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Abstract. The ease of programming offered by the CUDA programming
model attracted a lot of programmers to try the platform for acceleration
of many non-graphics applications. Cryptography, being no exception,
also found its share of exploration efforts, especially block ciphers. In
this contribution we present a detailed walk-through of effective map-
ping of HC-128 and HC-256 stream ciphers on GPUs. Due to inherent
inter-S-Box dependencies, intra-S-Box dependencies and a high number
of memory accesses per keystream word generation, parallelization of
HC series of stream ciphers remains challenging. For the first time, we
present various optimization strategies for HC-128 and HC-256 speedup
in tune with CUDA device architecture. The peak performance achieved
with a single data-stream for HC-128 and HC-256 is 0.95 Gbps and 0.41
Gbps respectively. Although these throughput figures do not beat the
CPU performance (10.9 Gbps for HC-128 and 7.5 Gbps for HC-256), our
multiple parallel data-stream implementation is benchmarked to reach
approximately 31 Gbps for HC-128 and 14 Gbps for HC-256 (with 32768
parallel data-streams). To the best of our knowledge, this is the first
reported effort of mapping HC-Series of stream ciphers on GPUs.
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1 Introduction

The eSTREAM [12] Portfolio (revision 1 in September 2008) contains the stream
cipher HC-128 [21] in Profile 1 (SW) which is a lighter version of HC-256 [22]
stream cipher born as an outcome of 128-bit key limitation imposed in the com-
petition. Several research contributions exist on the cryptanalysis of HC-128 [14,
15, 13, 18, 20]. However, HC-256 has undergone fewer cryptanalytic attempts [16,
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third author was an Alexander von Humboldt Fellow at RWTH Aachen, Germany.



19]. For algorithmic details of HC-128 and HC-256, the reader may refer to Ap-
pendix A.

After NVIDIA introduced a general purpose parallel computing platform
namely Compute Unified Device Architecture (CUDA) in November 2006 [24],
many cryptographers harnessed GPUs for acceleration. The earliest successful
effort of AES acceleration on GPUs, that outperformed CPU in throughput,
was presented by Manavski [1] who reported a throughput of 8.28 Gbps for
AES-128 encryption on NVIDIA GeForce 8800. His work was later criticized
for having half of the throughput rates that it could achieve by using shared
memory instead of constant memory for T-boxes [2]. A more recent work by
Iwai et al. [3] reported 35 Gbps of throughput for AES encoding on NVIDIA
GeForce GTX285 by exploiting memory granularity for independent threads.

Several endeavors undertook more than one cipher to present a suite of CUDA
based crypto accelerator application. Liu et al. [4] studied the effect of number of
parallel threads, size of shared memory for lookup tables and data coalescing in
device memories for several block encryption algorithms (AES, TRI-DES, RC5,
TWOFISH) processing on GPU using CUDA. Nishikawa et al. [5] targeted five
128-bit symmetric block ciphers from an e-government recommended ciphers list
by CRYPTREC in Japan and achieved substantial speedup.

The block ciphers, when subjected to parallelism offered by CUDA, generally
show high speedups compared to CPUs because of the absence of data depen-
dency in the subsequent data blocks. Generally, the plaintext is broken into n-
many blocks of same size and subjected to independent threads of GPUs. Higher
sizes of plaintext give more data blocks and hence result in better throughput
by achieving more data parallelism, till the device limit is reached.

Unlike block ciphers, stream ciphers in general cannot be subjected to this ‘di-
vide and rule’ strategy. The reason is the dependencies in the states/S-boxes that
are used for keystream generation. The only endeavor of mapping eSTREAM
(including HC-128) and SHA-3 cryptographic algorithms on GPUs was presented
by D. Stefan in his masters thesis [7]. He reported a throughput of 2.26 Gbps
(4.39 cycles/byte) for HC-128 implementation on NVIDIA GTX 295 GPU de-
vice[7]. This effort, however, lacks any optimization opportunity exploiting the
structure of the algorithm and is, therefore, easily surpassed by our implemen-
tation in throughput.

This work presents a novel implementation of HC series of stream ciphers
on recent graphics hardware. To the best of our knowledge, this is the first
publication employing CUDA framework for GPU acceleration of any stream
cipher.

2 Limitations in Parallelization of HC Ciphers

The keystream generation for HC series of stream ciphers has two steps, we name
them as self-update step (SUS) of P/Q array and keystream word generation step
(KWGS). In a serial implementation, each 32-bit word of P array SUS is followed
by one KWGS. This goes on for 512 iterations in HC-128 and 1024 iterations for



HC-256. The same follows for Q array for exactly the same number of iterations.
Ideally, a fast GPU-based implementation would be able to run all these steps
in parallel by independent threads as long as the device capacity is not over-
budgeted. However, ciphers like HC have highly iterative structures, prohibiting
parallelization beyond a limit.

2.1 Intra-S-Box Dependency in Self Update Step of S-Boxes

The gain of parallelization offered by CUDA programming model can be ex-
ploited easily if each iteration of a given iterative code block is independent of
its past execution. Such loops can be converted to parallel kernels by complete
unrolling where each loop iteration is executed by an independent thread. If an
array value being computed by a loop iteration has an intra-array-dependency,
such parallelism cannot be harnessed.

The SUS of HC-128 has a data dependency, the update of element P [j]
depends on its current and past values, i.e., P [j], P [j⊟3], P [j⊟10] and P [j⊟511].
Since the nearest dependency in the SUS of P [j] is on P [j⊟3], one cannot unroll
the loop more than 3 times.

//Three times unrolled version of P array SUS
for(j = 0; j < 512; j = j + 3)
{

P [j] = P [j] + g1(P [j ⊟ 3], P [j ⊟ 10], P [j ⊟ 511]);
P [j + 1] = P [j + 1] + g1(P [j ⊟ 2], P [j ⊟ 9], P [j ⊟ 510]);
P [j + 2] = P [j + 2] + g1(P [j ⊟ 1], P [j ⊟ 8], P [j ⊟ 509]);

}

Fig. 1 describes the data dependencies for calculating the values at the ith,
(i + 1)th and (i + 2)th indices of P array pictorially. Calculation of (i + 3)th

index value requires the value at ith index of the array, making a simultaneous
update of values at indices i and (i + 3) impossible. This dependency limits
the number of threads carrying out the SUS of P/Q array to no more than 3.
The same arguments can be extended for HC-256 SUS. Moreover, due to similar
limitations, we cannot harness more than 2 and 3 simultaneous threads for Step
1 and 3 respectively of initialization phase in HC series of stream ciphers.

2.2 Inter-S-Box Dependency in Keystream Generation

For exploiting parallelism we try to investigate if it is possible to carry out SUS
P and Q arrays simultaneously (no spatial data dependency) or their current
and future copies simultaneously (no temporal data dependency).

Inter-S-Box Spatial Data Dependency. Consider the keystream generation
phase of HC-128 as given in Appendix A. The SUS of P and Q arrays does not
require values from each other. However, KWGS after SUS of P array has a



Fig. 1. Dependency in SUS at indices i, i + 1 and i + 2 in S-Boxes

dependency on Q array and vice versa. Hence a naive implementation with si-
multaneous update of P and Q arrays will not bear correct results for KWGS. In
HC-256, even the SUS of the two S-Boxes is dependent on each other. Moreover,
the KWGS dependency after SUS in HC-256 is the same as in HC-128.

Inter-S-Box Temporal Data Dependency. Temporal data dependency be-
tween the current instance of S-Boxes and their future instance is investigated
to exploit the possibility of simultaneous keystream generation from these ar-
rays for multiple data blocks. Consider two temporal instances of P array. Let
Pcurrent contain the expanded values after initialization phase and Pfuture be
the one that will have the future values of P array after SUS. Note that SUS of
Pfuture has a dependency on Pcurrent, hence making it impossible to simultane-
ously update multiple temporal instances of P/Q arrays. Arguing along the same
lines, its evident to see data dependency of P/Q arrays on their past instances
in HC-256 too.

2.3 Data-intensiveness

When comparing the computational nature of stream ciphers with block ciphers,
a striking trend can be seen. Stream ciphers are predominantly data intensive
while block ciphers are computation intensive. HC series of stream ciphers are
no exception. Appendix B gives the list and frequency of various 32-bit binary
operations required by the SUS and KWGS of HC-128 and HC-256. The high
ratio of memory accesses to the arithmetic operations can be seen to be quite
high.



3 Optimization Strategies for GPU Implementation of

HC Series of Stream Ciphers

Kernels in CUDA compatible devices are assigned a small budget of thread-local
registers. Shared memory is local to a block of threads and is comparatively
bigger. The biggest memory in size is the grid-local global memory whose access
incurs a 100x penalty as compared to register access [9]. Our device NVIDIA
GeForce GTX 590 has 3 GB of global memory, 48 KB of shared memory per MP
and a maximum of 64 registers per thread. Considering the memory hierarchy,
the fastest single data-stream implementation of the algorithm should use the
fastest memory, i.e., the registers. However, the S-boxes of HC-128 (4 KB) and
HC-256 (8 KB) are far too big to fit in them. The next best possibility is to put
the P and Q arrays in the shared memory and let the registers hold their smaller
16-element snapshot as suggested for the optimized implementation in [21, 22].
However, this single thread implementation of keystream generation does not
lead to significant throughput. For example, HC-128 on our device yielded a
throughput of only 0.24 Gbps.

For exploiting parallelism, we strive to launch multiple threads simultane-
ously. As registers are local to one kernel, we use shared memory instead and
discuss various optimization strategies for single data-stream implementation in
Section 3.1. For multiple data-streams implementation, the use of on-chip block-
local shared memory instead of off-chip grid-local global memory can boost the
speedup significantly. However, each data-stream requires a memory budget m
for P and Q arrays, where m = 4 KB for HC-128 and m = 8 KB for HC-256
and hence the number of parallel data-streams per MP is restricted to s/m,
where s = 48 KB is the shared memory size. Therefore, we perform the multiple
data-streams implementation using global memory, as discussed in detail in Sec-
tion 3.2. A brief overview of the CUDA programming model for GPUs is given
in Appendix C.

3.1 Single Data-Stream Optimizations

Program listing of a simple implementation of keystream generation code for HC-
128 with the degree of parallelism that is straightforward to manipulate is given
in Table 1. Since the initialization phase is similar and simpler, its explanation
is skipped. The intra-dependency of S-Box arrays does not allow more than 3
parallel threads to update P/Q arrays as described in Section 2.1. The CUDA
kernel is called with 1 block of 512 threads. The code is divided into four parts.
The first and third parts give SUS for P and Q arrays respectively while part
two and four perform KWGS. Only 3 out of 512 threads update P array in part
one, requiring 171 (512/3) times execution for completely updating P array. In
part 2, the S-Boxes are employed to generate 512 words of keystream using 512
threads simultaneously. Part 3 updates the Q array followed by 512 words of
KWGS in part 4. This implementation yields a throughput of 0.37 Gbps for
keystream generation in HC-128.



if(threadIdx.x <= 2)
for(i = threadIdx.x; i < 512; i = i + 3)

P s[i] = P s[i] + g1(P s[i ⊟ 3], P s[i ⊟ 10], P s[i ⊟ 511];
i = threadIdx.x;
s[i] = h1(Q s, P s[i ⊟ 12]) ⊕ P s[i];
if(threadIdx.x <= 2)

for(i = threadIdx.x; i < 512; i = i + 3)
Q s[i] = Q s[i] + g2(Q s[i ⊟ 3], Q s[(i ⊟ 10)], Q s[i ⊟ 511]);

i = threadIdx.x;
s[i + 512] = h2(P s, Q s[i ⊟ 12]) ⊕ Q s[i];

Table 1. Keystream generation implementation of HC-128 using three threads

Next we discuss the optimization strategies undertaken to improve the par-
allelism and consequently the throughput of this simple parallel CUDA based
implementation of HC-128. In case the strategies are applicable only to one of
the ciphers in HC series of stream ciphers, it has been explicitly mentioned.

Parallelization of P/Q Array SUS with Key Generation(512 words).
One way of increasing the degree of parallelism in HC-128 algorithm was sug-
gested by Chattopadhyay et al. [23]. The authors proposed carrying out SUS of
either of the S-Boxes along with a simultaneous KWGS from the other S-Box.
The parallelism can be employed ensuring correct results by keeping multiple
temporal copies of S-Boxes (say P0, Q0, P1, Q1). If the shared memory of the
GPU device used for S-Box instances is not over-budgeted, this strategy can
be employed for achieving parallelism. As seen from Appendix A, each round
of HC-128 keystream generation for 1024 words has a P -SUS and P -KWGS for
512 words, followed by a similar Q-SUS and Q-KWGS for 512 words. With two
copies of S-Boxes, we can parallelize the P -SUS with Q-KWGS and vice versa.
The series of steps as proposed in [23] are summarized in Table 2. After ini-
tialization routine, arrays P0, Q0 contain the expanded key and IV. SUS of P
array starts by reading values from P0 (past values) and updating P1 (current
values). No more than 3 parallel threads (due to intra-data-dependency) execute
iteratively updating the entire 512 words array. In step 1 the Q array is updated
reading values from Q0 (past values) and updating Q1 (current values). KWGS
using P1 and Q0 is done by 512 parallel threads simultaneously - we denote this
by Keygen(Q0,P1). Similar notations describe the other steps.

Step # KWGS SUS Comments
Step 0 - P1 3 threads for SUS
Step 1 Keygen(Q0,P1) Q1

3 active threads (out of a warp) for SUS
Step 2 Keygen(Q1,P1) P0
Step 3 Keygen(Q1,P0) Q0
Step 4 Keygen(Q0,P0) P1 + 512 threads for KWGS

Table 2. Parallelizing one SUS warp with one KWGS block

After the initial step, Q1, P0, Q0, P1 are updated in successive steps, each
time simultaneously generating keystream words from the S-Box updated in the



previous step. This goes on by repetition of step 1 till 4 for as many keystream
values as required. CUDA framework for HC-128 parallel implementation em-
ploys 544 threads for keystream generation in total. Out of these, 512 threads
carry out KWGS from an entire array of S-Box words simultaneously. One thread
warp with three active threads carry out the SUS of the S-Box. Here parallelism
is achieved at the cost of extra resources, since only multiple copies of the S-
Boxes guarantee correct results for parallel implementation. This strategy is
applied to HC-256 as well. Similarly, one warp with 3 active threads remains
under-utilized; however KWGS is carried out by 1024 parallel threads for larger
S-Boxes in HC-256.

Parallelization of P and Q SUS with Key Generation (1024 words).
Further parallelization of HC-128 is possible by simultaneous P -SUS and P -
KWGS of 512 words as well as the Q-SUS and Q-KWGS of 512 words in
keystream generation phase as described in Appendix A. Thus both the S-Boxes
can be updated in parallel along with simultaneous generation of 1024 words
of keystream. However, step 1 and 3 of keystream generation in Table 2, reveal
a data dependency. Q0 is needed for generating key from P1, and Q1 for gen-
erating key from P0. Hence, update of P0, Q0 and generating 1024 keystream
words using Keygen(Q0, P1) and Keygen(P1, Q1) gives rise to a race condition,
commonly called a Read After Write (RAW) hazard where the keystream values
would depend upon which statement gets executed first. This can be success-
fully avoided by using 2 more copies of Q arrays, namely QBuff0 and QBuff1

for keeping backups of Q0 and Q1 respectively. For preserving correctness, these
buffers need to be updated at every alternate step. All arrays are stored in the
shared memory for fast access.

Table 3 describes a step by step execution. After initialization, the expanded
key and IV reside in P0, Q0. All other temporal S-Box copies i.e., P1, Q1, QBuff0

and QBuff1 are left un-initialized. Simultaneous SUS of P and Q arrays is carried
out by reading values from P0, Q0 (past values) and updating P1, Q1 (current
values) respectively. A copy of Q0 is backed up in QBuff0 simultaneously. In this
step, 6 threads of 2 warps carry out the SUS for P1 and Q1. For Q0 backup,
512 parallel threads make a copy.

QBuff copy KWGS SUS Comments
QBuff0 - - P1 Q1 3 + 3 threads for SUS, 512

copy threads for copying Q0 to QBuff0

QBuff1 Keygen Keygen P0 Q0 3 + 3 threads for SUS,
copy (Q1,P1) (QBuff0,P1) 512 threads for Keygen(Q1,P1),

512 threads for copying Q1 to
QBuff1 and Keygen(QBuff0,P1)

QBuff0 Keygen Keygen P1 Q1 3 + 3 threads for SUS,
copy (Q0,P0) (QBuff1,P0) 512 threads for Keygen(Q0,P0),

512 threads for copying Q0 to
QBuff0 and Keygen(QBuff1,P0)

Table 3. Parallelizing 2 S-Box SUS warps with 2 KWGS blocks



In step 1, we employ a block of 1024 threads for generating 1024 words
of keystream, each thread generates one word of keystream. Out of these, 512
threads are used to execute the extra step of copying values to the buffers.
Alternate updates of P0, Q0 and P1, Q1 follows, simultaneously generating 1024
words of keystream. Hence Step 1 and 2 are repeated as long as the keystream
generation is required.

A single kernel cannot be invoked with more than 1024 threads in a block. We
break the thread budget in two blocks, each having 544 threads. The two blocks
run concurrently, one warp in each carrying out SUS and 512 threads generating
keystream. GPUs with compute capability 2.0 or more have the capability of
calling concurrent kernels at the same time as well.

This strategy of achieving parallelism cannot be extended for HC-256 since
its SUS of the S-Boxes is dependent on each other.

3.2 Multiple Data-Streams Optimization

The GPU clock is slower than the CPU clock speed. Thus speedup in GPU
devices can be achieved in two ways. One way is by employing parallel threads
respecting data dependencies in a single stream of data as investigated in Sec-
tion 3.1. A better alternative in terms of resource utilization and throughput is
to employ all the SPs (stream processors) of the CUDA device by employing
ciphers of multiple data-streams in parallel. Due to the limited size of shared
memory, we employ the larger albeit slower global memory for ciphering multiple
parallel streams of data.

Performance tuning on the GPU requires understanding device specifications
and accordingly finding and exposing enough parallelism to populate all the
multiprocessors (MPs). NVIDIA GeForce GTX 590 can accommodate up to 8
blocks (or 48 warps) per MP. Since each warp can have 32 homogeneous threads,
an MP can process up to 1536 threads (48 × 32). To fully utilize each MP, the
number of threads it should get assigned should be no more than 192 per block
(1536/8). This limit is kept in mind when assigning the thread budget to each
MP for HC series of stream ciphers.

For HC-128, the 3 threads for SUS of each of the S-Boxes constitute one warp.
Since these threads execute a total of 171 times (512/3) for complete update of
either of the S-Boxes, the number of parallel threads employed for KWGS can
be adjusted so that the budget of total number of 192 threads per block is never
exceeded. We employ 128 threads for KWGS and 2 warps for S-Box update in
case of HC-128. Hence 2 warps of S-Box SUS and 4 warps of KWGS are kept in
the same block of 192 threads. For HC-256, however, only one warp is used for
SUS and 4 for KWGS, making the total thread budget equal to 160 per block.
This strategy ensures maximum number of parallel data-streams the device can
encrypt simultaneously, showing noticeable increase in the throughput of both
HC-128 and HC-256.



4 Experimental Results

Throughput performances of HC ciphers for single and multiple parallel data-
streams were benchmarked on NVIDIA GeForce GTX 590. We used an AMD
PhenomTMII X6 1100T Processor with 8 GBs of RAM as host CPU. Each test
was conducted 1000 times and the results were averaged. Appendix D summa-
rizes the hardware specifications of the two computation platforms.

4.1 Encryption of Single Data-Stream

Initialization phase of HC ciphers has been implemented using shared memory
and global memory in two separate experiments. The last step of initialization
phase is similar to SUS phase, consequently 3 parallel threads are employed for it.
In the second step of initialization phase, intra-dependency for W is even more
severe, limiting the number of simultaneous threads to 2. Using faster shared
memory instead of global memory accelerates initialization phase as shown in
Table 4. It however, incorporates the overhead of copying P , Q and W arrays
on shared memory that can be done simultaneously using 512 and 1024 parallel
threads in case of HC-128 and HC-256 respectively.

NVIDIA GeForce GTX 590 AMD PhenomTMII
Global memory Shared memory X6 1100T

HC-128 1.386 ms 1.078 ms 27 µ s
22.53 Mbps 28.98 Mbps 1.15 Gbps

HC-256 1.930 ms 1.666 ms 60 µ s
32.35 Mbps 53.56 Mbps 1.04 Gbps

Table 4. Duration and throughput of initialization phase of HC series of stream ciphers

The performance results of keystream generation phase are presented in Fig. 2
and Fig. 3 for HC-128 and HC-256 respectively. The throughput shows an in-
creasing trend, till it saturates for higher data sizes considered. The maximum
throughput when using the global memory for storing S-Boxes of HC-128 is 0.41
Gbps. Using shared memory gives a boost to performance because of its smaller
access time. A similar trend is observed for HC-256. The size of the S-Boxes is

Fig. 2. HC-128 keystream generation throughput using shared and global memory



double compared to that of HC-128, the amount of shared memory used by the
optimized version of our algorithm is 16 KB (two copies of each S-Box). A GPU
device with lower compute capability has no more than 16 KB of shared memory
per MP. Hence, this optimized implementation of HC-256 on one thread block of
such devices is not possible. The maximum throughput from the global memory
implementation of HC-256 is 0.15 Gbps and for shared memory implementation
is 0.41 Gbps.

Fig. 3. HC-256 keystream generation throughput using shared and global memory

4.2 Encryption of Multiple Data-Streams in Parallel

The parallelism offered by the CUDA device can be well exploited using multiple
parallel streams of data. For simulation purposes we start with a single stream
of data and double them up to 32K parallel streams. Fig. 4 gives the throughput
of HC-128 and HC-256 for increasing number of parallel data-streams on our
CUDA device. The trend of throughput rise shown by the two ciphers is similar,
having an apparent peak for 64 parallel streams. The CUDA device used has a
total of 16 MPs and each MP can accommodate 8 blocks at most. Maximum
utilization of MPs is achieved for 128 parallel streams of data (16 × 8). Further
increase in the number of parallel data-streams shows a slight improvement in
the throughput. The reason is that the parallel streams in excess of 128 are
waiting in instruction queue and are launched with negligible context switch
time. The maximum throughput achieved is 31 Gbps for HC-128 and 14 Gbps
for HC-256 employing 32768 parallel streams.

4.3 Throughput comparison of HC Series of Stream Ciphers on
Various Platforms

We compare our acceleration results with the only available figures for HC-128
acceleration on GPUs by D. Stefan in his masters thesis [7]. Without employing
parallelism within a single data-stream for HC-128, he assigned one thread to one
data-stream. For supporting multiple data-streams, he employed global memory
for S-boxes. The highest throughput achieved is reported and compared with
our implementation in Table 5. For the same number of blocks, our throughput



Fig. 4. keystream generation throughput for varying number of multiple data-streams

is approximately 14 times higher. Comparing the cycles/byte performance also
shows a significant decrease. Results for initialization phase are not available for
comparison.

Implementation by D. Stefan[7] Our Implementation
NVIDIA device GeForce GTX 295 GeForce GTX 590
Release date January 8, 2009 March 24, 2011

Compute Capability 1.3 2.0
Memory Used Global Memory Global Memory

Threads / data-stream 1 192
data-stream / Block 256 1
Total blocks used 680 680
Total data-streams 680×256 680
Total threads used 680×256 192×680

Performance(Cycles/byte) 4.39 0.279
Throughput(Gbps) 2.26 31

Table 5. Comparison of our HC-128 acceleration with D. Stefan [7]

The HC-128 performance evaluation on CPU was done using the eSTREAM
testing framework [6]. The C implementation of the testing framework was in-
stalled in the CPU machine (specs given in Appendix D) on CentOs 5.8 (Linux
version 2.6.18-308.11.1.el5xen). For the benchmark implementation of HC-128
and HC-256 the highest keystream generation speeds were found to be 2.36
cycles/byte and 3.63 cycles/byte respectively. Table 6 gives a comparison of
throughput of HC series of stream ciphers on various platform. The throughput
obtained on an AMD PhenomTM II X6 1100T Processor is 10.94 Gbps and 7.5
Gbps for keystream generation phase of HC-128 and HC-256 respectively. The
high speed rendered by CPU is primarily because it has to incur no memory
overhead for RAM located contents unlike the GPU memory accesses. More-
over, the limitation of SIMD architecture of GPUs requires homogeneity of warp
threads which is not a limitation in CPUs. Consequently the CUDA mapping of
the HC family of ciphers is 11-18 times slower. The ASIC based implementation
proposed by Chattopadhyay et al. is so far the fastest reported implementation



of HC-128 claiming a throughput of 22.88 Gbps [23]. The throughput results of
HC-256 are however not reported.

AMD PhenomTM NVIDIA GeForce ASIC [23]
II X6 1100T GTX 590 (65nm Technology)

HC-128 10.9 Gbps 2.36 C/B 0.95 Gbps 9.27 C/B 22.88 Gbps 0.5 C/B

HC-256 7.5 Gbps 3.63 C/B 0.41 Gbps 21.82 C/B Not reported Not reported

Table 6. Throughput (Gbps), Cycles/Byte (C/B) of a single data-stream HC ciphers

For multiple data-streams we get promising results which for CPUs is not
straightforward to implement. For 32768 parallel data-streams, our GPU gives a
throughput of 31 Gbps for HC-128 and 14 Gbps for HC-256. Hence we conclude
that HC-series of stream ciphers is unfit to be off-loaded to GPUs in case of
a single data-stream application. In contrast, an application exploiting multiple
parallel data-streams can achieve GPU acceleration up to 2.8 times faster in case
of HC-128 and 1.87 times faster for HC-256 (with 32768 parallel data-streams).

5 Conclusion and Future Work

This work presents the first detailed study of algorithmic acceleration limitations
in HC series of stream ciphers for mapping on a GPU device. The high degree
of data dependency in their S-box update procedures puts strict limitations
on exploiting the inherent parallelism that a graphics device offers. Moreover
these ciphers are primarily data intensive in nature. These limitations explain
the absence of relevant scientific publications in this arena. We present various
strategies to improve the throughput of the HC-128 and HC-256 ciphers at the
cost of replicated copies of S-Boxes. However, for a single data-stream accelera-
tion, our throughput does not go beyond 0.95 Gbps and 0.41 Gbps for HC-128
and HC-256 respectively on a GeForce GTX 590 (leaving it 11-18 times slower
than a standard CPU in throughput).

For multiple data-streams, however, we beat the CPU performance. We did
a thorough tuning on the GPU for optimizing all the architectural features that
the device could offer. Thread and warp grouping is done so as to expose enough
parallelism to the device to keep all the MP cores busy all the time. Our GPU
based acceleration resulted in being 2.8 times faster than CPU in case of HC-128
and 1.87 times faster for HC-256 (with 32,768 parallel data-streams). Hence we
conclude that GPUs can successfully be employed as a co-processor with a CPU
host to accelerate HC series of stream ciphers using multiple parallel streams of
data. As future work, we plan to investigate the parallelism opportunities offered
by the entire eSTREAM portfolio [12] of software stream ciphers and compare
the performance against today’s CPUs.
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Appendix A: Description of HC-128 and HC-256

Keystream Generation

HC-t uses t-bit secret key and IV, and 32-bit element internal arrays P and Q
each of length 4t, where t is either 128 or 256. We briefly sketch the keystream
generation phase of the algorithms here. For details of key and IV setup, one may
refer to [21, 22]. The operators used are + (addition modulo 232), ⊟ (subtraction
modulo 512), ⊕ (bit-wise exclusive OR), ≫,≪ (32-bit shifts) and ≫,≪ (32-
bit rotations). Let sr denote the keystream word generated at the r-th step,
r = 0, 1, 2, . . .. The functions g1 and g2 (3 inputs for HC-128 and 2 inputs for
HC-256) are used for self-update of P and Q and functions h1 and h2 are used
in the keystream generation, as follows.

HC-128 HC-256
t 128 256

g1 ((x ≫ 10) ⊕ (z ≫ 23)) + (y ≫ 8) ((x ≫ 10) ⊕ (y ≫ 23)) + Q[(x ⊕ y) mod 4t]
g2 ((x ≪ 10) ⊕ (z ≪ 23)) + (y ≪ 8) ((x ≫ 10) ⊕ (y ≫ 23)) + P [(x ⊕ y) mod 4t]
h1 Q[x(0)] + Q[2t + x(2)] Q[x(0)] + Q[t + x(1)] + Q[2t + x(2)] + Q[3t + x(3)]
h2 P [x(0)] + P [2t + x(2)] P [x(0)] + P [t + x(1)] + P [2t + x(2)] + P [3t + x(3)]

P [j]+ = g1(P [j ⊟ 3], P [j ⊟ 10], P [j ⊟ 511]) P [j ⊟ 10] + g1(P [j ⊟ 3], P [j ⊟ 1023])
Q[j]+ = g2(Q[j ⊟ 3], Q[j ⊟ 10], Q[j ⊟ 511]) Q[j ⊟ 10] + g2(Q[j ⊟ 3], Q[j ⊟ 1023])

The last two rows of the above table show the self-update steps (SUS) for the
arrays P and Q. Here x = x(3)‖x(2)‖x(1)‖x(0) is a 32-bit word, with x(0), x(1), x(2)

and x(3) being the four bytes from right to left. The keystream generation phase
happens in cycles of 8t rounds, in the first 4t of which the array P is updated
followed by a keystream word generation step (KWGS) si = h1(P [j⊟12])⊕P [j].
In the next 4t rounds, the array Q is updated and the corresponding KWGS is
given by si = h2(Q[j ⊟ 12]) ⊕ Q[j].



Appendix B: List of Operations for Keystream Generation

in HC-128 and HC-256

HC-128 HC-128 HC-256 HC-256
SUS KWGS SUS KWGS

Modulo Additions 2 2 3 7
Xor 1 1 2 1

Modulo Subtractions 3 1 3 1
Rotations 3 0 2 0

Shifts 0 1 0 3
Total operations 9 5 10 12

Memory Reads 4 4 5 6
Memory Writes 1 1 1 1

Total memory accesses 5 5 6 7

Appendix C: Overview of CUDA Programming Model

CUDA exposes the device as a repository of thousands of parallely executable
threads as shown in Fig. 5. The GPU chip is organized as a collection of mul-
tiprocessors (MPs). Each MP has a number of Stream Processors (SPs), each
handling one thread. Each MP is responsible for handling one or more thread
blocks. Since thread blocks have no dependencies among themselves, their as-
signment is independent of MPs allowing transparent scaling of programs across
different GPUs. Here are some technical terms relevant to the CUDA execution
model.

Fig. 5. CUDA GPU execution model

1. Thread: the smallest unit of execution in CUDA.
2. Warp: the threads are forwarded to the CUDA MPs in groups (warps) of

32 for execution. If all thread kernels in a warp are homogeneous, all the SPs
in an MP execute the same instruction in a true SIMD fashion.

3. Block: a group of threads each with exclusive local memories and registers
and a single shared memory as shown in Fig. 5.



4. Grid: one or more thread blocks being executed by a kernel in memory form
a grid. Each MP handles one or more blocks in a grid. Threads in a block
are not divided across multiple MPs.

5. Kernel: a block of code called from the host CPU, and then sent to the
device with a grid of thread blocks. CUDA gives the freedom of choosing the
threads and block structure and dimension to the coder.

Appendix D: Hardware Specifications of CPU and GPU

used for Throughput Comparison

AMD PhenomTMII X6 1100T NVIDIA GeForce TX 590
Transistors 904 million 6 billion

Processor Frequency (GHz) 3.31 1.2
Cores/SPs 6 1024

Cache/shared Memory L2-512 KB, L3-6 MB×6 48 KB×32
Threads executed per cycle 6 1024
Active Hardware threads 6 49152 (maximum)


