
FacetOntology: Expressive Descriptions of Facets
in the Semantic Web

Daniel A. Smith and Nigel R. Shadbolt

Web and Internet Science Research Group,
Electronics and Computer Science,

University of Southampton,
Southampton, UK

{ds,nrs}@ecs.soton.ac.uk

Abstract. The formal structure of the information on the Semantic
Web lends itself to faceted browsing, an information retrieval method
where users can filter results based on the values of properties (“facets”).
Numerous faceted browsers have been created to browse RDF and Linked
Data, but these systems use their own ontologies for defining how data
is queried to populate their facets. Since the source data is the same
format across these systems (specifically, RDF), we can unify the differ-
ent methods of describing how to query the underlying data, to enable
compatibility across systems, and provide an extensible base ontology
for future systems. To this end, we present FacetOntology, an ontology
that defines how to query data to form a faceted browser, and a number
of transformations and filters that can be applied to data before it is
shown to users. FacetOntology overcomes limitations in the expressivity
of existing work, by enabling the full expressivity of SPARQL when se-
lecting data for facets. By applying a FacetOntology definition to data,
a set of facets are specified, each with queries and filters to source RDF
data, which enables faceted browsing systems to be created using that
RDF data.

1 Introduction

Faceted browsing is a form of information retrieval where results can be fil-
tered based on different properties of the data, known as facets. For example a
faceted browser used for a library has facets such as Author, Category, Editor
and Publisher. A user can select their Author of choice, and see only books by
that author, as well as the categories those books fall into, their editors and
publishers. Faceted browsing is effective under two contrasting scenarios [1]: (a)
when users know what they are looking for and can therefore limit by facets
which they know the values for, and (b) when users do not know the values they
are looking for, but use the facet listings to determine the possible values for a
domain; this is unlike keyword searching. Keyword searching is most effective
when users know what they are looking for, but not when they do not know the
keywords.

The graph structure of information on the Semantic Web, where instances
have multiple properties according to numerous ontologies and vocabularies is
ideal for faceted browsing. In fact, numerous browsers have been developed to
support faceted browsing over Semantic Web data. For example, /facet [2], Rhi-
zomer [3], Exhibit [4], and mSpace [5] have been developed to browse RDF and
Linked Data. These systems use their own specialised descriptions of how to
query data, typically providing a list of predicates and classes, which are used
to generate SPARQL queries over a knowledge base. All existing systems are
limited in their expressivity, and therefore limit the filters that can be placed
against data. We propose that standardising the method to select facets, using
a method that enables the full expressivity of SPARQL, would benefit multiple
faceted browsers so that a definition of the human readable facets of a domain
can be described once, and then multiple faceted browsers can use that informa-
tion to configure their framework. In addition, faceted definitions are themselves
RDF, and can therefore be published, shared amongst collaborators, and ex-
tended, to be used as the basis for new definitions.

In this paper, we present FacetOntology1, which defines a standard set of
queries to define facets in RDF. Specifically, it defines clauses that can be used
when generating SPARQL queries to select data, to produce a set of facets
from source RDF data. Faceted browsing systems are then configured to use the
resulting data and facets. In order to apply the transformations and configure
the faceted browser frameworks, a “maker” is created for each supported faceted
browsing system. The maker uses the FacetOntology definition, which creates a
standalone faceted browser based on the facets specified in the definition. The
maker harvests the raw data from the Semantic Web, and performs queries to
extract the relevant data and relationships between the facets.

We demonstrate the capability of FacetOntology using two faceted browser
“maker” systems that configure faceted browsers for a particular dataset and
domain from a FacetOntology definition. Our approach creates an abstract defi-
nition of the data cleanup transformations, which means that data querying can
be repeated programatically, when source data is updated. This enables faceted
browsers to be up-to-date and reflect changes in the source data automatically,
rather than represent the state of data from a single point in time.

We situate our work with exemplar faceted browsers using the data from
the BBC iPlayer, Francophone Music Criticism, the Rich Tags bibliographic
database and Usability UK knowledge base of usability methods. We demon-
strate that FacetOntology is effective by applying it to these exemplars using
two different faceted browser frameworks. We advance the state-of-the-art in
faceted browsing by providing a standard methodology for configuring faceted
browsers that enables faceted definitions to be shared and extended, with a richer
expressivity than existing approaches.

In Section 2 we overview existing work in this area. Section 3 presents our
FacetOntology, an ontology to define facets over multiple datasets, and in Section

1 FacetOntology OWL representation: http://danielsmith.eu/resources/
facet/#

4 we present a user interface for creating FacetOntology definitions. Then, in
Section 5 we discuss our implementations of FacetOntology browser “makers”
for Exhibit and mSpace, and exemplar public browsers that use FacetOntology.
Finally, in Section 6 we conclude.

2 Related Work

One of the first Semantic Web browsers, Tabulator [6], enabled users to specify
URIs of data, and explore that data directly. It harvested data by keeping a
local knowledge base within the user’s web browser, and populated that store
with more data as the user browsed. Whenever the user explored information
that linked to additional data, that data was harvested into the store. This
approach suffers from scalability problems when more data is downloaded, and
performance problems prevent it from browsing large-scale data sources.

In order to combat the scalability problems, more recent approaches populate
server-side triplestores. A data harvesting process is responsible for gathering
and asserting data into a server-side triplestore, and a client-side browser issues
SPARQL queries to that triplestore in order to populate the facets of a faceted
browser. One benefit of using a triplestore is that it does not typically directly
retrieve RDF documents; that task is offloaded to the process that populates
the triplestore, allowing a static set of data to sit indexed on a server, ready to
be queried efficiently. Traditionally, using a triplestore would mean foregoing the
gathering of additional linked data, however there is ongoing work by triplestore
vendors (such as OpenLink Virtuoso) which automatically dereference URIs and
crawl linked data, based on queries used.

One such approach that uses a triplestore is mSpace [7], a faceted browsing
framework that runs in a web browser. mSpace supports the querying of server-
side triplestores using SPARQL, and therefore does not require a user’s computer
to load data on-demand, allowing the interface to scale-up to larger datasets than
Tabulator. The definition of the facets present in a triplestore are defined in the
“mSpace Model”. The mSpace model defines the RDF classes of the instances in
the triplestore, and the predicate relationships that connect them. mSpace uses
this information to generate SPARQL queries used to populate the facets in its
interface.

The approaches of /facet [2] and Rhizomer [3] also use a triplestore. However,
they use the ontologies of the data as the facets, instead of a model. This ap-
proach works by querying the store for all RDF classes, and presenting them to
the user as possible facets. Following the user’s initial choice, all predicates that
connect to the chosen class are then available as facets. This benefit of using this
approach over mSpace’s model-based approach is that when new data is added
to the store that uses additional predicates or RDF classes, they appear as facets
automatically, without having to specify their relationships in a model. When
RDF is structured and filtered for use in /facet and Rhizomer, the results present
facets correctly. They provide an intuitive interface for users, and configurable
system for administrators. However, in the case where data contains inconsistent

information, for example when RDF data is asserted from the open Semantic
Web, the methodology is unsuitable, because non-human-readable information
may be exposed. This is because the Semantic Web is a general-case open world
system, designed for machine-readability, where a single RDF source file can con-
tain information on anything at all, not limited by domain or resource. Without
a definition model to filter the data, extraneous information creates additional
sparsely populated facets of limited use, and this problem would grow as the
amount of “wild data” is loaded into the triplestore.

In addition to the work above, there have also been work that defines vocab-
ularies to describe facets. Firstly, in the Longwell project [8], the list of facets
used by its faceted browser was specified in RDF as a list of rdf:Property
predicates, according to the Fresnel Facets Ontology2. For example a simple
bibliographic faceted browser is specified3 in N3 as:

@prefix facets: <http://simile.mit.edu/2006/01/ontologies/fresnel-facets> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix ow: <http://www.ontoweb.org/ontology/1#> .

:publicationFacets rdf:type facets:FacetSet ;
facets:types (ow:Publication) ;
facets:facets (

dc:type
dc:publisher
dc:contributor
dc:subject

) .

The benefit to this approach is that it is in RDF, and thus is machine read-
able, and can reference any predicate. However, it is limited because it can only
list individual predicates, rather than more complex relationships.

Taking this approach further in the ClioPatria faceted browser [9], individ-
ual widgets (in particular, individual facets) are formally described using RDF
against an ontology. Compared to the above approach of Fresnel in Longwell,
the Cliopatria approach is richer, and supports richer facets than individual
predicates. It also defines a number of specific types of facet, in order to enable
specific features. For example, “Autocomplete” facets that allow users to start
typing the name of the items, and “Hierarchy” facet that automatically expands
a tree, given the predicate that specifies the hierarchical relationship. Their ap-
proach also defines a “facetTarget” which specified the RDF class of the type
of result item. Thus, each of their facets specify facets that filter those results.
However, as in the Longwell example, more complex filtering is not specified, for
example querying against a chain of predicates, rather than a single property.

Hence, in this paper we extend the features and expressivity of these vocab-
ularies, so that facets can be specified, but also enable more complex filtering
than single predicates.

2 SIMILE Longwell Fresnel Facets Ontology: http://simile.mit.edu/2006/01/
ontologies/fresnel-facets

3 Fresnel Facet example from: http://simile.mit.edu/wiki/Longwell_User_
Guide#Facet_Configuration

3 FacetOntology: Expressive Definitions of Faceted
Metadata

In this section, we describe our ontology “FacetOntology”, which can be used
to describe facets and their relationships from multiple RDF sources. It pro-
vides a vocabulary for describing a set of facets, and for each facet it defines
descriptions of its data source. The descriptions describe RDF classes and pred-
icate relationships, which define links to other facets. These descriptions allow
SPARQL queries to be generated, the results of which are used to populate a
facet’s values. In order to enable the full expressivity of SPARQL to be used
when selecting data, we have defined “SPARQL hinting” values to be used in or-
der to further filter data. The description results in a bounded human-readable
abstraction of a subset of the RDF data sources, that can be used by a faceted
browser.

In order to illustrate how FacetOntology is used, we use a running example
with data from the Classical Music domain. Our example dataset is comprised
of the details about tracks of music, specifically a piece’s title, composer and
album. It features the music from the album “Best of Bach” that is composed
by the composer “Johann Sebastian Bach”, and is serialised in N3, see Figure 1.

@prefix : <http://facetontology.example.com/data#> .
@prefix facet: <http://danielsmith.eu/resources/facet/#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

:album1 a :Album .
:album1 :track :piece1 .
:album1 :track :piece2 .
:album1 :composer :composer1 .
:album1 rdfs:label "Best of Bach" .

:piece1 a :Piece .
:piece1 rdfs:label "Cantata BWV 1" .
:piece1 :originalName "Wie schon leuchtet der Morgenstern" .

:piece2 a :Piece .
:piece2 rdfs:label "Cantata BWV 2" .
:piece2 :originalName "Ach Gott, vom Himmel sieh darein" .

:composer1 a :Composer .
:composer1 rdfs:label "Johann Sebastian Bach" .

Fig. 1. Example N3 definition of the data used by our running example from the
Classical Music domain.

3.1 Facet Definitions

A FacetOntology definition is used to describe facets within a dataset, the de-
scriptions are organised into a FacetCollection which is a set of facets used to
describe a particular dataset. The items contained in a FacetCollection are a
FirstOrderFacet and one or more ConnectedFacets. In more detail:

1. A FirstOrderFacet, is described by an RDF class (using the rdf:type predi-
cate). For example, the Piece facet is comprised of instances of type :Piece,
as shown in Figure 1.

2. The ConnectedFacets, are described by how they connect in the data graph
in relation to the first-order facet. This is modelled as a chain of predicates
that are used to generate the SPARQL query that gathers the data for the
values of a facet. For example, the Album facet relates to the Piece facet via
the :track predicate, as shown in Figure 1.

In our classical music example, there are three classes, Piece, which represents
a single piece of music with its title, Album, which represents a grouping of
pieces, and Composer, which represents the composer of music. These classes
are linked using the :track predicate and the :composer predicate, and all
of these classes have various attributes modelled using different predicates. In
our FacetOntology definition for this data, the Piece class is used to define the
FirstOrderFacet, with the predicate :track being used as the predicate chain
to define the Album facet. The predicate chain is used in the two following
SPARQL queries to harvest data to populate the facet’s values in the classical
music’s FacetCollection, where the variables ?label and ?uri gather the label
and URI, respectively.

1. Query to gather the first-order facet of Piece:

SELECT ?label ?uri WHERE {
?uri rdf:type :Piece .
?uri rdfs:label ?label }

This query returns a table of URIs and labels that represent all of the items
to populate the Piece facet’s values.

2. Query to gather connected metadata about the Album (where the variable
?firstorder will contain the URI of the Piece in the first-order facet:

SELECT ?label ?uri ?firstorder WHERE {
?firstorder rdf:type :Piece .
?uri :track ?firstorder .
?uri rdfs:label ?label }

This query returns a table of URIs and labels to populate the values of the
Album facet, as well as the URI of FirstOrderFacet items (Pieces, in this
case) on the album. A faceted interface can use these URIs to make the link
between the FirstOrderFacets and the Album facet, so that when users filter
on an album, the pieces that are on it can be shown. The predicate that
connects a Piece to an Album is directional from the Album to the Piece, we
must also indicate that the direction of this predicate is reversed, using the
facet:reverse directive.

In order to define the Composer facet, we must define a predicate chain that
first joins to Album, and then to Composer, as the ontology that defines the
classical music data describes composers as having composed albums, and there
is no direct link to the individual pieces. As such, the same predicate definition
that is used for the Album facet (see above) is first defined, and then a predicate
composedAlbum is described, in order to complete the predicate chain.

After using FacetOntology to define the facets in our classical music example,
it produces the following facet descriptions in RDF, serialised as N3 in Figure 2.

@prefix : <http://facetontology.example.com/data#> .
@prefix facet: <http://danielsmith.eu/resources/facet/#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

:mspace a facet:StandardFacetCollection .
:mspace facet:faceturi :item .
:mspace facet:rdfsource "http://facetontology.example.com/data.n3" .

:mspace facet:faceturi :piece .
:mspace facet:faceturi :album .
:mspace facet:faceturi :composer .

:piece a facet:FirstOrderFacet .
:piece a facet:Facet .
:piece facet:class :Piece .
:piece rdfs:label "Piece" .

:album a facet:ConnectedFacet .
:album a facet:Facet .
:album facet:class :Album .
:album rdfs:label "Album" .
:album facet:nextpredicate :album_predicate .

:album_predicate a facet:Predicate .
:album_predicate facet:predicateuri :track .
:album_predicate facet:reverse "True"^^xsd:boolean .

:composer_facet a facet:ConnectedFacet .
:composer_facet a facet:Facet .
:composer_facet facet:class :Composer .
:composer_facet rdfs:label "Composer" .
:composer_facet facet:nextpredicate :composer_predicate .

:composer_predicate a facet:Predicate .
:composer_predicate facet:predicateuri :track .
:composer_predicate facet:reverse "True"^^xsd:boolean .
:composer_predicate facet:nextpredicate :composer_predicate2 .

:composer_predicate2 a facet:Predicate .
:composer_predicate2 facet:predicateuri :composer .
nb: facet:reverse is not defined for composer_predicate2

Fig. 2. Example N3 definition of a FacetOntology for the running example of Classical
Music.

The above example is the typical use case for FacetOntology, however there
is a specialised case, when there is only the definitions from literals from the

FirstOrderFacet available. This specialised case requires an additional definition
so that a SPARQL query takes the structure into account accurately. In order
to specify that a facet’s values use a predicate other than rdfs:label the
facet must be marked up as having a facet:type of facet:TypeLiteral.
The predicate to query must then be specified as the facet:labeluri. In
our classical music example, a user may wish to have a facet for the “Original
Name,” as specified by the predicate :originalName (see Figure 1). If we
use the nextpredicate definition by specifying :originalName, the query
engine will try to find an instance at that predicate, which will fail since there
is only a literal. Thus, instead we specify that this Facet has a Facet Type
(facet:facettype), and that it is facet:TypeLiteral. We then add a
definition that it also has a label URI (facet:labeluri) of :originalName.
This informs the engine that the facet instances are not RDF instances, and are
instead literals. This also means that internally, instance URIs are not used to
uniquely identify the instances, their string values are used instead. See Figure
3 for an example definition of the originalName Facet.

@prefix : <http://facetontology.example.com/data#> .
@prefix facet: <http://danielsmith.eu/resources/facet/#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

:mspace facet:faceturi :originalname .

:originalname a facet:ConnectedFacet .
:originalname a facet:Facet .
:originalname facet:class :Piece .
:originalname rdfs:label "Original Name" .
:originalname facet:type facet:TypeLiteral .
:originalname facet:labeluri :originalName .

Fig. 3. Example N3 definition of a Facet for “Original Name,” demonstrating the use
of the TypeLiteral property, using FacetOntology for the running example.

In the next section, we outline all of the data transformation directives that
FacetOntology provides so that data can be filtered and modified before inclusion
in a faceted browser.

3.2 Data Transformation

One of the areas where existing work is limited is that it assumes that data
is under our control, and can be edited freely. However, our approach instead
makes the assumption that data is published by others, and make be possibly
updated by them. Therefore, our approach is to build in data transformations
that modify the data programmatically so that it can be updated repeatedly.
Similarly, we support transforming the syntax of data values programmatically
so that the relevant aspects of data are used in the facets. For example, removing
the time from a time/date value, or applying a regular expression to clean up
the data field.

One of the powerful directives in FacetOntology is the facet:preprocess
directive which allows transformations to be applied to values in a facet, before
they are used in the faceted browser. As shown in Table 1, the values of this
directive specify the transformation that should be applied. For example, speci-
fying iso8601:striptime will remove the time from ISO8601 [10] formatted
dates, which is useful if you want to show only dates in a facet, and the times do
not matter. We predict that additional directives will be required in the future,
in particular with regards to data cleaning (e.g. applying regular expressions),
and thus the interpretation of the preprocess value is extensible.

Similarly, we have specified the facet:regex-PCRE-match predicate, which
expects a perl-compatible regular expressions (PCRE) [11] with a single matched
group, used to extract the required information from the facet value. In more
detail, Table 1 outlines the predicate directives that can be used against Facets.

Directive Value Description
facet:preprocess iso8601:striptime Remove the time from an

ISO8601 formatted date.
facet:preprocess iso8601:year Extract the year from an

ISO8601 formatted date.
facet:regex-PCRE-match PCRE with single match group Match the regular exression

using the first match.
Table 1. FacetOntology directives for transformation of data, applied to each facet.

In the next section we discuss additional selection and filtering flexibility via
SPARQL query hinting.

3.3 SPARQL Query Hinting

In addition to data transformation, it can be desirable to compute new data from
existing value(s). For example to modify units, such as converting kilometres to
miles, or to generate a value based on a combination of multiple properties,
such as generating a screen resolution from a width and height. It also may
be desirable to specify additional filters and patterns above those built into
FacetOntology.

Another requirement is to provide additional context for each facet value,
rather than only have a single value, for example to show the birth/death date
of a composer, or the URL to a thumbnail of the depiction of a value. To this
end, we have devised a set of SPARQL-hinting definitions in order to override
the default variable bindings, add more complex “AS” algebra to the SELECT
binding, and to inject additional patterns into the WHERE clauses. Through
this approach, we allow selection of data to be filtered using SPARQL’s full
expressivity, for example using complex boolean “FILTER”s, and mathematical
algebra using multiple data values in “AS” select expressions. Specifically we
define the predicate directives in Table 2.

Directive Description
facet:SPARQL-Item-Variable Specify the variable to bind to the item

URI.
facet:SPARQL-Context-Variable Specify additional variable to select (e.g.

to provide extra context on this item).
facet:SPARQL-Context-Variable-As Specify additional binding to get

from results (as specified by a
SPARQL-Context-Select-As).

facet:SPARQL-Context-Select-As Specify additional “AS” definition to use
in SELECT, specify the resulting binding
with a SPARQL-Context-Variable-As.

facet:SPARQL-Context-Variable Specify additional variable to select (e.g.
to provide extra context on this item).

facet:SPARQL-Value-Variable Specify the variable to bind to the item
value.

facet:SPARQL-Value-Select-As Specify an “AS” definition to use for the
SELECT.

facet:SPARQL-Additional-Pattern Add an additional pattern into the
WHERE.

Table 2. FacetOntology directives for hinting how to generate the facet query and
which variables to read results from.

For example, to calculate a screen resolution by multiplying the width and
height, a facet would be defined as follows:
:res-facet a facet:ConnectedFacet ;

facet:class ont:System ;
facet:type facet:TypeLiteral ;

facet:SPARQL-Item-Variable "item";
facet:SPARQL-Context-Variable "res_w";
facet:SPARQL-Context-Variable "res_h";

facet:SPARQL-Context-Variable-As "res_name_upper";
facet:SPARQL-Context-Select-As "UCASE(?res_name) AS ?res_name_upper";

facet:SPARQL-Value-Variable "val" ;
facet:SPARQL-Value-Select-As "?res_w * ?res_h AS ?val" ;

facet:SPARQL-Additional-Pattern "?item res:width ?res_w";
facet:SPARQL-Additional-Pattern "?item res:height ?res_h";
facet:SPARQL-Additional-Pattern "?item res:resolution_name ?res_name";

rdfs:label "Resolution" .

results in the following SPARQL query being generated:
SELECT ?res_w ?res_h ?item (?res_w * ?res_h AS ?val) (UCASE(?res_name) AS ?

res_name_upper)
WHERE {

?item rdf:type ont:System .
?item res:width ?res_w .
?item res:height ?res_h .
?item res:resolution_name ?res_name }

The SPARQL result processor knows from the definition to use the ?item bind-
ing as the item URI and ?val as the value. Additionally, it will also provide the

values of width and height, because SPARQL-Context-Variable has been
used to enable these bindings, and it will select ?res_name_upper as an addi-
tional context field. Thus, through the SPARQL-hinting mechanism it is possible
to provide additional context, and perform functions on the data before it is se-
lected, either through additional patterns (which can contain FILTERs), and by
using SPARQL functions on the data, in “AS” expressions.

By extending existing approaches of describing data, one of our aims is to
enable FacetOntology to support any possible dataset, and to provide as rich an
expressiveness as possible. Through the use of the above SPARQL hinting rules,
FacetOntology queries can utilise the full specification of SPARQL functions and
operators, and therefore is the full expressivity of SPARQL, which in turn has
the expressiveness of relational algebra [12]. We have designed these SPARQL
hinting patterns so that they encapsulate at least the full expressiveness of pre-
vious facet vocabularies (as discussed in Section 2), and are in fact now more
expressive than previous work. In addition, additional context can be included
using the SPARQL hinting definitions, to enable a richer faceted browser in-
terface. In the next section we present a user interface to create FacetOntology
definitions.

4 A User Interface for creating FacetOntology definitions

A FacetOntology definition is required before a facets browser can be created.
This process can be performed manually, which is indeed the way that the data
definition is performed in the existing approaches. One of our aims is to make it
easier for end-users to create faceted browsers, ideally with a minimal of technical
knowledge. To this end, we have created a user interface called “Data Picker” to
aid in the creation of FacetOntology definitions.

The “Data Picker”4 tool provides users with an intuitive interface for picking
the metadata that they wish to be included in a FacetOntology definition. The
tool works by querying a data set for all RDF classes, and a subset of the labels of
individuals of that type. These are displayed, and the user can select a class which
they want to explore further. All of the predicates that are joined to individuals
of that class are then shown, again with a sample of their values. A user can
then select which attributes they wish to be marked up using FacetOntology (see
Figure 4). While the user is selected facets, they are presented with a preview
of the facets, so that they can verify they are what they wanted, as expected.
Finally, the users publish their FacetOntology definition, ready to send to a
“maker” tool, which configures a faceted browser framework.

The need to aid manual marking up of facets is not a new problem, even
within the domain of the Semantic Web. Work by Oren et. al. [13] looked at
ranking facet quality, as an aid to automatically marking up facets, where their
technique was formally proven to show an improvement of quality. Similarly,
AKTiveRank [14] presents a technique for ranking ontologies, using structural

4 Data Picker: http://facetportal.danielsmith.eu/picker/

Fig. 4. A screenshot of the data picker running on the University of Southampton
SPARQL endpoint. The user has selected the “Agent” class and a number of literals
have been previewed as facets (“familyName”, “givenName” and “mbox_sha1sum”), and
data properties are available to explore, labeled as “linked results” (such as “member”,
“page”, and “phone”).

metrics. Such metrics could be used to inform a facet creation tool, in order to
enable an increased level of automation.

In summary, the cost of creating a FacetOntology is linear with the amount
of facets in a domain — if a domain has 4 facets, a single First Order facet is
defined by its RDF Class, and 3 Connected Facets are defined by how they link
to the First Order facet. In a domain with a larger amount of facets, a larger
definition is required, which will take more time to create.

5 Implementations of Faceted Browser Makers

To demonstrate and validate our approach, we have created two different faceted
browser “makers” that use different faceted browser frameworks to create inter-
faces over the same data source. An advantage of this approach is that if a de-
veloper is more comfortable with a particular faceted browser framework, then
they can use the one they wish. Similarly a developer may wish to migrate from
one browser or platform to another, and by having the abstract FacetOntology
definition, they do not have to reconfigure a new system. This may occur be-
cause the data requirements of a faceted browser change, for example a system
may work fine with 1000 items using Exhibit, but as that number increase, then

migration to a server-backed browser such as mSpace may be appropriate. Using
FacetOntology for this purpose would make that approach more straightforward.

The first implementation we discuss using FacetOntology is our FacetOntology
Exhibit maker5, which reads a FacetOntology definition URI, and outputs a con-
figured Exhibit installation. The core components of this process are generating
the JSON data file, and then configuring an Exhibit view that uses that data file.
Creation of the data file is performed by loading the data sources into a store,
and querying them based on the predicates, filters and SPARQL hints defined
in the FacetOntology definition. Following this process, an Exhibit HTML file
is created based on a template (to allow styling of the resulting Exhibit) which
contains each of the facets that have been defined.

The second implementation using FacetOntology is the “mSpace Maker”6,
which produces mSpaces from FacetOntology definitions. mSpace Maker auto-
mates the creation of mSpace faceted browsers, by gathering data into an mSpace
database, and configuring mSpace to use this database’s schema. The process
to configure an mSpace differs from that of Exhibit above, because rather than
holding all data in a single file, the data is stored in a relational database with a
schema that has been optimised for the patterns of querying that mSpace per-
forms. Thus, the mSpace Maker works by creating a table for each facet, and
uses foreign keys to link them together. The facets and their database table and
column names are written into the mSpace configuration, so that the mSpace
server can create SQL queries to join the tables together. Upon completion of
the data import, a URL to the mSpace is returned to the user (because mSpace
cannot be used locally, unlike Exhibit). In the next section we describe public
faceted browsers that we have created that use FacetOntology, and were created
using our makers.

5.1 Exemplar Uses

We demonstrate the flexibility of FacetOntology by applying it to different do-
mains, where the use of a faceted browser is different. Each of these browsers
demonstrates additional support that FacetOntology supports above and beyond
configurations that have been previously attempted. It is through developing
these configurations that the core requirements for FacetOntology have been
developed.

1. Francophone Music Criticism7: This faceted browser demonstrates faceted
filtering of 19th century music reviews from a digital repository. This browser
demonstrates basic FacetOntology usage, over five key facets (Collection,
Journal, Year, Author and Title), and results in a set of PDFs that the user
can then download from a digital repository.

5 FacetOntology-Exhibit: https://github.com/danielsmith-eu/
facetontology-exhibit

6 mSpace Maker: http://mspacemaker.danielsmith.eu/
7 Francophone Music Criticism: http://fmc.ecs.soton.ac.uk/

2. Rich Tags8: Faceted browsing over multiple digital repositories. This faceted
browser runs over a more sophisticated data collection engine which routinely
collects data from multiple institutional repositories into a single store. Thus,
the FacetOntology definition is applied to all sources of data, resulting in a
single browser over the composite data.

3. BBC iPlayer9: A browser for faceted filtering of television programmes that
have been broadcast over the previous 7 days, for streamed viewing online.
This browser demonstrates transforming broadcast time data into individual
dates for use in a date-picker facet (see Figure 5). The browser provides
richer faceted exploration of the data than the BBC site, and includes data
from multiple sources (specifically, the Contributor credits data), so that
users can filter shows by actor/presenter, which is not possible on the BBC
site. In order to demonstrate our Exhibit maker, we have also used the
FacetOntology definition of the iPlayer data to create a Exhibit of the same
data, as shown in Figure 6.

4. UsabilityUK10: A browser of usability methods and JISC-funded projects
that use those methods. UsabilityUK demonstrates a faceted browser where
users can search for more than one type of record. Specifically, users can
search for projects, experts or usability methods. This contrasts with other
typical faceted browsers where users search for a single type of record (such
as a TV programme, a song, or document).

Our approach supports a range of different requirements in a range of differ-
ent domains, demonstrating that FacetOntology is fit for purpose as a general
approach to semantic description of facets, which benefits from the full expres-
sivity of SPARQL.

6 Conclusion

In this paper, we present FacetOntology, an approach to defining facets for
faceted browsers. We applied our approach to BBC iPlayer, digital reposito-
ries and a usability techniques knowledge base, showing that our approach is
effective and can be applied to many domains. In more detail, we verified that
our approach works for different types of browsing across these domains, has the
full expressivity of SPARQL, and has been applied to different faceted browsing
software.

For future work, we plan to investigate appropriate methodologies for en-
abling additions to the FacetOntology data transformations (as discussed in
Section 3.2) to be created by the community, when additional transformations
are required.

8 Rich Tags: http://www.richtags.org/
9 BBC iPlayer mSpace (updates daily): http://iplayer.mspace.fm/

10 UsabilityUK: http://usabilityuk.org/

Fig. 5. The BBC iPlayer mSpace faceted browser created using FacetOntology defini-
tions.

Fig. 6. The BBC iPlayer Exhibit faceted browser (unstyled) created using Facet-
Ontology definitions.

Bibliography

[1] Hearst, M., Elliott, A., English, J., Sinha, R., Swearingen, K., Yee, K.:
Finding the flow in web site search. Communications of the ACM 45(9)
(2002) 49

[2] Hildebrand, M., van Ossenbruggen, J., Hardman, L.: /facet: A Browser
for Heterogeneous Semantic Web Repositories. In:. (2006) 272–285
10.1007/11926078_20.

[3] García, R., Gimeno, J., Perdrix, F., Gil, R., Oliva, M.: The rhizomer seman-
tic content management system. Emerging Technologies and Information
Systems for the Knowledge Society (2008) 385–394

[4] Huynh, D., Karger, D., Miller, R.: Exhibit: lightweight structured data
publishing. Proceedings of the 16th international conference on World Wide
Web (2007) 737–746

[5] m.c. schraefel, Wilson, M., Russell, A., Smith, D.A.: mspace: improving
information access to multimedia domains with multimodal exploratory
search. Commun. ACM 49(4) (2006) 47–49

[6] Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollen-
bach, J., Lerer, A., Sheets, D.: Tabulator: Exploring and Analyzing linked
data on the Semantic Web. Proceedings of the 3rd International Semantic
Web User Interaction Workshop (2006)

[7] m. c. schraefel, Smith, D.A., Owens, A., Russell, A., Harris, C., Wilson, M.:
The evolving mspace platform: leveraging the semantic web on the trail
of the memex. In: HYPERTEXT ’05: Proceedings of the sixteenth ACM
conference on Hypertext and hypermedia, New York, NY, USA, ACM Press
(2005) 174–183

[8] SIMILE: Longwell RDF Browser http://simile.mit.edu/
longwell/. (2003–2005)

[9] Hildebrand, M., Van Ossenbruggen, J.: Configuring semantic web interfaces
by data mapping. Visual Interfaces to the Social and the Semantic Web
(VISSW 2009) 443 (2009) 96

[10] International Organization for Standardization (ISO): ISO 8601:2004 Data
elements and interchange formats, Information interchange, Representation
of dates and times. (2004)

[11] Hazel, P.: PCRE: Perl Compatible Regular Expressions (2005)
[12] Angles, R., Gutierrez, C.: The expressive power of sparql. The Semantic

Web-ISWC 2008 (2008) 114–129
[13] Oren, E., Delbru, R., Decker, S.: Extending Faceted Navigation for RDF

Data. In:. (2006) 559–572 10.1007/11926078_40.
[14] Alani, H., Brewster, C., Shadbolt, N.: Ranking ontologies with AKTiveR-

ank. Lecture Notes in Computer Science 4273 (2006) 1

