 6 t̄i ], the clause
C is variable disjoint from all ti, 1 ≤ i ≤ n. A constrained clause C | [ ϕ ] represents
the set of ground closures {C · σ | σ is a solution to ϕ}, denoted Cl(C | [ ϕ ]). An
unconstrained clause C can be seen as a constrained clause with the empty constraint
C | [ ]. For a set S of constrained clauses, Cl(S) denotes the set of all ground closures
represented by constrained clauses in S. Let S be a set of constrained clauses, then S̃
denotes the set of all unconstrained clauses obtained from S by dropping all constraints.
We say that a set of constrained clauses S is well-constrained if Cl(S) |= Cl(S̃). In the
following we consider only well-constrained sets of clauses.

Now we formulate an extension of SInst-Gen with dismatching constraints, called
DSInst-Gen. For simplicity of the exposition we consider only binary inferences, the
extension to hyper-inferences can be done in a similar way. DSInst-Gen inferences will
generate new instances of clauses and also extend constraints of clauses in the premises.



Let S be a set of constrained clauses such that S̃⊥ is consistent and sel be a selection
function based on a model I⊥ of S̃⊥. Then, DSInst-Gen inference system is defined as
follows.

DSInst-Gen

L ∨ C | [ ϕ ] L
′ ∨D | [ ψ ]

L ∨ C | [ ϕ ∧ x̄ 6 x̄θ ] (L ∨ C)θ

where (i) x̄ is a tuple of all variables in L, and
(ii) θ is the most general unifier of L and L′, wlog. we assume that

variables in the range of θ do not occur in L ∨ C | [ ϕ ] and
the domain of θ contains all variable in x̄, and

(iii) sel(L ∨ C) = L, and sel(L
′ ∨D) = L

′
, and

(iv) θ is a proper instantiator for L, and
(v) ϕθ and ψθ are both satisfiable dismatching constraints.

DSInst-Gen is a replacement rule, that is replacing the clause in the left premise
by clauses in the conclusion. The clause in the right premise can be seen as a side
condition, that is no instances of this clause are produced.

We can see that in addition to semantic restrictions imposed by the selection func-
tion, instantiation rule is applicable only if dismatching constraints are satisfiable after
applying θ. Let us note that applications of DSInst-Gen preserves well-constrainedness
of sets of clauses.

The notion of redundancy can be easily adapted from clauses to constrained clauses
as dismatching constraints can be seen as a method for discarding redundant ground
closures. A constrained clause C | [ ϕ ] is redundant wrt. a set of constrained clauses
S if all closures in Cl(C | [ ϕ ]) are redundant in Cl(S). A DSInst-Gen inference with
the premises C | [ ϕ ], D | [ ψ ] and the conclusion C | [ ϕ ∧ x̄ 6 x̄θ ], Cθ is
redundant in S if the following holds. For any substitution ρ grounding for Cθ and Dθ,
which is a solution to ϕθ and ψθ, either C · θρ or D · θρ is redundant in Cl(S). A set
of constrained clauses S is DSInst-Gen saturated up to redundancy if all inferences by
DSInst-Gen from premises in S are redundant in S. The DSInst-Gen calculus can be
seen as a way of lifting the (binary version of) SHInst-Gen calculus from closures to
constrained clauses.

Theorem 5. Let S be a set of constrained clauses such that S̃⊥ is satisfiable. If S is
DSInst-Gen saturated up to redundancy wrt. a selection function based on a model of
S̃⊥, then Cl(S) is satisfiable.

Proof. Indeed, if S satisfies the assumption of the theorem then Cl(S) is SHInst-Gen
saturated up to redundancy. Therefore the theorem follows from Theorem 4.

DSInst-Gen saturation strategies will be considered in Section 9.

Example 5. Let S be the following set of clauses where selected literals are underlined.



¬A(x) ∨ C(x) (0), A(f(y)) ∨ D1 (1),

A(f i2(y)) ∨ D2 (2),

. . .
A(f in(y)) ∨ Dn (n).

Where ik ≥ 1 for 2 ≤ k ≤ n, and fm(t) denotes m applications of f : f(. . . f(t) . . .).
Applying DSInst-Gen to clauses (0) and (1) will produce¬A(f(x))∨C(f(x)), denoted
as (0′′). We also replace clause (0) with ¬A(x) ∨ C(x) | [ x 6 f(z) ], denoted as (0′),
obtaining a new set of clauses S′. Assume that the new selection for S′ is the same on
the old clauses (1), . . . , (n) and (0′) inherits the selection from (0). This implies that
C(x) should be selected in (0′′). Therefore S′ will be as follows:

¬A(x) ∨ C(x) | [ x 6 f(z) ] (0′), A(f(y)) ∨ D1 (1),

¬A(f(x)) ∨ C(f(x)) (0′′), A(f i2(y)) ∨ D2 (2),

. . .
A(f in(y)) ∨ Dn (n).

We can see that S′ is DSInst-Gen saturated and therefore S is satisfiable by The-
orem 5. Indeed, inferences between clauses (0′) and (1)–(n) are blocked by the dis-
matching constraint of the clause (0′). Let us note that without dismatching constraints,
we would need to consider all inferences between clauses (0) and (1)–(n).

Let us compare DSInst-Gen to resolution, assuming that the same selected literals
are eligible for resolution inferences. First we note that all inferences between (0) and
(1)–(n) are applicable. Keeping in mind that a clause can be seen as a representation
of all its ground instances we can note that instances represented by C(x) are copied
at each resolution inference and recombined with different clauses. This can result in
repeated work on the same instances of C(x) and is known as the recombination prob-
lem [35]. Dismatching constraints allow one to avoid such problems in the instantiation
setting.

Without losing completeness of DSInst-Gen we can replace satisfiability for dis-
matching constraints with a stronger notion, called ground satisfiability. We say that
a dismatching constraint ϕ is ground satisfiable if there is a grounding substitution σ
which is a solution to ϕ. Obviously, if a constraint is ground satisfiable then it is sat-
isfiable but converse need not hold. Consider a signature consisting of a constant a, a
unary function symbol f and predicate symbols. Then, a constraint x 6 f(y) ∧ x 6 a
is satisfiable but not ground satisfiable. We can see that ground satisfiability is signature
dependent, and two notions of satisfiability coincide in the case of signatures containing
infinite number of constants. Problems related to ground satisfiability of dismatching
constraints were studied in a number of works [27, 34, 42]. In contrast to the problem
of satisfiability, which can be solved in linear-time, the problem of ground satisfiability
is NP-complete.

Theorem 6. [27, 34] The ground satisfiability problem for dismatching constraints is
NP-complete.



7 Simplification by Propositional Reasoning

Having at hand a powerful propositional solver it is natural to investigate methods for
redundancy elimination which utilise propositional or ground reasoning.

Let us first consider the case of simplifying ground closures. In order to apply our
abstract redundancy criterion to simplify a ground closure C · σ wrt. a set of ground
closures U we consider a set of closures Sim = {D1 · τ1, . . . Dn · τn} (not necessarily
contained in U ) such that:

1. U |= D1 · τ1, . . . , U |= Dn · τn, and
2. D1 · τ1, . . . , Dn · τn |= C · σ, and
3. C · σ � D1 · τ1, . . . , C · σ � Dn · τn.

We call Sim a simplification set for C · σ wrt. U . If Sim is a simplification set for
C · σ wrt. U then we can replace C · σ in U by closures in Sim , without losing neither
soundness nor completeness. There are a number of issues to consider in this general
scheme:

– how to choose a candidate for a simplification set Sim ,
– how to check whether conditions (1)–(3) above are satisfied.

In this paper we consider the case when a candidate for a simplification set for a
closure C · σ consists of a strict subclosure of C · σ. A closure D · τ is a strict subclo-
sure of a closure C · σ, denoted by D · τ ( C · σ, if D ( C and Dτ ( Cσ. In this
case, condition (2) is trivially satisfied. In order to satisfy condition (3) we assume that
� is subsumption compatible (see Section 5). The most difficult is to check condition
(1). Indeed, condition (1) is at least as complex as the initial problem of unsatisfiability
of U . Fortunately, for redundancy elimination it is sufficient to consider sound approx-
imations of the entailment relation in (1). Next we consider such approximations based
on propositional reasoning.

Let us put these considerations in the context of constrained clauses. Let S be a set
of (well-constrained) clauses. The notion of a simplification set can be readily adapted
for clauses. Together with S, we consider a set of ground clauses Sgr such that S |= Sgr .
For simplicity of exposition we assume that Sgr is an extension of S̃⊥ by auxiliary
ground clauses implied by S. The set Sgr will be used in propositional reasoning for
approximating condition (1). Let us note that clauses in Sgr do not participate in instan-
tiation inferences. In Section 7.1 we consider simplification of ground clauses, and in
Section 7.2 simplification of clauses with variables.

7.1 Simplification of ground clauses

In this section we consider the case of simplifying ground clauses wrt. a set of clauses
S. Let C be a ground clause to simplify. As a candidate for a simplification set we
consider a set consisting of a strict subclauseD ( C. Using the propositional solver we
can check whether Sgr |= D. If this is the case, adding D to S makes C redundant wrt.
to the new set S ∪{D}. We call this simplification as global propositional subsumption
wrt. Sgr .



Global propositional subsumption

D ∨D′
D

where Sgr |= D and D′ is not empty.

Global propositional subsumption is a simplification rule, which allows one to remove
the clause in the premise after adding the conclusion. Let us note that although the
number of possible subclauses is exponential wrt. the number of literals, in a linear
number of implication checks we can find a minimal wrt. inclusion subclause D ( C
such that Sgr |= D or show that such a subclause does not exist.

Let us show that global propositional subsumption generalises a number of usual
redundancy eliminations. First, note that global propositional subsumption generalises
strict propositional subsumption. Indeed, if there is a strict subclause D ( C such that
D ∈ S then Sgr |= D and therefore C is globally subsumed by Sgr . Next, we consider
propositional subsumption resolution.

Propositional subsumption resolution

L ∨D′ L ∨D ∨D′
D ∨D′

Propositional subsumption resolution is a simplification rule, which allows one to re-
move the right premise after adding the conclusion. Let us show that global subsump-
tion generalises subsumption resolution. Indeed, if the premise clauses L ∨ D′ and
L ∨ D ∨ D′ of subsumption resolution are in S then Sgr |= D ∨ D′ and therefore
L ∨D ∨D′ is globally subsumed by Sgr .

In general, global subsumption involves reasoning with the whole set Sgr . For ex-
ample, let Sgr contain the following clauses

A(f(⊥)) ∨B(g(c)); ¬B(g(c)) ∨A(c); ¬A(f(⊥)) ∨A(c)

Then, a clause A(c) ∨ B(f(c)) can be simplified to A(c) wrt. to Sgr . In the cases we
consider here, the clauses we try to simplify always follow from the set S (e.g. obtained
by sound derivations from the initial set of clauses). Therefore, the clause we simplify,
itself can be added to Sgr before simplification. For example, if we want to simplify
a clause C = ¬A(c) ∨ B(f(c)) wrt. Sgr above, we can first add C to Sgr obtaining
S′gr = Sgr ∪ {C} and then C can be simplified to B(f(c)) wrt. S′gr .

7.2 Simplification of non-ground clauses

In this section we consider the case of simplifying non-ground clauses wrt. a set of
clauses S, utilising propositional reasoning. For this we need soundly approximate se-
mantic entailment. The approximation of entailment we use will be based on the fol-
lowing proposition.

Proposition 4. Let ϕ(x̄) and ψ(x̄) be first-order formulas over a signature Σ and c̄ a
tuple of pairwise different constants not in Σ. Then, ϕ(c̄) |= ψ(c̄) implies ∀x̄ϕ(x̄) |=
∀x̄ψ(x̄).



Proof. We have the following sequence of equivalences and implications:

ϕ(c̄) |= ψ(c̄)⇔
|= ϕ(c̄)→ ψ(c̄)⇔
|= ∀x̄(ϕ(x̄)→ ψ(x̄))⇒
|= (∀x̄ϕ(x̄))→ (∀x̄ψ(x̄))⇔
∀x̄ϕ(x̄) |= ∀x̄ψ(x̄).

o

We can use Proposition 4 as follows. Let ΣC be a signature consisting of an infinite
number of constants not occurring in Σ. Let Ω be a set of injective substitutions map-
ping variables to constants in ΣC . We call C ′ an Ω-instance of a clause C if C ′ = Cγ
where γ ∈ Ω. With each clause C ∈ S we associate a set of Ω instances of C, denoted
CΩ . Let us assume that for every clause C ∈ S, CΩ ⊆ Sgr . Then, if we show that some
Ω-instance of a given clause D is implied by Sgr , from Proposition 4 it follows that S
implies D. Now we can formulate extension of global subsumption to the non-ground
case:

Global subsumption (non-ground)

(D ∨D′)θ
D

where (i) θ is a (possibly identity) substitution, and
(ii) Sgr |= Dγ for some γ ∈ Ω, and
(iii) D′ is not empty.

As in the ground case, global subsumption is a simplification rule. Informally, in
order to simplify a clause C using global subsumption it is sufficient to find a clause
D strictly subsuming C, (i.e., Dθ ( C for a substitution θ), such that an Ω-instance
Dγ of D follows from Sgr . Then, adding D into S makes C redundant in S. There are
several non-trivial issues to consider when we try to apply global subsumption. These
are:

1. which Ω-instances of clauses in S to add to Sgr ,
2. which clause D to use as a candidate for the conclusion, and
3. which Ω-instances of the candidate clause D to check for entailment.

Since there are infinitely many possible Ω-instances of a clause, we restrict ourselves
to some heuristics. Let us describe one of them. Assume that constants in ΣC are or-
dered: c1, . . . , ck, . . .. For a given clause C, fix an ordering on variables occurring in
C: x1, . . . , xn. We define a substitution γC : {xi 7→ ci | 1 ≤ i ≤ n}. Trivially CγC
is an Ω-instance of C. To address issue (1) above we assume that for a clause C ∈ S,
CγC is in Sgr . For (2), we choose candidates for the conclusion of global subsumption
among strict subclauses of a given clause. For (3), we use DγD as an Ω-instance of the
candidate clause D.



Example 6. Consider the following example where S consists of the first four clauses
of SYN-832 problem from the TPTP library [50]. For readability we rename predicate
symbols.

A (1) ¬A ∨B(x1) (2)

¬B(x1) ∨ ¬A ∨ C(x1, x2) (3) ¬C(x1, x2) ∨ ¬B(x1) ∨ ¬A ∨D(x1, x2, x3) (4)

These clauses come from translations of modal formulae [26]. The set Sgr , in addi-
tion to clauses from S⊥ will contain Ω-instances GγG for G ∈ S:

A (1) ¬A ∨B(c1) (2)

¬B(c1) ∨ ¬A ∨ C(c1, c2) (3) ¬C(c1, c2) ∨ ¬B(c1) ∨ ¬A ∨D(c1, c2, c3) (4)

Now, using global subsumption we can simplify clauses in S to the following set of
unit clauses S′:

A (1) B(x1) (2)

C(x1, x2) (3) D(x1, x2, x3) (4)

Let us emphasise that pure propositional reasoning suffices for these simplifica-
tions. In practice, we can employ efficient propositional solvers for such simplifications
in a black-box fashion. One can exploit incrementality of state-of-the-art propositional
solvers such as MiniSAT [15] which allow one to check satisfiability of sets of propo-
sitional clauses under assumed sets of literals. In order to check whether an Ω-instance
Cγ = L1γ∨ . . .∨Lnγ follows from a set of ground clauses Sgr it is sufficient to check
unsatisfiability of Sgr under the assumption consisting of literals L1γ, . . . , Lnγ. Using
linear search, one can find a minimal wrt. inclusion sub-clause of Cγ which follows
from the set of ground clauses in less than n implications checks. Another approach for
obtaining minimal implied sub-clauses can be based on minimal unsatisfiability cores
returned by propositional solvers. Since in practice it is sufficient to approximate simpli-
fications one can use efficient incomplete tests for checking propositional implications
based, e.g., unit propagation or restricting the number of backjumps.

Let us note that global subsumption can be used not only in instantiation-based
calculi, but in any calculi where strict subsumption is an admissible redundancy elim-
ination such as, e.g., resolution. Simplifications by ground reasoning have been inde-
pendently investigated in different settings (see, e.g., [1, 22, 30, 31]).

Generating implied clauses by propositional reasoning. Using propositional reasoning
we can generate clauses implied by Sgr . Let Cγ be an Ω-instance of a clause C, such
that Cγ is implied by Sgr . Then, from Proposition 4 it follows that C is implied by S.
Therefore we can addC to S and useC for simplifications of clauses in S. In particular,
we can use implied clauses for simplifications such as strict subsumption.

Let us note the main difference with global subsumption: in global subsumption we
check implications of given clauses (e.g., strict subclauses of a clause to be simplified).
Here we generate implied clauses on the fly, e.g., when we check consistency of Sgr and
use obtained clauses later for simplifications. Most state-of-the-art propositional reason-
ers generate such clauses, called learnt clauses or lemmas, during the proof search. If a



propositional lemma Cγ is generated then Cγ is implied by Sgr and the corresponding
first-order clause C is implied by S. We can use the obtained first-order lemma C for
further simplifications.

To conclude, we have shown that propositional reasoning can be used not only to
guide the instantiation process but also for simplification of clauses.

8 Combination of Instantiation with Resolution

One of the attractive properties of the instantiation calculus is that the number of literals
in clauses does not increase during instantiation. On the other hand, if we consider the
instantiation calculus without simplifications, the number of literals in the generated
clauses does not decrease. Consequently, instantiation is not well-suited for generating
clauses which can be used in simplifications, such as strict subsumption. We can over-
come this limitation by combining instantiation with the (ordered) resolution calculus.
There are different ways to combine instantiation with resolution, (see, e.g., [20, 36]),
here we consider a simple one. We run resolution simultaneously with instantiation to
generate additional clauses that can be used for simplifications. Let us note that clauses
generated by resolution are used only for simplifications and do not participate in in-
stantiation inferences. In addition, we can add Ω-instances of clauses generated by
resolution to Sgr which in turn can be used for propositional-based simplifications dis-
cussed above.

Example 7. Consider the following set of clauses S:

¬A(x) ∨ H(x) (1)
A(f(x)) ∨ B(x) (2)
¬H(f(x)) ∨ B(x) (3)

Assume that in each clause (1)–(3) the first literal is eligible for resolution. Then, ap-
plying resolution to (1) and (2) we obtain H(f(x))∨B(x) (4). Applying resolution to
(4) and (3) and factoring the result we obtain B(x). Now B(x) can be used to simplify
clauses (2) and (3). Therefore, on the instantiation side we can also simplify S into
{¬A(x) ∨H(x);B(x)}.

9 Saturation Strategies

Up to now we referred to the notion of a saturation process only informally. In this
section we formalise this notion, and show that saturated sets can be achieved via fair
saturation processes. First we define the notion of a saturation process for sets of ground
closures. For a set of ground closures U , let U denote the set of clauses C such that
C · σ is in U . An Inst-Gen saturation process is a sequence of triples, called states,
{〈U i, Ii⊥, hsel

i〉}∞i=1, where for every i, U i is a set of ground closures, Ii⊥ a model of
U
i⊥ and hseli a selection function based on that model. In addition we assume U1 |=

U
1
. Given a state 〈U i, Ii⊥, hsel

i〉, a successor state 〈U i+1, Ii+1
⊥ , hseli+1〉 is obtained by

one of these steps:



– (generation step) U i+1 = U i ∪ N , where N is a set of ground closures such that
U i |= N ; or

– (elimination step) U i+1 = U i \N , where every closure in N is redundant in U i.

If for some i, U
i⊥ is unsatisfiable the process terminates with the result “unsatisfiable”.

It immediately follows from the definition of a saturation process that in this case the
initial set of clauses U1 is unsatisfiable. Define U∪ = ∪∞i=1U

i. The set of persistent
closures is defined as the low limit U∞ = ∪i≥1 ∩j≥i U j . We will use auxiliary lemmas
about redundant sets of closures, these lemmas are similar to the corresponding lemmas
in resolution setting [3]. For a set of ground closures U , let R(U) denote the set of all
closures redundant in U .

Lemma 1. Let U be a set of ground closures. Then, if a closure C · σ is redundant in
U then C · σ is redundant in U \ R(U). In particular, U \ R(U) |= U .

Proof. Consider a closure C · σ ∈ R(U). Let M = {C1 · σ1, . . . , Cn · σn} be the least
subset of U , wrt. the multiset extension of �, such that M |= C · σ. Then, all closures
in M are non-redundant in U . Therefore, M ⊆ U \R(U), and hence C ·σ is redundant
in U \ R(U). o

Lemma 2. Let {〈U i, Ii⊥, hsel
i〉}∞i=1 be a saturation process. Then, (i) U∪ \ R(U∪) =

U∞ \ R(U∞) and (ii)R(U∪) = R(U∞).

Proof. Let us prove (i).
(⊆) If a ground closure C · σ ∈ U∪ is not redundant in U∪ then C · σ is also not

redundant in Uk for any k and therefore C · σ ∈ U∞. Moreover, C · σ is not redundant
in U∞. Therefore U∪ \ R(U∪) ⊆ U∞ \ R(U∞).

(⊇) If a closure C · σ ∈ U∞ is not redundant in U∞, then by (⊆) direction, C · σ
is not redundant in U∪ \ R(U∪) and by Lemma 1 is not redundant in U∪. Therefore
U∞ \ R(U∞) ⊆ U∪ \ R(U∪).

Let us prove (ii). From Lemma 1 it follows that R(U∪) = R(U∪ \ R(U∪)) and
similarR(U∞) = R(U∞ \ R(U∞)). Therefore, (i) impliesR(U∪) = R(U∞). o

First we note that a saturation process preserves (un)satisfiability of sets of clauses.

Lemma 3. Let {〈U i, Ii⊥, hsel
i〉}∞i=1 be a saturation process. Then, U1 is satisfiable if

and only if U∞ is satisfiable.

Proof. Implication from left to right follows trivially from the definition of a saturation
process. In order to show implication from right to left, assume that U1 is unsatisfiable.
Then, U∪ is also unsatisfiable. Lemma 1 implies U∪ \ R(U∪) is unsatisfiable. Since
U∪ \ R(U∪) ⊆ U∞ we have U∞ is unsatisfiable. o

In order to ensure that we obtain an Inst-Gen saturated set in the limit of the satura-
tion process we need a notion of a fair saturation. For this we consider inference system
SHInst-Gen on ground closures (see Section 5). Informally, a saturation process is fair
if all non-redundant inferences between persisting closures are eventually applied or
otherwise shown to be redundant. Let {〈U i, Ii⊥, hsel

i〉}∞i=1 be a saturation process. An



SHInst-Gen inference between persistent closures (L
′
1 ∨ C1) · σ1, . . . , (L

′
k ∨ Ck) · σk

and (L1 ∨ . . . ∨ Lk ∨D) · σ is called SHInst-persistent if there are an infinite number
of indexes j1, . . . ji, . . . such that these closures are in U ji and the inference is eligible
(upon the same literals) at the state 〈U ji , Iji⊥ , hsel

ji〉 for all i ≥ 1, that is, conditions
(i)–(iv) on applicability of SHInst-Gen are satisfied. An Inst-Gen saturation process is
SHInst-fair if every SHInst-Gen persisting inference in U∞ is redundant wrt. U∪. Let
us note that our redundancy criterion is effective in the sense of [3], that is adding the
conclusion of the inference makes the inference redundant. Therefore, we can ensure
fairness of a saturation process by adding conclusions of non-redundant SHInst-Gen
persistent inferences.

Now we need to show that in the limit U∞ of an SHInst-Gen fair saturation process
we obtain a saturated set wrt. to a model ofU∞⊥. If we compare our notion of saturation
to saturation in the resolution framework (e.g., [3]), one of the key differences is that
the literal selection can change at each step of the saturation. In particular, we need to
construct a model I∞⊥ of U∞⊥ and a selection hsel∞ based on I∞⊥ such that U∞ is
saturated wrt. hsel∞. Although, compactness implies U∞⊥ is satisfiable if all U i⊥ are
satisfiable, not every model of U∞⊥ is suitable. Indeed, it is possible to construct an
example of an SHInst-Gen fair saturation process with the limit U∞ and a model I such
that U∞ is not saturated wrt. any selection function based on I . Another obstacle in
constructing the required model I∞⊥ is that a literal can be true in a model Ii⊥ and its
complement true in a model Ij⊥ for i 6= j. Nevertheless, the following theorem shows
that it is possible to construct a model I∞⊥ of U∞ and a selection function hsel∞ based
on I∞⊥ such that U∞ is saturated wrt. hsel∞.

Lemma 4. [19] Let U∞ be a set of persistent clauses of a SHInst-Gen fair saturation
process {〈U i, Ii⊥, hsel

i〉}∞i=1, and U i⊥ is satisfiable for every i, i ≥ 1. Then, there
exists a model I⊥ of U∞⊥ and a selection function hsel based on I⊥ such that U∞ is
SHInst-Gen saturated wrt. hsel.

Proof. Let {Ci · σi}∞i=1 be an enumeration of closures in U∞. For each n ≥ 1 we
construct a partial interpretation Jn in which all {Ci⊥}ni=1 are true and a selection
function hselnJ for {Ci}ni=1, based on Jn (meaning that all literals in hselnJ(Ci)⊥ are
true in Jn, i.e., true in all total consistent extensions of Jn, for 1 ≤ i ≤ n) by induction
on n. For each n the following invariants will be satisfied.

1. Jn is consistent and hselnJ is a selection function for clauses {Ci}ni=1 based on Jn.
2. Jn−1 ⊆ Jn and hselnJ coincides with hseln−1J on clauses {Ci}n−1i=1 .
3. There are infinitely many k such that for the model Ik⊥ of Uk⊥ we have Jn ⊆ Ik⊥

and for all 1 ≤ i ≤ n, hselk(Ci) = hselnJ(Ci).

If n = 1, then it is easy to see that there is a multisetM1 of literals in C1⊥ such that
for infinitely many k, hselk(C1) = M1. We take J1 =

⋃
L∈M1

{L⊥} and hsel1J(C1) =

M1. It is immediate that all invariants (1–3) on J1, hsel1J are satisfied.
Let n ≥ 1 and assume that we have a model Jn and hselnJ for {Ci}ni=1 such that

invariants (1–3) are satisfied. Since (Cn+1 · σn+1) ∈ U∞ we have that for some m
and every p ≥ m, (Cn+1 · σn+1) ∈ Up. From this and invariant (3) it follows that
for some Mn+1 ⊆ Cn+1 there are infinitely many k such that: (i) Jn ⊆ Ik⊥, and (ii)



hselk(Ci) = hselnJ(Ci) for all 1 ≤ i ≤ n, and (iii) hselk(Cn+1) = Mn+1. Define
Jn+1 = Jn ∪

⋃
L∈Mn+1

{L⊥} and hseln+1
J (Ci) = hselnJ(Ci) for 1 ≤ i ≤ n, and

hseln+1
J (Cn+1) = Mn+1. It is easy to see that all invariants (1–3) are satisfied for Jn+1

and hseln+1
J .

We define J = ∪∞i=1J
i and hsel(Ci) = hseliJ(Ci) for i ≥ 1. From compactness

and invariants (1) and (2), it follows that J is consistent, and hsel is a selection function
based on J . We define I⊥ as a total consistent extension of J , (note that hsel is also
based on I⊥).

Now we need to show thatU∞ is SHInst-Gen saturated wrt. hsel. Consider a SHInst-
Gen inference from closures C1 · σ1, . . . , Cn · σn in U∞. Then, from the construction
of hsel and in particular from the invariant (3) it follows that for infinitely many indexes
k we have hselk(Ci) = hsel(Ci), for all 1 ≤ i ≤ n. Since the SHInst-Gen saturation
process is fair, this inference is redundant in U∪ and by Lemma 2 is redundant in U∞.
Therefore, U∞ is SHInst-Gen saturated wrt. hsel. o

We summarise the obtained results in the following theorem.

Theorem 7. Let {〈U i, Ii⊥, hsel
i〉}∞i=1, be a SHInst-Gen fair saturation process. Then,

either:

1. for some i, U
i⊥ is unsatisfiable and therefore U1 is unsatisfiable, or

2. for every i, U
i⊥ is satisfiable and therefore (by Lemmas (3,4) and Theorem 4) U1

is satisfiable.

Moreover, if for some i, U i is SHInst-Gen saturated then at this stage we can conclude
that U1 is satisfiable.

In particular, Theorem 7 implies that if a set of closures U is unsatisfiable, then any
SHInst-Gen fair saturation process {〈U i, Ii⊥, hsel

i〉}∞i=1 with the initial set U1 = U
terminates in a finite number of steps, proving unsatisfiability of U .

Saturation for sets of constrained clauses. In practice, we do not deal with closures
directly, but rather with constrained clauses and inference systems such as DSInst-Gen
(see Section 6). In this case a saturation process for clauses naturally corresponds to
an Inst-Gen saturation process for closures. For a set of constrained clauses S, let S̃
denote the set of all unconstrained clauses obtained from S by dropping all constraints.
A DSInst-Gen saturation process is a sequence of triples {〈Si, Ii⊥, sel

i〉}∞i=1, where S1

is well-constrained, Si is a set of constrained clauses such that Ii⊥ a model of S̃i⊥ and
seli a selection function based on Ii⊥, for i ≥ 1. Given 〈Si, Ii⊥, sel

i〉, a successor state
〈Si+1, Ii+1

⊥ , seli+1〉 is obtained by one of these steps:

– (generation step) Si+1 = Si∪N , where N is a set of constrained clauses such that
Si |= Cl(N); or

– (elimination step) Si+1 = Si\N , where every constrained clause inN is redundant
in Si; or

– (constraint extension step) Si+1 = (Si \ {C | [ ϕ ]}) ∪ {C | [ ϕ ∧ ψ ]}, where
C | [ ϕ ] is in Si and closures in Cl(C | [ ϕ ]) \ Cl(C | [ ϕ ∧ ψ ]) are redundant in
Cl(Si).



Let us note that an inference by DSInst-Gen can be split into two saturation steps:
generation and constraint extension steps. For simplicity, we assume that for every i and
every clauseC ∈ S̃i there is only one constrained clauseC | [ ϕ ] ∈ Si. If there are sev-
eral constrained clauses corresponding to the same unconstrained clause, we can replace
them with one constrained clause by merging the constraints. Let S̃∞ = ∪i≥1 ∩j≥i S̃j .
Consider two persistent clauses C,D ∈ S̃∞. Let p be such that for all q ≥ p we have
C,D ∈ S̃q , and corresponding constrained clauses are C | [ ϕq ], D | [ ψq ] ∈ Sq .
We say that an DSInst-Gen inference associated with C andD is DSInst-Gen persistent
if there is an infinite number of indexes j ≥ q, such that the inference is eligible on
clauses C | [ ϕj ], D | [ ψj ] ∈ Sq at the stage j (upon the same selected literals), that
is conditions (i)–(v) on applicability of DSInst-Gen are satisfied. A DSInst-Gen satu-
ration process is DSInst-Gen fair if every DSInst-Gen persisting inference, associated
with clauses in S̃∞, is redundant in Si for some i.

Theorem 7 can be applied to show completeness of fair DSInst-Gen saturation pro-
cesses.

Theorem 8. Let SP = {〈Si, Ii⊥, sel
i〉}∞i=1, be a DSInst-Gen fair saturation process.

Then, either:

1. for some i, S̃i⊥ is unsatisfiable and therefore S1 is unsatisfiable, or
2. for every i, S̃i⊥ is satisfiable and therefore S1 is satisfiable.

Moreover, if for some i, Si is DSInst-Gen saturated, then at this stage we can conclude
that S1 is satisfiable.

Proof. If for some i, S̃i⊥ is unsatisfiable then from the definition of DSInst-Gen satu-
ration process it immediately follows that S1 is unsatisfiable.

Let us assume that for every i, S̃i⊥ is satisfiable. With the DSInst-Gen saturation
process SP we associate an Inst-Gen saturation process on ground closures ŜP =
{〈Ŝi, Ii⊥, sel

i〉}∞i=1, where Ŝi = Cl(Si). It is straightforward to check that if SP is
DSInst-Gen fair then ŜP is Inst-Gen fair. Now, Theorem 7 implies that Ŝ1 is satisfiable.
Since S1 is equivalent to Ŝ1 we conclude that S1 is also satisfiable. o

10 The effectively propositional fragment

Let us consider the effectively propositional fragment (EPR), also called the Bernays-
Schönfinkel fragment. The EPR is a clausal fragment of first-order logic where the sig-
nature is restricted to contain only predicate symbols and constants. This fragment is
decidable and recently has been shown to have a number of applications ranging from
hardware verification [17, 28, 40] to ontological reasoning [49], see [4] for more exam-
ples. Let us show that DSInst-Gen is a decision procedure for the EPR fragment.

We call a fair DSInst-Gen saturation process pure if all generation and constraint
extension steps are results of application of DSInst-Gen inferences. For a set of con-
strained clauses S, let Ŝ denote the set of ground closures represented by S. Consider a
pure DSInst-Gen saturation process {〈Si, Ii⊥, sel

i〉}∞i=1 with a finite set of initial clauses
S = S1. First, it is easy to see that any inference step is strictly reductive, that is if S′ is
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obtained from S by application of a DSInst-Gen inference, then Ŝ �m Ŝ′ (where �m
is the multiset extension of �). Likewise, any elimination step is either strictly reduc-
tive or does not change the set of clauses. Since the initial set of clauses S is finite and
all functional symbols in our signature are constants, the set Ŝ is also finite. Therefore,
after a finite number of steps n, the set of clauses will be stabilised, i.e., Sn = Sn+k for
k ≥ 0. Then, Theorem 8 implies S is unsatisfiable if and only if S̃n⊥ is unsatisfiable.
We summarise this in the following theorem.

Theorem 9. DSInst-Gen is a decision procedure for the effectively propositional frag-
ment.

Experimental results presented in Section 12 show that instantiation-based methods and
in particular DSInst-Gen are currently leading on the EPR problems.

11 Implementation of Inst-Gen in iProver

In previous sections we considered instantiation calculi, redundancy criteria and com-
plete saturation strategies. Now we are ready to discuss implementation issues based
on our implementation called iProver. iProver is a reasoning system for first-order logic
based on the DSInst-Gen calculus. iProver incorporates a class of complete strategies
and concrete redundancy elimination methods which we have discussed in the previ-
ous sections. At the core of iProver is the Inst-Gen loop (see Fig. 1) which governs the
instantiation strategy.

Let us informally describe the Inst-Gen loop and its major components. The Inst-
Gen loop is a modification of a well-known given clause algorithm which is a basis
for all state-of-the-art resolution-based theorem provers. One of the main ideas of the



given clause algorithm is to separate clauses into two sets, called active and passive
with the following properties. The set of active clauses is such that all non-redundant
inferences between clauses in this set are performed. The set of passive clauses are the
clauses waiting to participate in inferences. Let us consider the simplest version of the
given clause algorithm for inference systems such as resolution, where for each clause,
the set of literals eligible for inferences is fixed. Initially, the passive set consists of the
input clauses and the active set is empty. The given clause algorithm consists of a loop
and at each loop iteration the following actions are executed. First, a clause is taken
from the passive set, called the given clause. Then, all inferences between the given
clause and clauses in the active set are performed. Finally, all newly derived clauses
are moved to passive and the given clause is moved to the active set. If the calculus
is sound and at some stage the inconsistency is found, then the input set of clauses is
inconsistent. If the calculus is complete and the selection strategy for the given clauses
is fair, then the given clause algorithm will find an inconsistency in a finite number of
steps. Moreover, if the calculus is complete and the given clause algorithm terminates
with an empty passive set, then the active set of clauses is saturated and we can conclude
that the input set of clauses is satisfiable. Redundancy elimination can be integrated into
the given clause algorithm in various ways: passive and active clause sets are completely
simplified at each iteration of the algorithm (the Otter loop [37]), or only active clauses
are kept inter-simplified (the DISCOUNT loop [13]). In addition, preprocessing can be
applied to the generated clauses such as splitting without backtracking (see [45]).

In order to adapt the standard given clause algorithm for instantiation strategies we
need to: (i) accommodate propositional reasoning, and (ii) reflect dynamic literal se-
lection (based on a propositional model of the ground abstraction), which can result
in moving clauses from active to passive sets. On Fig. 1 we present such an adapta-
tion of the given clause algorithm to the Inst-Gen framework: the Inst-Gen loop. Let
us overview key components of the Inst-Gen loop and how they are implemented in
iProver.

Passive. The passive set are the clauses waiting to participate in inferences. It is well-
known that in the resolution-based setting, the order in which clauses are selected for
inferences from the passive set is an important parameter. Usually, preference is given
to clauses which are heuristically more promising to derive the contradiction, or to the
clauses on which basic operations are easier to perform. In iProver, the passive clauses
are represented by a sequence of priority queues. In order to define priorities we con-
sider numerical/Boolean parameters of clauses such as: the number of symbols, the
number of variables, the age of the clause, the number of literals, whether the clause
is ground, the conjecture distance, whether the clause contains a symbol from the con-
jecture (other than equality or a theory symbol), whether the clause is Horn or in the
EPR. Then, each queue is ordered by a lexicographic combination of orders defined on
parameters. For example, if a user specifies an iProver option:

--inst pass queue1 [+age;-num symb;+ground]

then in the first queue priority is given to clauses generated at the earlier iterations of
the Inst-Gen loop (older clauses), then to clauses with fewer number of symbols and



finally to ground clauses. The user can also specify the ratio between the number of
clauses taken from each queue.

Active. After the given clause is selected from the passive set all eligible inferences
between the given clause and clauses in the active set should be performed. A unifica-
tion index is used for efficient selection of clauses eligible for inferences. In particular,
clauses in the active set are indexed by selected literals. The unification index imple-
mented in iProver is based on non-perfect discrimination trees [21, 44]

Let us note that since the literal selection is based on a propositional model of the
ground abstraction of the current set of clauses, selection can be changed during the
Inst-Gen loop iterations. This can result in moves of clauses from active to passive sets,
as shown in Fig. 1 (literal selection change). Changes in selection function and moves
of clauses from active to passive sets result in a number of nontrivial technical issues
such as ensuring fairness, and minimising the number of moves and repeated work,
which are beyond the scope of this paper.

Instantiation Inferences. Instantiation inferences in iProver are based on the DSInst-
Gen calculus. In particular, constrained clauses, dismatching constraint checking and
model-based literal selections are implemented. Dismatching constraints are imple-
mented using a discrimination-type index on atomic constraints to facilitate efficient
satisfiability checking.

Redundancy elimination. The following redundancy eliminations are implemented:
blocking non-proper instantiations, dismatching constraints, tautology elimination and
global subsumption for both ground and non-ground clauses. The user can select whether
to simplify all newly generated clauses (simpl. I in Fig. 1) or only the given clause
(simpl. II in Fig. 1) or apply simplifications at both stages.

Grounding and SAT Solver. Newly derived clauses are grounded and added to the
propositional solver. Although, in our theoretical considerations we used the desig-
nated constant ⊥ for grounding, it is easy to see that all our arguments remain valid
if we use any ground term in place of ⊥. In particular, for grounding, iProver selects
a constant with the greatest number of occurrences in the input set of clauses, other
heuristics for selecting the term for grounding are also interesting to investigate. After
grounding, clauses are added to the propositional solver. Currently, iProver integrates
MiniSAT [15] for propositional reasoning.

Learning Restarts. It can happen that the Inst-Gen loop fails to terminate due to a poor
choice of the literal selection on the initial set of clauses. Indeed, initially the propo-
sitional solver contains only few instances of the input clauses, and therefore selection
based on the corresponding propositional model can be inadequate. Although the model
and selection can be changed at the later iterations, by that time, the prover can con-
sume most of the available resources. In order to overcome this, iProver implements
restarts of the saturation process, keeping generated propositional clauses in the propo-
sitional solver. After each restart, the propositional solver will contain more instances
of clauses, this can help to find a better literal selection. In addition, after each restart,
global subsumption becomes more powerful.



Equality. iProver integrates equality by adding (internally) the necessary axioms of
equality with an option of using Brand’s transformation [9]. Our experiments show
that even this naive approach of equality integration works reasonably well in the
instantiation-based setting, most likely due to the semantic literal selection and ab-
sence of recombination of clauses with equality axioms. For more advanced treatment
of equality based on combination of ordered unit superposition with Inst-Gen and the
corresponding system iProver-Eq we refer to [32, 33].

Model representations. Consider a state in which the passive set is empty and the
ground abstraction is satisfiable. Then by the completeness Theorem 8, the set of in-
put clauses is satisfiable. Let us also assume that for each inference by DSInst-Gen
between active clauses (including redundant inferences) the corresponding dismatching
constraint is added to the premise according to the application of the DSInst-Gen in-
ference rule. This can be easily achieved during or after saturation. In this case we can
extract a model representation based on the selected literals in the active set of clauses
and accumulated dismatching constraints. Since dismatching constraints can be natu-
rally expressed in the language of the ground term algebra we can represent models
using first-order definitions of predicates in the ground term algebra. A detailed treat-
ment of model representations is beyond the scope of this paper, let us only mention that
iProver supports several model outputs based on positive/negative predicate definitions
in the ground term algebra.

Finite models. iProver has a finite model finding mode inspired by translation of finite
model finding into the EPR fragment [5], see also [11]. Since instantiation-based meth-
ods are very efficient on the EPR fragment this approach is particularly promising. The
method is complete for finite model finding: if there is a finite model of the given set of
clauses, then such a model will be eventually found in a finite number of steps.

Combination with Resolution. In addition to the Inst-Gen loop, iProver implements
a complete saturation algorithm for ordered resolution. In this paper, we will not dis-
cuss our implementation of resolution in detail. Let us only mention that the saturation
algorithm is based on the same data structures as the Inst-Gen loop and implements
a number of simplifications such as forward and backward subsumption, forward and
backward subsumption resolution, tautology deletion and global subsumption. We im-
plemented a compressed feature vector index (an extension of the feature vector index
[48]) for efficient forward/backward subsumption and subsumption resolution.

Resolution is combined with instantiation by sharing the propositional solver. In
particular,Ω-instances of clauses generated by resolution and instantiation are added to
the propositional solver and propositional solver is used for global subsumption in both
resolution and instantiation saturation loops.

12 Evaluation

In this section we evaluate iProver v0.9 on the standard benchmark for first-order the-
orem provers: the TPTP library [50] with the current version 5.2.0. Currently, iProver



does not have a built-in clausifier and we used Vampire [23] for clausification. iProver
has also an interface for clausification using E prover [47] or any user provided clausi-
fier which can output clauses in the TPTP format. Experiments were run on a cluster of
Dell rack servers under Linux v2.6.30 with cpu 2.3GHz, memory 2GB and time limit
300s.

The TPTP library contains 15386 first-order problems, out of which 12420 are un-
satisfiable, 1949 satisfiable and 1017 with unknown status. iProver in the default mode
solves 8554 problems: 7524 unsatisfiable and 1030 satisfiable. Problems in the TPTP
are rated from 0 to 1, where problems with the rating 0 are easy and problems with
the rating 1 can not be solved by any automated reasoning system, including older ver-
sions of iProver, at the time of evaluating the corresponding version of the TPTP library.
In the current version of the TPTP, iProver solved 24 problems with the rating 1, and
157 with rating ≥ 0.9. This indicates that there is a large number of problems in the
TPTP that can only be solved by iProver. In the satisfiability mode, which features finite
model finding, iProver can show satisfiability of 1301 problems out of 1949 known to
be satisfiable in the TPTP.

It is interesting to compare an instantiation-based prover with an ordered resolu-
tion prover. iProver implements both on the same data structures and allows user to
select combination of instantiation with resolution, pure instantiation and pure ordered
resolution. Let us note that in iProver equality reasoning is integrated only in an ax-
iomatic way in both instantiation and resolution parts, we refer to iProver-Eq [32] for
a superposition-based integration. Results are presented in Table 1. We can see that
instantiation considerably outperforms ordered resolution in this setting and the combi-
nation of instantiation and resolution leads to further improvements.

TPTP v5.2.0 Combination Inst. & Res. Instantiation Resolution
Solved 8554 7680 5724
Unsat. 7524 6731 5160

Sat. 1030 949 564

Table 1. iProver v0.9

We compare iProver v0.9 with other state-of-the-art automated reasoning systems
based on the results of the CASC-23 competition, held in 2011 [51]. Tables are repro-
duced from the competition site2, among different versions of the same system we take
one with the best result. In the major FOF division, Table 2, iProver is in the top three
provers along with established leaders Vampire [23, 46] and E [47].

In the EPR division, shown in Table 3, iProver considerably outperforms resolu-
tion/superposition based systems. The EPR fragment is of a particular interest since, as
mentioned in the introduction, it has a wide range of applications.

Table 4 shows results in the first-order non-theorems (FNT) division. The FNT di-
vision corresponds to satisfiable first-order problems. Efficient methods for showing

2 http://www.cs.miami.edu/˜tptp/CASC/23/



FOF Vampire EP iProver leanCoP iProver-Eq EKRHyper EDarwin Metis LEOII Otter Muscadet
300 0.6 1.4 0.9 2.2 0.7 1.2 1.4 2.3 1.2.8 3.3 4.1

Solved 269 232 192 136 135 109 103 101 97 62 42
av. time 12.95 22.55 9.22 46.80 8.68 8.93 6.97 24.75 25.18 5.84 8.99

Table 2. CASC-23 (FOF division, 300 problems)

EPR iProver Vampire iProver-Eq E Metis E-Darwin FIMO E-KHyper
150 0.9 1.8 0.7 1.4 2.3 1.4 0.2 1.2

Solved 145 127 121 91 78 70 62 60
av. time 12.70 15.79 24.78 7.90 20.85 12.64 1.81 10.02

Table 3. CASC-23 (EPR division, 150 problems)

satisfiability are usually based on finite model finding techniques. iProver capitalises on
the translation of the finite model finding problem into the EPR fragment which helped
to place iProver amongst top three system in this division.

To summarise, iProver performs well on both unsatisfiable and satisfiable problems
over the whole TPTP and is leading in the EPR division.

FNT Paradox FIMO iProver Nitrox iProver-Eq EKRHyper EP EDarwin
200 3.0 0.2 0.9 0.2 0.7 1.2 1.4 1.4

Solved 169 162 159 140 86 85 78 57
av. time 3.33 14.43 34.93 17.42 7.52 15.92 2.40 7.23

Table 4. CASC-23 (FNT division: first-order non-theorems, 200 problems)

13 Conclusions

In this paper we have presented a development of the Inst-Gen framework from theo-
retical foundations to a working implementation. We considered the Inst-Gen calculus,
semantic selection, hyper-inferences, redundancy elimination, dismatching constraints,
simplifications by propositional reasoning, saturation strategies and finally implemen-
tation issues and evaluation. There are number of further extensions, that were not con-
sidered in this paper, such as integration of equational [19, 33] and theory reasoning in
the black-box style [20]. These extensions open novel opportunities to utilise efficient
solvers modulo theories, SMT solvers, which have recently gained great popularity due
to demand in applications such as software and hardware verification.

Although our implementation is relatively new, iProver is amongst the leading sys-
tems and shows great potential of the Inst-Gen framework. We expect that integration
of theory reasoning will greatly enhance applicability of iProver in domains such as
verification of software and hardware.



To conclude, we believe that instantiation-based theorem proving, backed by theo-
retical foundations and state-of-the-art implementation techniques, is a promising ap-
proach which can be developed to be utilised in real-world applications.
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15. N. Eén and N. Sörensson. An extensible SAT-solver. In Proc. of the 6th International
Conference on Theory and Applications of Satisfiability Testing, SAT 2003, volume 2919 of
Lecture Notes in Computer Science, pages 502–518. Springer, 2004.

16. T. Eiter, W. Faber, and P. Traxler. Testing strong equivalence of datalog programs - imple-
mentation and examples. In the 8th International Conference LPNMR’05, volume 3662 of
LNCS, pages 437–441, 2005.

17. M. Emmer, Z. Khasidashvili, K. Korovin, and A. Voronkov. Encoding industrial hardware
verification problems into effectively propositional logic. In R. Bloem and N. Sharygina,
editors, the 10th International Conference on Formal Methods in Computer-Aided Design
(FMCAD’10), pages 137–144. IEEE, 2010.

18. H. Ganzinger and K. Korovin. New directions in instantiation-based theorem proving. In
Proc. 18th IEEE Symposium on LICS, pages 55–64. IEEE, 2003.

19. H. Ganzinger and K. Korovin. Integrating equational reasoning into instantiation-based the-
orem proving. In CSL’04, volume 3210 of LNCS, pages 71–84, 2004.

20. H. Ganzinger and K. Korovin. Theory Instantiation. In Proceedings of the 13 Conference
on Logic for Programming Artificial Intelligence Reasoning (LPAR’06), volume 4246 of
Lecture Notes in Computer Science, pages 497–511. Springer, 2006.

21. P. Graf. Term Indexing, volume 1053 of LNCS. Springer, 1996.
22. M. Heule, M. Järvisalo, and A. Biere. Clause elimination procedures for CNF formulas. In

C. G. Fermüller and A. Voronkov, editors, the 17th International Conference on Logic for
Programming, Artificial Intelligence, and Reasoning, volume 6397 of LNCS, pages 357–371.
Springer, 2010.
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