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ABSTRACT
Role Based Access Control (RBAC) is a very popular ac-
cess control model, for long time investigated and widely
deployed in the security architecture of different enterprises.
To implement RBAC, roles have to be firstly identified within
the considered organization. Usually the process of (auto-
matically) defining the roles in a bottom up way, starting
from the permissions assigned to each user, is called role
mining. In literature, the role mining problem has been for-
mally analyzed and several techniques have been proposed
in order to obtain a set of valid roles.

Recently, the problem of defining different kind of constraints
on the number and the size of the roles included in the result-
ing role set has been addressed. In this paper we provide
a formal definition of the role mining problem under the
cardinality constraint, i.e. restricting the maximum number
of permissions that can be included in a role. We discuss
formally the computational complexity of the problem and
propose a novel heuristic. Furthermore we present experi-
mental results obtained after the application of the proposed
heuristic on both real and synthetic datasets, and compare
the resulting performance to previous proposals.

1. INTRODUCTION
Complex organizations need to establish access control poli-
cies in order to manage access to restricted resources. A
simple way to accomplish this task is to collect set of per-
missions in roles and then assign roles according to the re-
sponsibilities and qualifications of each employee. The Role
Based Access Control (RBAC) is a well known paradigm
to define and organize roles and permissions in an efficient
way. Introduced in the early ’90 years [4, 7],such a paradigm
has been investigated for long time and has become recently
used in different commercial systems to manage identities
and accounts [2]. The goal of RBAC is to collect set of per-
missions in roles and define a complete and efficient set of
roles that can be assigned to users in order to access re-
stricted resources. The advantage is that access control can

be centralized and decoupled from users and the costs and
the overhead of the security management can be reduced.

The correct definition of the set of roles which satisfies the
needs of the organization is the most difficult and costly task
to be performed during the implementation of a RBAC sys-
tem. Such an activity is often referred to as role engineering
and includes the correct identification of roles from the cur-
rent structural organization of the enterprise. Mainly this
task, i.e. the extraction of a complete and efficient set of
roles, can be performed using two approaches: top-down or
bottom-up role engineering. In the first case, roles are de-
fined after that the functionalities of the organization have
been well defined and studied, and elicitation activities have
been performed. The top down approach usually is labor in-
tensive and involves a large amount of work and time done
by humans especially in large enterprises with a large num-
ber of business processes, as reported in some case study
are available in the literature [18]. On the other hand, the
bottom-up process, often denoted also as role mining starts
from the analysis of the current set of permissions assigned
to users, and tries to aggregate them in order to extract
and define roles. Obviously, hybrid approaches can exist
in which both directions, top-down and bottom-up, can be
used in subsequent steps of the analysis in order to refine
the returned set of roles.

Bottom-up approach to role mining has been more inves-
tigated, since many techniques borrowed from data mining
can be applied in an automatic way to the existing config-
uration of user-permission assignments. A RBAC system
can be easily constructed in this way and a starting set of
roles can be fastly generated. The problem with such an
approach, is that the quality and the number of returned
roles often are not so good, since no semantics is taken into
consideration when the role mining process is started. In
many situations the returned set of roles might not match
any functional organization within the analyzed enterprise
and the existing business processes might not be adequately
represented. An accurate analysis of the returned results is
needed to better tune the retrieved representation of roles
to the current organizational requirements of the enterprise.
A formal definition of the Role Mining Problem (RMP) and
some of its variants has been given and deeply analyzed in
[23]. There, the NP-completeness of the (decisional) RMP
problem has been proved, and the formulation of RMP as a
graph covering problem has been done in [6, 26].
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The problem of imposing constraints on the set of roles re-
sulting after the role mining process has been considered in
the past. Statically or dynamically mutually exclusive roles
constraints have been included in RBAC models [19] and
in the NASI/NIST standards [7]. According to these con-
straints, for examples, no user can be assigned contemporary
a given set of mutually exclusive roles, or no user can acti-
vate simultaneously a set of roles in the same session. Such
constraints are often used as mechanisms to achieve separa-
tion of duty principles, preventing one user from having a
large number of roles to complete a task, or imposing restric-
tions on the minimum number of users needed to perform a
critical activity [14].

Recently, a simple classification of the constraints on the
cardinality of the number of roles, users and permissions for
a given RBAC system has been proposed [15]. The first
heuristic taking into account a cardinality constraint on the
number of permissions contained in a role has been pro-
posed by [13]. In its work, however, the proposed results
have been compared only on other heuristics which were not
able to consider constrained roles. In this work we propose
a novel heuristic for mining RBAC roles under cardinality
constraint. The algorithm is based on a previous proposal
[1], where an initial candidate role set was constructed by
considering one role for each user on the basis of the current
assignment of permissions. The role set is then refined and
updated by eliminating the roles obtained as union of other
roles already included in the set and ensuring that the car-
dinality constraint is respected. Finally, an optimization of
the role set is performed by running a lattice reduction pro-
cedure, previously described in [6]. The resulting procedure
is very efficient in terms of computation time and quality
of returned role set. To this aim we present the results ob-
tained by running our heuristics on different datasets, some
available over the network, some artificially created. The
results are compared with our implementation of the algo-
rithm presented in [13] and analyzed in terms of the metrics
presented in [17].

The remainder of this paper is organized as follows. In the
next section we discuss related works. Section 2 contains
the preliminary concepts needed to define the constrained
role mining problem and the discussion on its complexity.
In section 4 we introduce our heuristics and compare the
solution with related work in section 5. Finally Section 6
presents our conclusions and ongoing work.

2. CONSTRAINED RMP
In this section we introduce the Constrained Role Min-
ing Problem and analyze its computational complexity
showing that it is NP-complete while its optimization ver-
sion is NP-hard.

2.1 Basic Definitions
The notation we use is borrowed from the NIST standard
for Core Role-Based Access Control (Core RBAC) [7] and it
is adapted to our needs.

We denote with U = {u1, . . . , un} the set of users, with
P = {p1, . . . , pm} the set of permissions, and with R =
{r1, . . . , rs} the set of roles, where, for any r ∈ R, we have
r ⊆ P. We also define the following relations. URA ⊆ U×R

is a many-to-many mapping user-to-role assignment rela-
tion. RPA ⊆ R × P is a many-to-many mapping role-
to-permission assignment relation. UPA ⊆ U × P is a
many-to-many mapping user-to-permission assignment re-
lation. RH ⊆ R × R is a partial order over R, which is
called a role hierarchy. When (r1, r2) ∈ RH, we say that
the role r1 is senior to r2.

When needed, we will represent the assignment relations
by binary matrices. For instance, by UPA we denote the
UPA’s matrix representation. The binary matrix UPA satis-
fies UPA[i][j] = 1 if and only if (ui, pj) ∈ UPA. This means
that user ui possesses permission pj . In a similar way, we
define the matrices URA, RPA, and RH.

Given the n × m users-to-permissions assignment matrix
UPA, the role mining problem (see [23], [6], and [8]) con-
sists in finding an n × k binary matrix URA and a k × m
binary matrix RPA such that, UPA = URA ⊗ RPA, where, the
operator ⊗ is such that, for 1 ≤ i ≤ n and 1 ≤ j ≤ m,
UPA[i][j] =

∨k
h=1(URA[i][h] ∧ RPA[h][j]). Therefore, in solving

a role mining problem, we are looking for a factorization of
the matrix UPA. The smallest value k for which UPA can be
factorized as URA ⊗ RPA is referred to as the binary rank of
UPA. A candidate role consists of a set of permissions along
with a user-to-role assignment. The union of the candidate
roles is referred to as candidate role-set. A candidate role-set
is called complete if the permissions described by any UPA’s
row can be exaclty covered by the union of some candidate
roles. In other words, a candidate role-set is complete if and
only if it is a solution of the equation URA ⊗ RPA. In this
paper we consider only complete candidate role-set.

By adding a contraint t on the number of permissions that
can assigned to any roles, the t-constrained role mining prob-
lem can be defined, as follows. Given an n × m users-to-
permissions assignment matrix UPA and a positive integer
t > 1, find an n× k binary matrix URA and a k ×m binary
matrix RPA such that UPA = URA⊗RPA and, for any 1 ≤ i ≤ k,
one has |{j : RPA[i][j] = 1}| ≤ t. The computational com-
plexity of the above define problem will be discussed in the
next section.

2.2 NP-Completeness
The computational complexity of the Role Mining Prob-
lem (and of some of its variants) was considered in several
papers (see, for instance, [23], [3], [6], and [24]). In this sec-
tion we define the decisional version of the t-Constrained
Role Mining Problem and we show that it is NP-complete
(its optimization version is NP-hard). Next we recall the de-
cisional version of the Role Mining Problem.

Problem 2.1. (Role Mining Decision Problem) Given
a set of users U , a set of permissions P, a user-permission
assignment UPA, and a positive integer k < min{|U|, |P|},
are there a set of roles R, a user-to-role assignment URA,
and a role-to-permission assignment RPA such that |R| ≤ k
and UPA = URA ⊗ RPA?

In [23] it was shown that Problem 2.1 is NP-complete. This
has been proved by reducing it to the Set Basis Decision



Problem (problem SP7 in Garey and Johnson’s book [9])
which was shown to be NP-complete by Stockmeyer in [22].

The decisional version of the t-constrained role mining prob-
lem can be defined, as follows.

Problem 2.2. (t-Constrained Role Mining Decision
Problem) Given a set of users U , a set of permissions P, a
user-permission assignment UPA, and two positive integers
t and k, with t > 1 and k < min{|U|, |P|}, are there a set
of roles R, a user-to-role assignment URA, and a role-to-
permission assignment RPA such that |R| ≤ k, UPA = URA

⊗ RPA, and, for any r ∈ R, |r| ≤ t?

To prove that the above defined problem is NP-complete we
have to show that it is in NP, that another NP-complete
problem, say Π, can be reduced to it (i.e., any instance of
the problem Π can be transformed into an instance of the
t-Constrained Role Mining Decision Problem), and
that the reduction can be done in polynomial time. The
problem Π used in our simple proof, is the Role Mining
Decision Problem (i.e, Problem 2.1).

Theorem 2.1. The t-Constrained Role Mining De-
cision Problem is NP-complete.

Proof. The problem is in NP. Indeed the set R and the
matrices URA and RPA constitute a certificate/witness verifi-
able in polynomial time.
Assume we are given an instance of the Role Mining De-
cision Problem consisting of a set of users U ′, a set of
permissions P ′, a user-permission assignment UPA′, and a
positive integer k′ < min{|U ′|, |P ′|}. We show how to trans-
form it into an instance of the t-Constrained Role Min-
ing Decision Problem. The reduction is trivial. Indeed,
it is enough to set U = U ′, P = P ′, UPA = UPA′, and
k = k′ and define

t = max
ui∈U

|{pj ∈ P : UPA[i][j] = 1}|.

It is immediate to see that the above reduction can be done
in polynomial time and that a solution to the t-Constrained
Role Mining Decision Problem directly provides a solu-
tion to the Role Mining Decision Problem. Thus, the
theorem holds.

Next we define the optimization version of the t-Constrained
Role Mining Problem and we show that it is NP-hard.

Problem 2.3. (t-Constrained Role Mining Optimiza-
tion Problem) Given a set of users U , a set of permissions
P, a user-permission assignment UPA, and a positive inte-
ger t, what is the smallest integer k for which there is a set
of roles R, a user-to-role assignment URA, and a role-to-
permission assignment RPA such that |R| = k, UPA = URA

⊗ RPA, and, for any r ∈ R, |r| ≤ t?

Theorem 2.2. The t-Constrained Role Mining Op-
timization Problem is NP-hard.

Proof. The t-Constrained Role Mining Optimiza-
tion Problem is NP-hard, because there exists a trivial
polynomial time reduction from the t-Constrained Role
Mining Decision Problem to the t-Constrained Role
Mining Optimization Problem. Indeed, we can use an
algorithm solving the optimization problem as an oracle to
solve the decision problem simply by checking whether the
solution of the associated optimization problem has cardi-
nality less than or equal to k.

In [22], Stockmeyer proved that the Set Basis Decision
Problem is NP-complete by reducing to it the Vertex
Cover Decision Problem (one of Karp’s 21 NP-complete
problems [11], see also problem GT1 in [9]). The Vertex
Cover Optimization Problem is APX-complete [5], that
is, it cannot be approximated within any constant factor
in polynomial time unless P=NP. Therefore, we have the
following simple non-approximability result:

Theorem 2.3. The t-Constrained Role Mining Op-
timization Problem cannot be approximated within any
constant factor in polynomial time unless P=NP.

3. RELATED WORKS
Role engineering has been firstly introduced by Coyne et al
in [4] where the definition of a top down process for the def-
inition of roles has been discussed. Along the same research
line, several other works have been presented [18], but re-
cently, the focus of role engineering has turned to consider
more automated techniques, based on the bottom up ap-
proach, where data mining techniques are applied for the
definition of roles [12]. Role mining algorithms have been
presented based on set covering [3], graph theory [6, 26],
subset enumeration [25], database tiling [23]. The theoret-
ical aspects of the RMP have been considered in [24, 23,
3], where the complexity of the problem has been analyzed
and its equivalence to other known optimization problem
showed. Another interrelated problem, i.e. dealing with the
semantic meaning of roles, has been addressed in [16].

Cardinality constraints on the number of permissions in-
cluded in a role have been firstly considered in [13], and a
heuristic algorithm called Constrained Role Miner (CRM)
has been proposed. The CRM algorithm takes in input the
UPA matrix and returns a set of roles, each one satisfying
the given cardinality constraint. CRM is based on the idea
of clustering users having the same set of permissions and se-
lecting, as candidate roles, the roles composed of the set of
permissions satisfying the constraint and having the high-
est number of associated users. In [13], the performances
of the algorithm are evaluated on real world datasets con-
sidering different metrics (such as the number of returned
roles, the sum of the size of the user assignment and permis-
sion assignment matrices and so on), with respect to other
previously proposed algorithms. However the comparison is
performed without considering constraints, since the other
algorithms return a complete set of roles but have not the
capability of managing constraints. In section 5 we evaluate
our proposal against the result obtained after our implemen-
tation of the CRM algorithm, considering both real world
and synthetic datasets. A different kind of cardinality con-
straints, considering the number of user-role assignments,



have been considered in [10]. Such constraints can be useful
when the number of persons that can be assigned to a given
role (e.g. the number of directors, managers, etc) in a given
organization is known or can be fixed. In the paper, three
algorithms have been proposed based on a graph approach,
where the role mining problem is mapped to the problem of
finding minimum biclique cover of the edges of a bipartite
graph. The three heuristics are obtained by modifying the
basic greedy algorithm proposed in [6], and experimental re-
sults on real world datasets are reported considering some
constraints on the number of users that can be assigned to
any role. Finally cardinality constraints have also been con-
sidered in [15] where a representation of the constraints in
terms of association rules is proposed: permissions are re-
garded as attributes, and each user-permission assignment
as a transaction. To generate mutually exclusive permissions
constraints, i.e. set of permissions that cannot be assigned
to the same role, an algorithm is proposed, based on known
techniques for mining association rules in databases, and its
performance evaluated on synthetically generated datasets

4. HEURISTICS
In this section we present a family of heuristics. Each heuris-
tic takes as input the matrix UPA and returns a complete role
set satisfying the cardinality constraint (i.e., at most t per-
missions are associated to each role). We borrow the ideas
from the heuristics presented in [1] and we adapt them to
handle the cardinality constraint.

The basic idea is to select from UPA all rows having less
than t permissions in an order that will be defined below.
Such rows will correspond to candidate roles that will be
added to the candidate role-set. If there is no row having
at most t permissions, then a row is selected and, t of the
permissions included in the row are chosen (the way we select
such row and permissions gives rise to different heuristics).
The selected permissions induce a role that is added to the
candidate role-set. Then, all rows covered by the candidate
row-set are removed from UPA and the procedure is iterated
until the UPA matrix contains some rows.

The above sketched procedure is more formally described by
Algorithm 1 where we use the following notation. Given an
a × b binary matrix M, for 1 ≤ i ≤ a, with M[i] we denote
the M’s i-th row; while, with |M[i]| we denote the number
of ones appearing in M[i]. The procedures numCols(M) and
numRows(M), return the number of columns and rows, re-
spectively, of the matrix M. For a set S and an integer h, the
procedure first(S, h) returns the first h elements listed in
the set S. Given a user-permission assignment matrix UPA,
a new candidate role is generated by selecting a UPA’s row
having the least number of permissions with ties broken at
random (Lines 6-8 of Algorithm 1). If the number of per-
missions associated to the selected row (i.e., the number of
ones in UPA[selectedRow]) is at most t, then a new role is
created (Line 9 of Algorithm 1). The new role, containing
all permissions associated to the selected row, is then added
to the candidate role-set (Line 21 of Algorithm 1). In this
algorithm, the matrix uncoveredP represents the users’ per-
missions that are not covered by the roles in candidateRoles.
Once we discover a role (i.e, newRole) to be added to the
candidateRoles set, running setToZero (see Algorithm 2)
we update the matrix uncoveredP according to newRole.

All rows whose permissions are covered by the candidate
roles are removed from both matrices uncoveredP and UPA

(Lines 22-23 of Algorithm 1). removeCoveredUsers’s
pseudo-code is quite similar to the pseudo-code for set-
ToZero, hence we omit it1. Algorithm 1 halts when all
UPA’s rows have been removed (Line 5 of Algorithm 1).
If the number of permissions exceeds the cardinality con-
straint, then two possible ways of selecting the role to be
added to the candidate role-set have been considered . These
two possibilities gave rise to two heuristics referred to as t-
SMAR-0 and t-SMAR-1, respectively. In t-SMAR-0 (i.e.,
when selection is set to 0 in Algorithm 1), the new role will
simply contain the first t permissions associated to the se-
lected row (Lines 10-11 of Algorithm 1). While, in t-SMAR-
1 (i.e., when selection is set to 1 in Algorithm 1) we select a
row (Lines 13-16 of Algorithm 1) of the matrix uncoveredP
having the least number of permissions, ties broken at ran-
dom. In other words, we select a row (i.e, a users) having the
least number of permissions still uncovered. If the selected
row is associated to more than t permissions, then the new
role will only include its first t permissions (Lines 17-19 of
Algorithm 1).

Algorithm 2 setToZero(UPA, uncoveredP, newRole)

1: np← numCols(UPA)
2: nr ← numRows(UPA)
3: for i = 1 to nr do
4: permissions← {pj : 1 ≤ j ≤ np and UPA[i][j] = 1}
5: if newRole ⊆ permissions then
6: for all j such that pj ∈ newRole do
7: uncoveredP [i][j]← 0
8: end for
9: end if

10: end for
11: Remove from uncoveredP all-zeroes rows
12: return uncoveredP

Algorithm 1 returns a set of roles (i.e., rows and subsets
of rows) exactly covering the UPA matrix. As described in
[1], instead of covering the matrix UPA using its rows we
could use its columns. We refer to such a new heuristic
based on columns as t-SMAC . The only difference between
heuristics t-SMAR and t-SMAC is the way a role is com-
puted. Heuristic t-SMAC selects a permission p (i.e., a UPA

column) associated to the least number of users. Setting
U(p) = {u ∈ U : (u, p) ∈ URA} (i.e, all users having per-
mission p), the role rp induced by permission p is defined as
rp = {p′ : U(p) ⊆ U(p′)}∪ {p}. If |rp| ≤ t, then we add it to
the candidate role-set; otherwise, we add to the candidate
role-set a role comprising the “first” t permissions in rp. As
for heuristics t-SMAR, rows covered by roles in the candi-
date role-set are removed. We iterate this process until the
UPA matrix contains some rows. t-SMAC ’s pseudo-code is
quite similar to the one for t-SMAR, hence we omit it.

5. EXPERIMENTAL RESULTS
In this section we evaluate the proposed heuristic by pre-
senting some experimental results obtained executing our

1Actually, in our implementation setToZero updates both
uncoveredP and UPA, but in Algorithm 1, for the sake of
clarity, we prefer to keep separate the updating of such ma-
trices.



Algorithm 1 t-SMAR(UPA, t, selection)

1: candidateRoles← ∅
2: uncoveredP ← UPA

3: np← numCols(UPA) /∗ np is equal to the number of permissions ∗/
4: nr ← numRows(UPA) /∗ nr is equal to the number of users ∗/
5: while numRows(UPA) > 0 do
6: m← min{|UPA[i]| : 1 ≤ i ≤ nr}
7: candidateRows← {i : 1 ≤ i ≤ nr and |UPA[i]| = m}
8: selectedRow ←R candidateRows
9: newRole← {pj : 1 ≤ j ≤ np and UPA[selectedRow][j] = 1}

10: if |newRole| > t and selection == 0 then
11: newRole← first(newRole, t)
12: else if |newRole| > t and selection == 1 then
13: m← min{|uncoveredP [i]| : 1 ≤ i ≤ nr}
14: candidateRows← {i : 1 ≤ i ≤ nr and |uncoveredP [i]| = m}
15: selectedRow ←R candidateRows
16: newRole← {pj : 1 ≤ j ≤ np and uncoveredP [selectedRow][j] = 1}
17: if |newRole| > t then
18: newRole← first(newRole, t)
19: end if
20: end if
21: candidateRoles← candidateRoles ∪ {newRole}
22: uncoveredP ← setToZero(UPA, uncoveredP, newRole)
23: UPA← removeCoveredUsers(UPA, candidateRoles)
24: end while
25: return candidateRoles

Dataset #Users #Perms |UPA| min#Perms max#Perms Density

Healtcare 46 46 1,486 7 46 70.23%
Domino 79 231 730 1 209 4.00%
Emea 35 3,046 7,220 9 554 6.77%
Firewall1 365 709 31,951 1 617 12.35%
Firewall2 325 590 36,428 6 590 19.00%
Apj 2,044 1,164 6,841 1 58 0.29%
Americas large 3,485 10,127 185,294 1 733 0.53%
Americas small 3,477 1,587 105,205 1 310 1.91%
Customer 10,021 277 45,427 0 25 1.64%

Figure 1: Real-world datasets

heuristics on several input test cases and report some com-
parisons of their performance to previous proposals. We
compare our heuristics with the one described in [13] (from
now on denoted CRM). As far as we know, [13] is the only
paper to have considered the problem of constructing a role
set under cardinality constraints on the roles. In this sense,
that is the first comparison between two heuristics dealing
with cardinality constraints, since in [13] much of the discus-
sion of the experimental results focused on the comparisons
with other heuristics having no limitations on the size of the
roles.

The comparison takes into account the metrics introduced
in [17]. The goal is to validate our proposal, by showing
that its performance, regarding both the execution speed
and the quality of the returned role set, is equivalent or
better than the one returned by CRM. We would like to
point out that, using our implementation of CRM, in some
cases we obtained different values from the ones presented
in [13]. This could be due to different choices in the two

implementations (for instance, in our implementation, ties
broken at random while it is not clear how they are handled
in [13]). Moreover, we had to resolve some ambiguities we
found in the description of Algorithm 2 in [13].

All heuristics have been implemented by using Scilab [21]
Version 5.3.0 on a MacBook Pro running Mac OS X 10.6.7
(2.66 Ghz Intel Core i7, 4GB 1067Mhz DDR3 SDRAM). In
the next section, we compare our heuristics with respect to
CRM over available real-world datasets; while, in Section
5.2, we present the results obtained running the implementa-
tion of the heuristics over synthetically generated datasets.

5.1 Real-world datasets
In this section we compare, on real-world datasets described
in Table 1, CRM heuristic with our t-SMAR and t-SMAC

heuristics. Such real-world datasets are available online at
HP Labs [20] and have been used for evaluation of several
other role mining heuristics [6, 17, 13]. The datasets ameri-
cas small and americas large have been obtained from Cisco



Parameters
Dataset Heuristic NR |RH| |URA| |UPA| S1 S2 CPU time

Healtcare
t-SMAR 16 25 352 429 806 822 0.0107
t-SMAC 14 23 317 354 694 708 0.0263
CRM 14 0 317 53 370 384 0.0940

Domino
t-SMAR 20 30 142 627 799 819 0.0176
t-SMAC 22 42 186 628 856 878 0.0720
CRM 20 0 177 564 741 761 0.1604

Emea
t-SMAR 34 0 35 7211 7246 7280 0.1425
t-SMAC 40 20 63 7514 7597 7637 0.0787
CRM 34 0 35 7211 7246 7280 1.8257

Firewall 1
t-SMAR 71 90 2048 4398 6536 6607 0.8944
t-SMAC 74 102 3130 2800 6032 6106 0.1266
CRM 68 10 2465 840 3315 3383 2.6367

Firewall 2
t-SMAR 10 13 836 1119 1968 1978 0.0601
t-SMAC 10 10 963 998 1971 1981 0.0385
CRM 10 0 963 591 1554 1564 0.1246

Apj
t-SMAR 475 304 3152 2764 6220 6695 39.0043
t-SMAC 465 320 3578 2455 6353 6818 4.5203
CRM 455 3 3488 1391 4882 5337 184.9613

Americas small
t-SMAR 225 276 5045 17680 23001 23226 21.7423
t-SMAC 204 383 11936 8580 20899 21103 2.5487
CRM 209 70 15580 3249 18899 19108 54.4594

Americas large
t-SMAR 430 115 3653 103541 107309 107739 157.7549
t-SMAC 612 1647 10579 84559 96785 97397 24.4408
CRM 415 32 4333 87118 91483 91898 796.2600

Customer
t-SMAR 1154 4559 46511 7519 58589 59743 255.4128
t-SMAC 276 218 45425 531 46174 46450 9.3343
CRM 277 2 45443 279 45724 46001 425.8314

Figure 2: Results of the three heuristics over the real-world datasets

firewalls granting access to the HP network to authenti-
cated users (users’ access depends on their profiles). Similar
datasets are apj and emea. The healthcare dataset was ob-
tained from the US Veteran’s Administration; the domino
data was from a Lotus Domino server; customer is based
on the access control graph obtained from the IT depart-
ment of an HP customer. Finally, the firewall1 and firewall2
datasets are obtained as result of executing an analysis algo-
rithm on Checkpoint firewalls. The main characteristics of
the nine datasets are reported in Table 1, where we list the
number of users and permissions (second and third columns,
respectively), the overall number of permissions (i.e., |UPA|),
the minimum and maximum number of permissions assigned
to a user (sixth and seventh column, respectively), and the
UPA’s density (i.e., the ratio between |UPA| and the UPA size
– #Users × #Perms).

The considered metrics are: the number of roles (NR), the
size of the role hierarchy (|RH|), the size of the user-to-role
assignment matrix (|URA|), the size of the role-to-permission
assignment matrix (|RPA|), the sum |URA| + |RPA| + |RH| de-
noted by S1, the size of NR + |URA| + |UPA| + |RH| denoted
by S2, and the execution time expressed in seconds. This is
not at all equivalent to real-world time, but we used those
data to compare CPU usage among different heuristics as
it is irrespective of background processes that might slow
down the execution.

We first tested the heuristics when there is no constraint on
the role size (i.e., we set t equal to max#Perms). In this
case, in Algorithm 1, setting the parameter selection either
to 0 or to 1 has no effect on the returned candidate role-

set. The results we obtained by running the three heuristics
are listed in Figure 2 where both heuristics t-SMAR-0 and
t-SMAR-1 are denoted by t-SMAR. Both our heuristics be-
have pretty well on the nine datasets. Considering the size
of the candidate role-set generated by the heuristics, in four
cases out of nine (i.e., Healtcare, Domino, Emea, and Fire-
wall 2 ) our heuristics provide the same results as CRM. In
four cases out of nine (i.e., Firewal 1, Apj, Americas small,
and Americas large) CRM returns a (not so much) smaller
role-set. Finally, for the Customer dataset t-SMAC returns
the smallest role-set. Considering the CPU time, our heuris-
tics outperform CRM with improvements ranging from 50%
to 90%. If we look at parameters S1 and S2 we see that, ex-
cept for the Emea dataset, CRM has a better performance.
To improve the results we could reduce the size of the role
hierarchy RH by running the lattice-based postprocessing pro-
cedure defined in [6]. According to this procedure, each role
r ∈ R containing some other roles is substituted with the
role r′, where

r′ = r
∖ ⋃

rc : rc⊂r

rc.

If r′ is empty, then the number of roles is reduced. The sub-
stitutions continue until the lattice is completely flat (i.e., no
role contains any other role). After running this procedure,
the role hierarchy RH will be empty implying |RH| = 0. The
results obtained by running the lattice-based postprocess-
ing processing are shown in Figure 3. Notice that the above
mentioned procedure has not been applied when in Figure 2
we have |RH| = 0. As one can see, CRM never computes
a smaller role-set than the one returned by our heuristics.
Moreover, considering the parameters S1 and S2, our heuris-
tics in three cases out of nine (i.e., Healtcare, Firewall 2, and



Parameters
Dataset Heuristic NR |URA| |UPA| S1 S2 CPU time

Healtcare
t-SMAR 14 317 56 373 387 0.1238
t-SMAC 14 317 53 370 384 0.0914
CRM 14 317 53 370 384 0.0940

Domino
t-SMAR 20 177 564 741 761 0.2637
t-SMAC 22 186 358 544 566 0.2101
CRM 20 177 564 741 761 0.1604

Emea
t-SMAR 34 35 7211 7246 7280 0.1425
t-SMAC 40 63 5903 5966 6006 0.7571
CRM 34 35 7211 7246 7280 1.8257

Firewall 1
t-SMAR 65 2552 863 3415 3480 4.1333
t-SMAC 74 3130 806 3936 4010 1.9595
CRM 67 2623 827 3450 3517 2.6323

Firewall 2
t-SMAR 10 963 591 1554 1564 0.1316
t-SMAC 10 963 591 1554 1564 0.0853
CRM 10 963 591 1554 1564 0.1246

Apj
t-SMAR 454 3489 1386 4875 5329 558.9638
t-SMAC 465 3578 1347 4925 5390 210.0532
CRM 455 3497 1385 4882 5337 472.8815

Americas small
t-SMAR 197 11936 2816 14752 14949 137.1257
t-SMAC 204 11936 2106 14042 14246 26.7846
CRM 202 15384 2629 18013 18215 114.1122

Americas large
t-SMAR 412 4256 87268 91524 91936 740.6360
t-SMAC 612 10579 23908 34487 35099 512.3025
CRM 413 4333 86794 91137 91550 1062.2914

Customer
t-SMAR 276 45425 277 45702 45978 5998.957
t-SMAC 276 45425 277 45702 45978 48.3644
CRM 277 45425 279 45702 45978 461.7376

Figure 3: Results of the of lattice-based postprocessing procedure

Customer) achieve the same results as CRM; while, in the
remaining six cases they return better results. Sometime,
the CPU time needed by our heuristics is larger than the
one for CRM but still comparable.

Figure 4: Generated roles for America small

We have also evaluated our heuristics by varying the thresh-
old constraint. We performed tests on all the nine datasets,
but due to space limitation we only report the results for the
America small dataset with t ∈ {22 + 12 · i | 0 ≤ i ≤ 24}.
The reported results (see Figures 4–6) do not include the ap-
plication of the lattice-based postprocessing procedure. In
general, there are few differences between the behavior of
t-SMAR-0 and t-SMAR-1. Indeed, the graphics associated
to them almost overlap. As expected, the number of roles
increases (see Figure 4) when the constraint value decreases,
i.e. when few permissions can be assigned to each role. Our
heuristics always return a smaller role-set than the one com-
puted by CRM. According to Figure 5, the value of the con-

straint t does not affect much the computation time of our
heuristics (the same happens to CRM unless t < 46). Any-
way, CRM’s computation time is 2.5 times larger than the
one of t-SMAC and about 20 times larger than t-SMAR-0’s
(t-SMAR-1) computation time.

Figure 5: Running time for America small

Considering the parameter S2, according to Figure , we see
that in our heuristics as the value of t decreases, the param-
eters S2 decreases as well. For heuristic CRM, the value of
the parameter S2 does not change much unless t < 46. For
310 ≤ t ≤ 166, CRM generate solutions with smaller value
of S2 with respect to our heuristics; while, for 166 < t ≤ 22,
our heuristics have a better performance.

5.2 Synthetic datasets
In this section, we report the performance evaluation on syn-
thetic datasets of our heuristics compared to CRM. We fol-
lowed the approach suggested in [25] generating the datasets



Figure 6: Value of S2 for America small

by a synthetic data generator. Such a generator takes as in-
put five parameters: the number of roles NR, the number
of users NU , the number of permissions NP , the maximal
number of roles MRU that can be assigned to each user,
and the maximal number of permissions MPR each role
can have. To generate the role-to-permission assignment,
for each role r, the generator chooses a random number
Nr ∈ [1,MPR], then it randomly chooses Nr permissions
from P and assign them to r. In this way, we construct
the RPA matrix. To obtain the URA matrix, the generator,
for each user u, chooses a random number Mr ∈ [1,MRU ],
then it randomly chooses Mr roles from the generated ones
and assign them to u. Then, the UPA matrix is implicitly
defined.

NR NU NP MRU MPR

100 2000 100 3 10
100 2000 500 3 50
100 2000 1000 3 100
100 2000 2000 3 200

Figure 7: Test parameters with fixed NP/MPR ratio

We generated datasets using the parameters summarized in
Figure 7. As the synthetic data generator is randomized,
for each set of parameters, we run it ten times. On each
randomly generated dataset (i.e. for each UPA matrix we
created) both our heuristics and CRM were run. For a
specific parameter set, all reported results are averaged over
the ten runs.

Figure 8: Role-set size for fixed NP/MPR ratio

In all our experiments we set the value of the cardinality con-
straint equal to the maximum number of permissions that

can be assigned to each role (i.e., t = MPR). We tested the
heuristics on several different dataset obtained by keeping
constant some parameters while others ranged over differ-
ent values. For the sake of brevity, we report here only the
results of the experiments on the test parameters in Figure 7,
where the maximum number of permission per roles ranges
from 10 to 200 (and then the same holds for the value of con-
straint parameter t), while the ratio NP/MRP is constant
and equal to 10.

Figure 9: CPU time for fixed NP/MPR ratio

For each set of parameters we report the size of the complete
role-set generated running the heuristics (see Figure 8) as
well as the CPU time need to compute the complete role-set
(see Figure 9). We consider also Accuracy and Distance.

Figure 10: Accuracy for fixed NP/MPR ratio

Figure 11: Distance for fixed NP/MPR ratio

Accuracy (see Figure 10) is defined as the ratio between
the number of generated roles exactly matching the orig-
inal roles and the size of role sets generated by the syn-
thetic data generator (i.e., we measure the percentage of



Parameters
MPR Heuristic NR |RH| |URA| |UPA| S1 S2 CPU time

10

t-SMAR-0 99.8 59.9 5548.6 503.4 6111.9 6211.7 1.245
t-SMAR-1 99.8 59.9 5548.6 503.4 6111.9 6211.7 1.261
t-SMAC 99.6 15.3 16611.3 115.5 16742.1 16841.7 0.299
CRM 126.1 70.6 18274.9 171.3 18516.8 18642.9 28.223

50

t-SMAR-0 101.9 17.5 3673.5 2550.4 6111.9 6343.3 5.735
t-SMAR-1 102.2 21.3 3677 2550.4 6111.9 6350.9 5.735
t-SMAC 490.5 502 82506.2 1035.9 84044.1 84534.6 5.845
CRM 269.4 383 30337.3 2292.6 18516.8 33012.9 110.091

100

t-SMAR-0 101.4 12.3 3622.6 4820.7 8455.6 8557.0 11.809
t-SMAR-1 101.5 13.8 3622.9 4820.7 8457.4 8558.9 11.807
t-SMAC 924.6 1674.4 152401.2 2978.7 157054.3 157978.9 19.383
CRM 289.9 393.0 31625.3 4564.0 36582.3 36872.2 195.959

200

t-SMAR-0 100.0 3.1 3451.1 9914.5 13368.7 13468.7 21.838
t-SMAR-1 100.0 3.1 3451.1 9914.5 13368.7 13468.7 21.806
t-SMAC 1634.0 4301.4 270813.9 7924.0 283039.3 284673.3 59.069
CRM 329.5 476.1 34188.6 9741.2 44405.9 44735.4 393.904

Figure 12: Results of the four heuristics over synthetic datasets

original roles found by the heuristics). Given a complete
role-set generated by any of the heuristics, the Distance pa-
rameter (see Figure 11) measures how different is the role-
set generated by the heuristic from the original one (i.e., if
RG is the role-set generated by the synthetic data genera-
tor and RF is the role-set computed by the heuristic, then
Distance = |RF \RG|). According to data summarized in
Figures 8–11, results returned by t-SMAR-0 and t-SMAR-1
are identical and the graphics associated to them overlap.
Both heuristics are much better than CRM. Indeed, they
compute in few seconds a role-set having 100% Accuracy
and null Distance meaning that the role-set generate by the
synthetic data generator is completely reconstructed for all
the considered test cases. Notice that CRM’s Accuracy is
less than 20% and Distance and CPU time increases as the
maximum number of permissions per role does. Our heuris-
tics t-SMAR-0 and t-SMAR-1 always return a role-set con-
taining about 100 roles; while CRM returns a much larger
role-set (i.e., 4 to 15 times larger).

We also evaluated all heuristics using the metrics considered
in Section 5.1. Results are summarized in Figures 12 and 13.
We can see that, although in some case CRM returns good
value for |UPA|, in general its performances are not very good.
We also applied the lattice-based postprocessing procedure
to the role-set obtained by running the four heuristics. In
Figure 13 we report its results. The procedure improves
some of the parameters, flattening, as expected, the role
hierarchy and increasing the total CPU time. Even with
the postprocessing, the results achieved by CRM are not
so accurate. Only for the datasets constructed using the
first test parameters (i.e., when MPR = 10), CRM returns
the original number of roles (with a low Accuracy, anyway);
while, in the other test cases it remains far from the expected
number. Postprocessing has few influence on t-SMAC , since
the number of roles does not change, while only the |UPA|
values improve and in the same measure S1 and S2, too.

6. CONCLUSIONS
The role mining process, usually, returns a role infrastruc-
ture on the basis of the relationships among users and per-
missions contained in the UPA matrix. However, the defini-
tion of a role-set really reflecting the internal functionalities

of the examined organization remains a challenging task.
The need for managing different kind of constraints in role
engineering has recently been the focus of many works in
literature [13, 10, 15]. The definition and the management
of constraints in role mining are very important aspects in
role mining, since they allow the role engineer to control
the automatic process and introduce some rules that can
have impact on the retrieved structure. In this paper, we
have proposed a heuristic capable of returning a complete
role-set satisfying constraints on the maximum number of
permissions included in each role. The comparisons made
show how the results in terms of accuracy, distance, size,
and computation time improve on a previously presented
algorithm [13]. Our simple algorithm is easily extensible to
consider other kinds of cardinality constraints, such as max-
imum number of users assigned to a role or mutually ex-
clusive permissions or roles [15]. Furthermore, it is possible
to investigate on the definition of other kinds of constraints
regarding the role hierarchy and the semantic associated to
each role [16], and try to adapt the proposed algorithm in
order to return a role set satisfying the newly defined con-
straints.
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