Skip to main content

Using Large-Scale Parallel Systems for Complex Crystallographic Problems in Materials Science

  • Chapter
  • First Online:
  • 1660 Accesses

Part of the book series: Natural Computing Series ((NCS))

Abstract

Very recently, the design and understanding of materials synthesis have received a huge effort in which modeling approaches are decisive. Here, we focus on the generation of crystalline inorganic frameworks. Despite the high-throughput (HT) methods that have proved to be useful for the discovery of zeolites, the determination of the new phase’s structure takes up a large part of the entire process. Therefore, we show how graphic processing units or GPUs can be used in order to speed up this mandatory step. We describe GPUs and predictive methods for phase determination. Then, we show all the details that allowed us to reach a stable and robust solution with benchmark analysis and real applications to zeolites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abraham, N.L., Probert, M.I.J.: Phys. Rev. B. 73, 224,104 (2006)

    Google Scholar 

  2. Akporiaye, D.E., Fjellvag, H., Halvorsen, E.N., Hustveit, J., Karlsson, A., Lillerud, K.: J. Phys. Chem. 100, 16,641–16,646 (1996)

    Google Scholar 

  3. Anderson, J.A., Lorenz, C.D., Travesset, A.: J. Comput. Phys. 227, 5342–5359 (2008)

    Article  MATH  Google Scholar 

  4. Baumes, L.A., Moliner, M., Corma, A.: CrystEngComm 10, 1321–1324 (2008)

    Article  Google Scholar 

  5. Baumes, L.A., Moliner, M., Corma, A.: Chem. Eur. J. 15, 4258–4269 (2009)

    Article  Google Scholar 

  6. Boisen, M.B., Gibbs, G.V., Bukowinski, M.S.T.: Phys. Chem. Miner. 21, 269–284 (1994)

    Google Scholar 

  7. Boisen, M.B., Gibbs, G.V., O’Keefe, M., Bartelmehs, K.L.: Micropor. Mesopor. Mater. 29, 219–266 (1999)

    Article  Google Scholar 

  8. Boronat, M., Concepcion, P., Corma, A., Navarro, M.T., Renz, M., Valencia, S.: Phys. Chem. Chem. Phys. 11, 2876–2884 (2009)

    Article  Google Scholar 

  9. Boronat, M., Martinez-Sanchez, C., Law, D., Corma, A.: J. Appl. Comput. Sci. 130, 16,316–16,323 (2008)

    Google Scholar 

  10. Boussie, T.R., Diamond, G.M., Goh, C., Hall, K.A., LaPointeCheryl, A.M., Lund, M., Murphy, V., Shoemaker, J., Tracht, U., Turner, H., Zhang, J., Uno, T., Rosen, R., Stevens, J.: J. Am. Chem. Soc. 125, 4306–4317 (2003)

    Article  Google Scholar 

  11. Corma, A., Moliner, M., Serra, J.M., Serna, P., Diaz-Cabanas, M.J., Baumes, L.A.: Chem. Mater. 18(14), 3287–3296 (2006)

    Article  Google Scholar 

  12. Deem, M.W., Newsam, J.M.: Nature 342, 260–262 (1989)

    Article  Google Scholar 

  13. Deem, N.W., Newsam, J.M.: J. Am. Chem. Soc. 114, 7189–7198 (1992)

    Article  Google Scholar 

  14. Dress, A.W.M., Huson, D.H., Molnar, E.: Acta Crystallogr. A. 49, 806–817 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Falcioni, M., Deem, M.W.: J. Chem. Phys. 110, 1754–1766 (1999)

    Article  Google Scholar 

  16. Farrusseng, D., Klanner, C., Baumes, L.A., Lengliz, M., Mirodatos, C., Schuth, F.: QSAR & Combin. Sci. 24, 78–93 (2005)

    Article  Google Scholar 

  17. Foster, M.D., Simperler, A., Bell, R.G., Friedrichs, O.D., Almeida-Paz, F.A., Klinowski, J.: Nat. Mater. 3, 234–238 (2004)

    Article  Google Scholar 

  18. Friedrichs, O.D., Dress, A.W.M., Huson, D., Klinowski, J., Mackay, A.L.: Nature 400, 644–647 (1999)

    Article  Google Scholar 

  19. Gorer, A.: U.S. Patent 6.723.678 (Symyx Technologies Inc) (2004)

    Google Scholar 

  20. Johnston, R.L.: Dalton Trans. 22, 4193–4207 (2003)

    Article  Google Scholar 

  21. Kirkpatrick, S., Gellat, J.C.D., P.Vecchi, M.: Science 220, 671–680 (1983)

    Google Scholar 

  22. Klanner, C., Farrusseng, D., Baumes, L.A., Mirodatos, C., Schuth, F.: QSAR & Combin. Sci. 22, 729–736 (2003)

    Article  Google Scholar 

  23. Klanner, C., Farrusseng, D., Baumes, L.A., Mirodatos, C., Schuth, F.: Angew. Chem., Int. Ed. 43(40), 5347–5349 (2004)

    Google Scholar 

  24. Kruger, F., Baumes, L.A., Lachiche, N., Collet, P.: In: Int. Conf. EvoStar 2010 (2010)

    Google Scholar 

  25. LeBail, A.: J. Appl. Cryst. 38, 389–395 (2005)

    Article  Google Scholar 

  26. Lloyd, L.D., Johnston, R.L., Salhi, S.: J. Comput. Chem. 26, 1069–1078 (2005)

    Article  Google Scholar 

  27. Maitre, O., Lachiche, N., Baumes, L.A., Corma, A., Collet, P.: In: Genetic and Evolutionary Computation Conference, GECCO’09, New York, NY, USA, 2009

    Google Scholar 

  28. Maitre, O., Lachiche, N., Clauss, P., Baumes, L.A., Corma, A., Collet, P.: In: 15th International Conference on Parallel and Distributed Computing, pp. 25–28 (2009)

    Google Scholar 

  29. Oganov, A.R., Glass, C.W.: J. Chem. Phys. 124, 244704 (2006)

    Article  Google Scholar 

  30. O’Keefe, M.: Acta Crystallogr A. 64, 425–429 (2008)

    Article  MATH  Google Scholar 

  31. O’Keefe, M., Hyde, B.G.: Crystal structures I: patterns and symmetry. Mineralogical Society of America, Washington, D.C., 1996

    Google Scholar 

  32. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Kruger, J., Lefohn, A.E., Purcell, T.J.: Comput. Graph. Forum 26(1), 80–113 (2007)

    Article  Google Scholar 

  33. Pannetier, L., Bassas-Alsina, J., Rodriguez-Carvajal, J., Caignaert, V.: Nature 346, 343–345 (1990)

    Article  Google Scholar 

  34. Pickard, C.J., Needs, R.J.: J. Chem. Phys. 127, 244503 (2007)

    Article  Google Scholar 

  35. Roberts, C., Johnston, R.L., Wilson, N.T.: Theor. Chem. Acc. 104, 123–130 (2000)

    Article  Google Scholar 

  36. Schon, J.C., Jansen, M.: Angew. Chem. Int. Ed. 35, 1287–1304 (1996)

    Google Scholar 

  37. Schon, J.C., Jansen, M.Z.: Kristallogr 216, 307–325 (2001)

    Article  Google Scholar 

  38. Schuth, F., Baumes, L.A., Clerc, F., Demuth, D., Farrusseng, D., Llamas-Galilea, J., Klanner, C., Klein, J., Martinez-Joaristi, A., Procelewska, J., Saupe, M., Schunk, S., Schwickardi, M., Strehlau, W., Zech, T.: Catal. Today 117, 284–290 (2006)

    Article  Google Scholar 

  39. Serna, P., Baumes, L.A., Moliner, M., Corma, A.: J. Catal. 258(1), 25–34 (2008)

    Article  Google Scholar 

  40. Serra, J.M., Baumes, L.A., Moliner, M., Serna, P., Corma, A.: Comb. Chem. High. Throughput Screen. 10, 13–24 (2007)

    Article  Google Scholar 

  41. Smith, J.V.: Am. Mineral. 62, 703–709 (1977)

    Google Scholar 

  42. Smith, J.V.: Am. Mineral. 63, 960–969 (1978)

    Google Scholar 

  43. Smith, J.V.: Am. Mineral. 64, 551–562 (1979)

    Google Scholar 

  44. Sohn, K.S., Seo, S.Y., Park, H.D.: Electrochem. Solid State Lett. 4, 26–29 (2001)

    Article  Google Scholar 

  45. Stone, J.E., Phillips, J.C., Freddolino, P.L., Hardy, D.J., Trabuco, L., Schulten, K.: J. Comput. Chem. 28, 2618–2640 (2007)

    Article  Google Scholar 

  46. Teter, D.M., Gibbs, G.V., Boisen, M.B., Allan, D.C., Teter, M.P.: Phys. Rev. B. 52, 8064–8073 (1995)

    Article  Google Scholar 

  47. Treacy, M.M.J., Randall, K.H., Rao, S., Perry, J.A., Chadi, D.J.: Kristallogr 212, 768–791 (1997)

    Article  Google Scholar 

  48. Treacy, M.M.J., Rivin, I., Balkovsky, E., Randall, K.H., Foster, M.D.: Micropor. Mesopor. Mater 74, 121–132 (2004)

    Article  Google Scholar 

  49. Turner, G.W., Tedesco, E., Harris, K.D.M., Johnston, R.L., Kariuki, B.M.: Chem. Phys. Lett. 321, 183–190 (2000)

    Article  Google Scholar 

  50. Ufimtsev, I.S., Martinez, T.J.: J. Chem. Theor. Comput. 4, 222–231 (2008)

    Article  Google Scholar 

  51. Vogt, L., Olivares-Amaya, R., Kermes, S., Shao, Y., Amador-Bedolla, C., Aspuru-Guzik, A.: J. Phys. Chem. A 112, 2049–2057 (2008)

    Article  Google Scholar 

  52. Wales, D.J., Doyle, J.P.K.: J. Phys. Chem. A. 101, 5111–5116 (1997)

    Article  Google Scholar 

  53. Wales, D.J., Scheraga, H.A.: Science 285, 1368–1372 (1999)

    Article  Google Scholar 

  54. Wells, A.F.: Acta Crystallogr 7, 535–554, 842–853 (1954)

    Google Scholar 

  55. Woodley, S.M.: Phys. Chem. Chem. Phys. 9, 1070–1077 (2006)

    Article  Google Scholar 

  56. Woodley, S.M., Catlow, C., Battle, P.D., Gale, J.D.: Acta Cryst. A. 58, C196 (2002)

    Article  Google Scholar 

  57. Woodley, S.M., Catlow, R.: Nat. Mater. 7, 937 (2008)

    Article  Google Scholar 

  58. Yasuda, K.: J. Chem. Theor. Comput. 4, 1230–1236 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent A. Baumes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baumes, L.A., Krüger, F., Collet, P. (2013). Using Large-Scale Parallel Systems for Complex Crystallographic Problems in Materials Science. In: Tsutsui, S., Collet, P. (eds) Massively Parallel Evolutionary Computation on GPGPUs. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37959-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37959-8_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37958-1

  • Online ISBN: 978-3-642-37959-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics