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Improved Approximation Guarantees for Lower-Bounded Facility
Location

(Extended Abstract)
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Abstract

We consider thelower-bounded facility location(LBFL) problem (also sometimes calledload-balanced
facility location), which is a generalization ofuncapacitated facility location(UFL), where each open
facility is required to serve a certainminimumamount of demand. More formally, an instanceI of LBFL
is specified by a setF of facilities with facility-opening costs{fi}, a setD of clients, and connection
costs{cij} specifying the cost of assigning a clientj to a facility i, where thecijs form a metric. A
feasible solution specifies a subsetF of facilities to open, and assigns each clientj to an open facility
i(j) ∈ F so that each open facility servesat leastM clients, whereM is an input parameter. The cost
of such a solution is

∑
i∈F fi +

∑
j ci(j)j , and the goal is to find a feasible solution of minimum cost.

The current best approximation ratio forLBFL is 448 [18]. We substantially advance the state-of-the-
art for LBFL by devising an approximation algorithm forLBFL that achieves a significantly-improved
approximation guarantee of82.6.

Our improvement comes from a variety of ideas in algorithm design and analysis, which also yield
new insights intoLBFL. Our chief algorithmic novelty is to present an improved method for solving
a more-structuredLBFL instance obtained fromI via a bicriteria approximation algorithm forLBFL,
wherein all clients are aggregated at a subsetF ′ of facilities, each having at leastαM co-located clients
(for someα ∈ [0, 1]). One of our key insights is that one can reduce the resultingLBFL instance, denoted
I2(α), to a problem we introduce, calledcapacity-discountedUFL (CDUFL). CDUFL is a special case
of capacitated facility location (CFL) where facilities are either uncapacitated, or have finite capacity
and zero opening costs. Circumventing the difficulty thatCDUFL inherits the intractability ofCFL with
respect to LP-based approximation guarantees, we give a simple local-search algorithm forCDUFL
based on add, delete, and swap moves that achieves the same approximation ratio (of1 +

√
2) as the

corresponding local-search algorithm forUFL. In contrast, the algorithm in [18] proceeds by reducing
I2(α) to CFL, whose current-best approximation ratio is worse than thatof our local-search algorithm
for CDUFL, and this is one of the reasons behind our algorithm’s improved approximation ratio.

Another new ingredient of ourLBFL-algorithm and analysis is a subtly different method for con-
structing a bicriteria solution forI (and hence,I2(α)), combined with the more significant change that
we now choose arandomα from a suitable distribution. This leads to a surprising degree of improve-
ment in the approximation factor, which is reminiscent of the mileage provided by randomα-points in
scheduling problems.
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1 Introduction

Facility location problems have been widely studied in the Operations Research community (see, e.g., [13]).
In its simplest version,uncapacitated facility location(UFL), we are given a set of facilities with opening
costs, and a set of clients, and we want to open some facilities and assign each client to an open facility so
as to minimize the sum of the facility-opening and client-assignment costs. This problem has a wide range
of applications. For example, a company might want to open its warehouses at some locations so that its
total cost of opening warehouses and servicing customers isminimized.

We consider thelower-bounded facility location(LBFL) problem, which is a generalization ofUFL
where each open facility is required to serve a certainminimumamount of demand. More formally, anLBFL
instanceI is specified by a setF of facilities, and a setD of clients. Opening facilityi incurs afacility-
opening costfi, and assigning a clientj to a facility i incurs aconnection costcij . A feasible solution
specifies a subsetF ⊆ F of facilities, and assigns each clientj to an open facilityi(j) ∈ F so thateach
open facility serves at leastM clients, whereM is an input parameter. The cost of such a solution is the sum
of the facility-opening and connection costs, that is,

∑
i∈F fi +

∑
j ci(j)j , and the goal is to find a feasible

solution of minimum cost. As is standard in the study of facility location problems, we assume throughout
thatcijs form a metric. We use the terms connection cost and assignment cost interchangeably in the sequel.

LBFL can be motivated from various perspectives. This problem was introduced independently by
Karger and Minkoff [8], and Guha, Meyerson, and Munagala (who called the problemload-balanced facility
location) [5] (see also [3]), both of whom arrived atLBFL as a means of solving their respective buy-at-bulk
style network design problems.LBFL arises as a natural subroutine in such settings because obtaining a
near-optimal solution to the buy-at-bulk problem often entails aggregating a certain minimum demand at
certain hub locations, and then connecting the hubs via links of lower per-unit-demand cost (and higher
fixed cost).LBFL also finds direct applications in supply-chain logistics problems, where the lower-bound
constraint can be used to model the fact that it is not profitable or feasible to use services unless they satisfy
a certain minimum demand. For example (as noted in [18]), Lim, Wang, and Xu [11], useLBFL to abstract
a transportation problem faced by a company that has to determine the allocation of cargo from customers
to carriers, who then ship their cargo overseas. Here the lower bound arises because each carrier, if used, is
required (by regulation) to deliver a minimum amount of cargo. Also,LBFL is an interesting special case of
universal facility location(UniFL) [12]—a generalization ofUFL where the facility cost depends on the num-
ber of clients served by it—with non-increasing facility-cost functions.UniFL with arbitrary non-increasing
functions is not a well-understood problem, and the study ofLBFL may provide useful insights here.

Clearly, LBFL with M = 1 is simply UFL, and hence, isNP-hard; consequently, we are interested in
designing approximation algorithms forLBFL. The first constant-factor approximation algorithm forLBFL
was devised by Svitkina [18], whose approximation ratio is448. Prior to this, the only known approximation
guarantees werebicriteria guarantees. [8] and [5] independently devised(ρ, α)-approximation algorithms
via a reduction toUFL: these algorithms return a solution of cost at mostρ times the optimum where each
open facility serves at leastαM clients (α < 1, ρ is a function ofα).

Our results and techniques. We devise an approximation algorithm forLBFL that achieves a substantially-
improved approximation guarantee of82.6 (Theorem 3.1), thus significantly advancing the state-of-the-art
for LBFL. Our improvement comes from a combination of ideas in algorithm design and analysis, and yields
new insights about the approximability ofLBFL. In order to describe the ideas underlying our improvement,
we first briefly sketch Svitkina’s algorithm.

Svitkina’s algorithm begins by using the reduction in [8, 5]to obtain a bicriteria solution forI, which is
then used to convertI into anLBFL instanceI2 with facility-setF ′ ⊆ F having the following structure: (i)
all clients are aggregated atF ′ with each facilityi ∈ F ′ havingni ≥ αM co-located clients; (ii) all facilities
in F ′ have zero opening costs; and (iii) near-optimal solutions to I2 translate to near-optimal solutions to
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I (and vice versa). The goal now is to identify a subset ofF ′ to close, such that transferring the clients
aggregated at these closed facilities to the remaining (open) facilities in F ′ ensures that each remaining
facility serves at leastM demand (and the cost incurred is “small”). [18] shows that one can achieve this
by solving a suitableCFL instance. Essentially the idea is that a facilityi that remains open corresponds
to ademand pointin theCFL instance that requiresM − ni units of demand, and a facilityi that is closed
maps to asupply pointin theCFL instance havingni units that can be supplied to demand points (i.e., open
facilities). Of course, one does not know beforehand which facilities will be closed and which will remain
open; so to encode this correspondence in theCFL instance, we create at every locationi ∈ F ′, a supply
point with (suitable opening cost and) capacityM , and a demand point with demandM −ni if ni ≤ M (so
the supply point ati hasni residual capacity after satisfying this demand). (Assumeni ≤ M for simplicity;
facilities withni > M are treated differently.) Finally, [18] argues that aCFL-solution (where a supply point
may end up sendinglessthenni supply to other demand points) can be mapped to a solution toI2 without
increasing the cost incurred by much; sinceCFL admits anO(1)-approximation algorithm, one obtains an
O(1)-approximate solution toI2, and hence to the originalLBFL instanceI.

Our algorithm also proceeds by (a) obtaining anLBFL instanceI2 satisfying properties (i)–(iii) men-
tioned above, (b) solvingI2, and (c) mapping theI2-solution to a solution toI, but our implementation
of steps (a) and (b) differs from that in Svitkina’s algorithm. These modified implementations, which are
independent of each other and yield significant improvements in the overall approximation ratio even when
considered in isolation, result in our much-improved approximation ratio. We detail how we perform step
(a) later, and focus first on describing how we solveI2, which is our chief algorithmic contribution.

Our key insight is that one can solve theLBFL instanceI2 by reducing it to a new problem we introduce
that we callcapacity-discountedUFL (CDUFL), which closely resemblesUFL and admits an algorithm (that
we devise) with a much better approximation ratio thanCFL. A CDUFL-instance has the property that every
facility is either uncapacitated (i.e., has infinite capacity), or has finite capacity andzerofacility cost. The
CDUFL instance we construct consists of the same supply and demandpoints as in the reduction ofI2 to
CFL in [18], except that all supply points with non-zero openingcost are now uncapacitated. (An interesting
consequence is that if all facilities inI2 haveni ≤ M , theCDUFL instance is in fact aUFL-instance!)

We prove two crucial algorithmic results. It is not hard to see that the “standard” integrality-gap ex-
ample for the natural LP-relaxation ofCFL can be cast as aCDUFL instance, thus showing that the natural
LP-relaxation forCDUFL has a large integrality gap (see Appendix A); in fact, we are not aware of any
LP-relaxation forCDUFL with constant integrality gap. Circumventing this difficulty, we devise a local-
search algorithm forCDUFL based on add, swap, and delete moves that achieves thesame performance
guaranteesas the corresponding local-search algorithm forUFL [1] (see Section 4.2). The local-search al-
gorithm yields significant dividends in the overall approximation ratio because not only is its approximation
ratio for CDUFL better than the state-of-the-art forCFL, but also because it yields separate (asymmetric)
guarantees on the facility-opening and assignment costs, which allows one to perform a tighter analysis.
Second, we show that any near-optimalCDUFL-solution can be mapped to a near-optimal solution toI2
(see Section 4.1). As before, it could be that in theCDUFL-solution, a supply pointi (which corresponds to
facility i being closed down) sends less thanni supply to other demand points, so that closing downi entails
transferring its residual clients to open facilities. But since some supply points are now uncapacitated, it
could also be thati sends more thanni supply to other demand points. We argue that this artifact can also
be handled without increasing the solution cost by much, by opening the facilities in a carefully-chosen
subset of{i} ∪ {demand points satisfied byi} and closing down the remaining facilities. Forevery value
of α (recall that theLBFL instanceI2 is specified in terms of a parameterα), the resulting approximation
factor forI2 (Theorem 3.5) is better than the guarantee obtained forI2 in Svitkina’s algorithm; this in turn
translates (by choosingα suitably) to an improved solution to the original instance.

We now discuss how we implement step (a), that is, how we obtain instanceI2. As in [18], we arrive
atI2 by computing a bicriteria solution toLBFL, but we obtain this bicriteria solution in a different fashion
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(see Section 3). The reduction fromLBFL to UFL in [8, 5] proceeds by setting the opening cost of facility
i to fi +

2α
1−α · ∑j∈D(i) cij , whereD(i) is the set ofM clients closest toi, solving the resultingUFL in-

stance, and postprocessing using (single-facility) delete moves if such a move improves the solution cost.
We modify this reduction subtly by creating aUFL instance, where facilityi’s opening cost is instead set to
fi + 2αMRi(α), whereRi(α) is the distance betweeni and theαM -closest client to it. As in the case of
the earlier reduction, we argue that each open facilityi in the resulting solution (obtained by solvingUFL
and postprocessing) serves at leastαM clients. The overall bound we obtain on the total cost now includes

variousRi(α) terms. Instead of plugging in the (weak) boundMRi(α) ≤
∑

j∈D(i) cij
1−α (which would yield

the same guarantee as that obtained via the earlier reduction), we are able to perform a tighter analysis by
choosingα from a suitable distribution and leveraging the fact thatM

∫ 1
0 Ri(α)dα =

∑
j∈D(i) cij . (This can

easily be derandomized, since there are onlyM combinatorially distinct choices forα.) These simple modi-
fications (in algorithm-designandanalysis) yield a surprising amount of improvement in the approximation
factor, which is reminiscent of the mileage provided by (random)α-points for various scheduling problems
(see, e.g., [16]) andUFL [15, 17]. Also, we observe that one can obtain further improvements by using the
local-search algorithm of [2, 1] to solve the aboveUFL instance: this is because the resulting solution is
then already postprocessed, which allows us to exploit the asymmetric bounds on the facility-opening and
assignment costs provided by the local-search algorithm via scaling, and improve the approximation ratio.

Finally, we remark that the study ofCDUFL may provide useful and interesting insights aboutCFL.
CDUFL is a special case ofCFL that despite its special structure inherits the intractability of CFL with
respect to LP-based approximation guarantees. If one seeksto develop LP-based techniques and algorithms
for CFL (which has been a long-standing and intriguing open question), then one needs to understand how
one can leverage LP-based techniques forCDUFL, and it is plausible that LP-based insights developed for
CDUFL may yield similar insights forCFL (and potentially LP-based approximation guarantees forCFL).

Related work. As mentioned earlier,LBFL was independently introduced by [8] and [5], who used it as
a subroutine to solve the (rent-or-buyand hence, the)maybecastproblem, and theaccess network design
problem respectively. Their ideas, which lead to bicriteria guarantees forLBFL, play a preprocessing role
both in Svitkina’s algorithm forLBFL [18] and (slightly indirectly) in our algorithm.

There is a large body of literature that deals with approximation algorithms for (metric)UFL, CFL
and its variants; see [14] for a survey onUFL. The first constant approximation guarantee forUFL was
obtained by Shmoys, Tardos, and Aardal [15] via an LP-rounding algorithm, and the current state-of-the-
art is a 1.488-approximation algorithm due to Li [10]. Local-search techniques have also been utilized
to obtainO(1)-approximation guarantees forUFL [9, 2, 1]. We apply some of the ideas of [2, 1] in our
algorithm. Starting with the work of Korupolu, Plaxton, andRajaraman [9], various local-search algorithms
with constant approximation ratios have been devised forCFL, with the current-best approximation ratio
being5.83 + ǫ [19]. Local-search approaches are however not known to workfor LBFL; in Appendix B,
we show that local search based onadd, delete, andswap moves yields poor approximation guarantees.
Universal facility location (UniFL), where the facility cost is a non-decreasing function of the number of
clients served by it, was introduced by [6, 12], and [12] gavea constant approximation algorithm for this. We
are not aware of any work onUniFL with arbitrary non-increasing functions (which generalizesLBFL). [4]
give a constant approximation for the case where the cost-functions do not decrease too steeply (the constant
depends on the steepness); notice thatLBFL does not fall into this class so their results do not apply here.

2 Problem definition and notation

Recall that we have a setF of facilities with facility-opening costs{fi}, a setD of clients, metric connection
(or assignment) costs{cij} specifying the cost of assigning clientj to facility i, and a (integer) parameter

3



M . Our objective is to open a subsetF of facilities and assign each clientj to an open facilityi(j) ∈ F , so
that at leastM clients are assigned to each open facility, and the total cost incurred,

∑
i∈F fi +

∑
j ci(j)j , is

minimized. We useI to denote thisLBFL instance.
LetF ∗ andC∗ denote respectively the facility-opening and assignment cost of an optimal solution toI;

we will often refer to this solution as “the optimal solution” in the sequel. We sometimes abuse notation and
also useF ∗ to denote the set of open facilities in this optimal solution. LetOPT = F ∗+C∗ denote the total
optimal cost. For a facilityi ∈ F , letD(i) be the set ofM clients closest toi, andRi(α) denote the distance
betweeni and the⌈αM⌉-closest client toi; that is, ifD(i) = {j1, . . . , jM}, wherecij1 ≤ . . . ≤ cijM , then
Ri(α) = cij⌈αM⌉

(for 0 < α ≤ 1). Let R∗(α) =
∑

i∈F ∗ Ri(α). Observe that eachRi(α) is an increasing

function ofα, M
∫ 1
0 Ri(α)dα =

∑
j∈D(i) cij , andRi(α) ≤

(∑
j∈D(i) cij)/(M −⌈αM⌉+1) ≤

∑
j∈D(i) cij

M(1−α) .

Hence,R∗(α) is an increasing function ofα, M
∫ 1
0 R∗(α)dα ≤ C∗, andR∗(α) ≤ C∗

M(1−α) .

3 Our algorithm and the main theorem

We now give a high-level description of our algorithm using certain building blocks that are supplied in the
subsequent sections. LetI denote theLBFL instance.

(1) Obtaining a bicriteria solution. Construct aUFL instance with the same set of facilities and clients,
and the same assignment costs asI, where the opening cost of facilityi is set tofi+2αMRi(α). Use the
local-search algorithm forUFL in [2] or [1] with scaling parameterγ > 0 to solve thisUFL instance. (We
setα, γ suitably to get the desired approximation; see Theorem 3.1.) LetF ′ ⊆ F be the set of facilities
opened in theUFL-solution. Claim 3.2 and Lemma 3.3 show that eachi ∈ F ′ serves at leastαM clients.

(2) Transforming to a structured LBFL instance. We use the bicriteria solution obtained above to trans-
form I into another structuredLBFL instanceI2 as in [18]. In the instanceI2, we set the opening cost
of eachi ∈ F ′ to zero, and we “move” toi all theni ≥ αM clients assigned to it, that is, all these
clients are now co-located ati. SoI2 consists of only the points inF ′ (which forms both the facility-set
and client-set). We will sometimes use the notationI2(α) to indicate explicitly thatI2’s specification
depends on the parameterα.

(3) SolveI2 using the method described in Section 4. Obtain a solution toI by opening the same facilities
and making the same client assignments as in the solution toI2.

Analysis. Our main theorem is as follows.

Theorem 3.1 For anyα ∈ (0.5, 1] andγ > 0, the above algorithm returns a solution toI of cost at most

F ∗
(
1 + γh(α)

)
+ C∗

(
2h(α) − 1 + 2

γ

)
+ 2γαMR∗(α)h(α) + 2αMR∗(α)

whereh(α) = 1 + 4
α + 4α

2α−1 + 4
√

6
2α−1 . Thus, we can compute efficiently a solution toI of cost at most:

(i) 92.84 ·OPT , by settingα = 0.75, γ = 3/h(α);

(ii) 82.6 ·OPT , by lettingγ be a suitable (efficiently-computable) function ofα, and choosingα randomly
from the interval[0.67, 1] according to the density functionp(x) = 1

ln(1/0.67)x .

The roadmap for proving Theorem 3.1 is as follows. We first bound the cost of the bicriteria solution
obtained in step (1) in terms ofOPT (Lemma 3.3). This will allow us to bound the cost of an optimal
solution toI2, and argue that mapping anI2-solution to a solution toI does not increase the cost by much
(Lemma 3.4). The only missing ingredient is a guarantee on the cost of the solution toI2 found in step (3),
which we supply in Theorem 3.5, whose proof appears in Section 4.

The following claim follows from essentially the same arguments as in [8, 5].
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Claim 3.2 Let S′ be adelete-optimalsolution to the aboveUFL instance; that is, the totalUFL-cost does
not decrease by deleting any open facility ofS′. Then, each facility ofS′ serves at leastαM clients.

The local-search algorithms forUFL in [2, 1] have the same performance guarantees and both include a
delete-move as a local-search operation, so upon termination, we obtain a delete-optimal solution.1 Observe
that opening the same facilities and making the same client assignments as in the optimal solution toI
yields a solutionS to theUFL instance constructed in step (1) of the algorithm with facility cost FS ≤
F ∗ + 2αMR∗(α) and assignment costCS ≤ C∗. Combined with the analysis in [2, 1], this yields the
following. (For simplicity, we assume that all local-search algorithms return a local optimum; standard
arguments show that dropping this assumption increases theapproximation by at most a(1 + ǫ) factor.)

Lemma 3.3 For a given parameterγ > 0, executing the local-search algorithm in [2, 1] on the aboveUFL
instance returns a solution with facility costFb and assignment costCb satisfyingFb ≤ F ∗+2αMR∗(α)+
2C∗/γ, Cb ≤ γ

(
F ∗ + 2αMR∗(α)

)
+ C∗, where each open facility serves at leastαM clients.

Lemma 3.4 ( [18]) (i) The (assignment) costC∗
I2

of an optimal solution toI2 is at most2(Cb + C∗).
(ii) Any solution toI2 of costC yields a solution toI of cost at mostFb + Cb + C.

Theorem 3.5 For anyα > 0.5, there is ag(α)-approximation algorithm forI2(α), whereg(α) = 2
α +

2α
2α−1 + 2

√
2
α2 + 4

2α−1 .

Remark 3.6 Ourg(α)-approximation ratio forI2(α) improves upon the approximation obtained in [18] by
a factor of roughly 2for all α. Thus, plugging in our algorithm for solvingI2 in theLBFL-algorithm in [18]
(and choosing a suitableα), already yields an improved approximation factor of218 for LBFL.

Proof of Theorem 3.1 : Recall thath(α) = 1 + 4
α + 4α

2α−1 + 4
√

6
2α−1 . Note that2g(α) + 1 ≤ h(α)

for all α ∈ [0, 1]; we use this upper bound throughout below. Combining Theorem 3.5 and the bounds in
Lemmas 3.3 and 3.4, we obtain a solution toI of cost at mostFb +

(
2g(α) + 1

)
Cb + 2g(α)C∗

≤ F ∗ + 2αMR∗(α) +
2C∗

γ
+ h(α)γ

(
F ∗ + 2αMR∗(α)

)
+

(
2h(α) − 1

)
C∗

= F ∗
(
1 + γh(α)

)
+ C∗

(
2h(α) − 1 + 2

γ

)
+ 2γαMR∗(α)h(α) + 2αMR∗(α).

Part (i) follows by plugging in the values ofα andγ, and using the boundR∗(α) ≤ C∗

M(1−α) .

Let β = 0.67. For part (ii), we setγ = K√
h(α)

, whereK =

(
ln2(1/β) · Eα [h(α)] /

( ∫ 1
β
h(x)dx

1−β

)) 1
4

.

Plugging in thisγ, we see that the cost incurred is at most

F ∗
(
1 +K

√
h(α)

)
+ C∗

(
2h(α) − 1 + 2

K

√
h(α)

)
+ 2KαMR∗(α)

√
h(α) + 2αMR∗(α).

We now bound the expected cost incurred when one choosesα randomly according to the stated density
function. This will also yield an explicit expression forK (as a function ofβ), thus showing thatK (and

hence,γ) can be computed efficiently. We note thatE
[√

X
]
≤

√
E [X] and utilize Chebyshev’s Integral

inequality (see [7]): iff andg are non-increasing and non-decreasing functions respectively from [a, b] to

1A subtle point is that typically local-search algorithms terminate only with an “approximate” local optimum. However,one
can then execute all delete moves that improve the solution cost, and thereby obtain a delete-optimal solution.
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R+, then
∫ b
a f(x)g(x)dx ≤ (

∫ b

a
f(x)dx)(

∫ b

a
g(x)dx)

b−a . Observe thath(α) decreases withα. Recall thatβ = 0.67.
We have the following.

Eα [h(α)] = c2(β) :=
[ 4
β
− 4 + 8

√
6
(
π/4− tan−1(

√
2β − 1)

)
+ 2 ln

( 1

2β − 1

)
+ ln(1/β)

]
/ ln(1/β)

Eα [αMR∗(α)] = M
(∫ 1

β
R∗(x)dx

)
/ ln(1/β) ≤ C∗/ ln(1/β).

Finally, using Chebyshev’s inequality, we obtain that

Eα

[
αMR∗(α)

√
h(α)

]
≤

[
M

(∫ 1

β
R∗(x)dx

) ∫ 1
β
dx
√

h(x)

1−β

]
/ ln(1/β) ≤

[
C∗

√
c3(β)

]
/ ln(1/β),

where

c3(β) :=
(∫ 1

β
h(x)dx

)
/(1−β) =

[
4 ln(1/β)+4

√
6
(
1−

√
2β − 1

)
+3(1−β)+ ln

( 1

2β − 1

)]
/(1−β).

The second inequality follows since
(∫ 1

β dx
√

h(x)
)
/(1 − β) = Eα∼uniform in [β, 1]

[√
h(α)

]
. Plugging in

these bounds, we get thatK =
(
ln2(1/β)c2(β)/c3(β)

)0.25
and the total cost is at most

F ∗
(
1 +

( ln2(1/β)(c2(β))3
c3(β)

) 1
4

)
+ C∗

(
2c2(β)− 1 + 4

( c2(β)c3(β)
ln2(1/β)

) 1
4 + 2

ln(1/β)

)
< 82.59(F ∗ + C∗).

4 Solving instanceI2(α)

We now describe our algorithm for solving instanceI2(α) and analyze its performance guarantee, thereby
proving Theorem 3.5. As mentioned earlier, one of the key differences between our algorithm and the one
in [18] is that instead of reducingI2 to capacitated facility location (CFL), we solveI2 by reducing it to a new
problem that we callcapacity-discountedUFL (CDUFL). CDUFL is a special case ofCFL where all facilities
with non-zero opening cost are uncapacitated (i.e., have infinite capacity). Perhaps surprisingly, despite
this special structure,CDUFL inherits the intractability ofCFL with respect to LP-based approximation
guarantees: there is no known LP-relaxation forCDUFL that has constant integrality gap; Appendix A shows
that the natural LP-relaxation forCDUFL has bad integrality gap. However, as we show in Section 4.2, we
can obtain a simple local-search algorithm forCDUFL whose approximation ratio is better than the current-
best approximation forCFL.

Recall thatI2 has only the points inF ′ ⊆ F , and there areni ≥ αM co-located clients at eachi ∈ F ′.
Let l(i) = mini′∈F ′,i′ 6=i cii′ . To avoid confusion, we refer to the facilities and clients in theCDUFL instance
as supply points and demand points respectively. TheCDUFL instance created to solveI2 resembles the
CFL instance created in [18]; the difference is that all supply points with non-zero opening costs are now
uncapacitated. More precisely, at eachi ∈ F ′, we create an uncapacitated supply point with opening cost
δmin{ni,M}l(i), whereδ is a parameter we fix later. Ifni > M we create a second supply point ati with
capacityni −M and zero opening cost. Ifni < M , we create a demand point ati with demandM − ni.
Let I ′ denote thisCDUFL instance (see Fig. 1). LetFu, Fc denote respectively the set of uncapacitated and
capacitated supply points ofI ′. Roughly speaking, satisfying a demand pointi by non-co-located supply
points translates to leaving facilityi open in theI2 solution; hence, its demand is set toM −ni, which is the
number of additional clients it needs. Conversely, openingthe uncapacitated supply point ati and supplying
demand points fromi translates to closingi in theI2 solution and transferring its co-located clients to other
open facilities.
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Figure 1: (a) AnI2 instance. Each box denotes a facility, and the number insidethe box is the number of
co-located clients; a dashed arrowi → i′ denotes thati′ is the closest facility toi.
(b) The correspondingI ′ instance. The boxes and circles represent supply points anddemand points respec-
tively, and points inside a dotted oval are co-located. A solid box denotes an uncapacitated supply point,
and a dashed box denotes a capacitated facility whose capacity is shown inside the box. The number inside
a circle is the demand of that demand point. The arrows indicate a solutionS to I ′, wherei andi′ are the
two open uncapacitated supply points.

Lemma 4.1 ( [18]) There exists a solution toI ′ with facility costF ≤ δC∗
I2

and assignment costC ≤ C∗
I2

.

Theorem 4.2 (i) Given anyCDUFL instance, one can efficiently compute a solution with facility-opening
cost F̂ ≤ F sol + 2Csol and assignment cost̂C ≤ F sol + Csol, whereF sol andCsol are the facility and
assignment costs of an arbitrary solution to theCDUFL instance.
(ii) Thus, Lemma 4.1 implies that one can compute a solution to I ′ with facility costFI′ and assignment
costCI′ satisfyingFI′ ≤ (2 + δ)C∗

I2
, CI′ ≤ (1 + δ)C∗

I2
.

We defer the description of the local-search algorithm forCDUFL, and the proof of Theorem 4.2 to Sec-
tion 4.2. We first describe how to convert anI ′-solution to a solution toI2 with a small increase in cost, and
show how this combined with Theorem 4.2 leads to the approximation bound forI2 stated in Theorem 3.5.

4.1 Mapping anI ′-solution to anI2-solution

An I ′-solution need not directly translate to anI2 solution because an open supply pointi may not supply
(and hence, transfer) exactlyni units of demand (see, e.g.,i andi′ in Fig. 1(b)). Since we have uncapacitated
supply points, we have to consider both the cases wherei supplies more thanni demand (a situation not
encountered in [18]), and less thanni demand. Suppose that we are given a solutionS to I ′ with facility
costFS and assignment costCS (see Fig. 1(b)). Again, we abuse notation and useFS to also denote the
set of supply points that are opened inS. Let Ni initialized toni keep track of the number of clients at
locationi ∈ F ′. Our goal is to reassign clients (usingS as a template) so that at the end we haveNi = 0 or
Ni ≥ M for eachi ∈ F ′. Observe that once we have determined which facilities inF ′ will haveNi ≥ M
(i.e., the facilities to open in theI2-solution), one can find the best way of (re)assigning clients by solving a
min-cost flow problem. However, for purposes of analysis, itwill often be convenient to explicitly specify
a (possibly suboptimal) reassignment. We may assume that: (i) Fc ⊆ FS ; (ii) if S opens an uncapacitated
supply point located at somei ∈ F ′ with ni > M , then the demand assigned to the capacitated supply
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point ati equals its capacityni − M ; (iii) for each i ∈ F ′ with ni ≤ M , if the supply point ati is open
then it serves the entire demand of the co-located demand point; and (iv) at most oneuncapacitatedsupply
point serves, maybe partially, the demand of any demand point; we say that this uncapacitated supply point
satisfies the demand point. We reassign clients in three phases.

A1. (Removing capacitated supply points) Consider any locationi ∈ F ′ with ni > M . Let i1 and i2

denote respectively the capacitated and uncapacitated supply points located ati. If i1 suppliesx units to
the demand point at locationi′, we transferx clients from locationi to i′. Now if i1 hasy > 0 leftover
units of capacity inS, then we “move”y clients toi2 (which is not open inS). We update theNis
accordingly. Note that this reassignment effectively getsrid of all capacitated supply points. Thus, there
is now exactly one uncapacitated supply point and at most onedemand point at each locationi ∈ F ′;
we refer to these simply as supply pointi and demand pointi below.

LetXi be the total demand from other locations assigned to supply point i. LetFG = {i ∈ F ′ : Ni < Xi},
FR = {i ∈ F ′ : Ni ≥ Xi > 0}, andFB = {i ∈ F ′ : Xi = 0}. which is the set of supply points that
are not opened inS. Note thatNi ≥ min{ni,M} ≥ αM for all i ∈ F ′, andNi = min{ni,M} for all
i ∈ FR ∪ FG (because of properties (ii) and (iii) above).

A2. (Taking care of FR and demand points satisfied byFR) For eachi ∈ FR, if i suppliesx units to
demand pointi′, we movex clients fromi to i′, and updateNi, Ni′ . We now haveNi = min{ni,M}−
Xi residual clients at eachi ∈ FR, which we must reduce to 0, or increase to at leastM . We follow the
same procedure as in [18], which we sketch below.

For eachi ∈ FR, we include an edge(i, i′) where i′ ∈ F ′ is the facility nearest toi (recall that
cii′ = l(i)). We use an arbitrary but fixed tie-breaking rule here, so each component of the resulting
digraph is a directed tree rooted at either (i) a noder ∈ F ′ \ FR, or (ii) a 2-cycle(r, r′), (r′, r),
wherer, r′ ∈ FR. We break up each componentΓ into a collection of smaller components as follows.
Essentially, we move the residual clients of supply points in the component bottom-up from the leaves
up to the root, cut off the component at the first nodeu that accumulates at leastM clients, and recurse
on the portion of the component not containingu. More precisely, letΓu denote the subtree ofΓ rooted
at nodeu ∈ Γ (if u belongs to a 2-cycle then we do not include the other node of this 2-cycle inΓu).

– If
∑

i∈Γ Ni < M , or if Γ is of type (i) and all childrenu of the root satisfy
∑

i∈Γu
Ni < M , we

leaveΓ unchanged.

– Otherwise, letu be a deepest (i.e., furthest from root) node inΓ such that
∑

i∈Γu
Ni ≥ M . We delete

the arc leavingu. If this disconnectsu from Γ \ Γu, then we recurse onΓ \ Γu.

– Otherwiseu must belong to the root 2-cycle ofΓ. Let r′ be the other node of this 2-cycle. If∑
i∈Γr′

Ni ≥ M , we deleter′’s outgoing arc (thus splittingΓ into Γu andΓr′).

After applying the above procedure (to all components), if we are left with a component of type (ii) with∑
i∈ componentNi ≥ M , we convert it to type (i) by arbitrarily deleting one of the arcs of the 2-cycle.

Thus, at the end of this process, we have two types of components.

(a) A treeT rooted at a noder: we move theNi residual clients of each non-root nodei ∈ T to r.

(b) A type-(ii) treeT with root {r, r′}: we must have
∑

i∈T Ni < M . Let i′ ∈ FB be the location
nearest to{r, r′}; we move theNi residual clients of eachi ∈ T to i′.

Update theNis to reflect the above reassignment. Observe that we now haveNi = 0 or Ni ≥ M
for eachi ∈ FR, and eachi ∈ FB hasni ≥ M , or is a demand point satisfied by a supply point in
FG. Figure 2(a) shows a snapshot after steps A1 and A2 have been executed on the solution shown in
Fig. 1(b). Herei′ ∈ FR has one client left after moving clients to the bottom two facilities, which is
then transferred toi3.
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A3. (Taking care of FG and demand points satisfied byFG) For i ∈ FG, letD(i) be the set of demand
pointsj ∈ F ′, j 6= i satisfied byi, and letD′(i) = {j ∈ D(i) : Nj < M}. Note thatD(i) ⊆ FB .
Phase A2 may only increaseNj for all j in FB ∪ FG, soNj ≥ αM for all j ∈ FG ∪

(⋃
i∈FG D(i)

)
.

Fix i ∈ FG. We reassign clients so thatNj = 0 orNj ≥ M for all j ∈ {i} ∪D′(i), without decreasing
Nj for j ∈ D(i) \ D′(i). Applying this procedure to all supply points inFG will complete our task.
DefineYj = M −Nj (which is at mostM − nj) for j ∈ D′(i). We consider two cases.
–

∑
j∈D′(i) Yj ≤ Ni. For eachj ∈ D′(i), if i suppliesx units toj, we transferx clients fromi to j. If

i is now left with less thanM residual clients, we move these residual clients to the location inD(i)
nearest toi.

–
∑

j∈D′(i) Yj > Ni (see Fig. 2). Leti0 = i, andD′(i) = {i1, . . . , it}, whereci1i ≤ . . . ≤ citi. Let

ℓ = t−
⌊∑t

r=0 Nir

M

⌋
=

⌈∑t
r=1 Yir−Ni0

M

⌉
, soℓ ≥ 1 (andℓ < t sinceNi0 +Ni1 ≥ M ). Note thatℓ is

the unique index such that
∑t

r=ℓ+1 Yir ≤ ∑ℓ
r=0Nir <

∑t
r=ℓ+1 Yir +M . This enables us to transfer

Yiq clients to eachiq, q = ℓ + 1, . . . , t from the locationsiℓ, . . . , i0—we do this by transferring all
clients ofir (where1 ≤ r ≤ ℓ) before consideringir−1—and be left with at mostM residual clients
in {i0, . . . , iℓ}. We argue that these residual clients are all concentrated at i0 andi1, with i1 having
at most(1− α)M residual clients. We transfer these residual clients toiℓ+1.
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Figure 2: The number inside a box is the current value ofNi; the number labeling an arrow is the demand
assignment of theI ′-solution. The circles indicate demand pointsj with Nj < M . (a) The situation after
running steps A1 and A2 on the solution in Fig. 1(b). (b) The situation after running step A3.

Theorem 4.3 The above algorithm returns anI2-solution of cost at mostF
S

δα +CS
(
1
α+

2α
2α−1

)
. Thus, taking

S to be the solution mentioned in part (ii) of Theorem 4.2, andδ =
√

2/α
1/α+(2α)/(2α−1) , we obtain a solution

to I2(α) satisfying the approximation bound stated in Theorem 3.5.

Proof : LetS2 denote the solution computed forI2. For a supply pointi opened inS, we useCS
i to denote

the cost incurred in supplying demand fromi to the demand points satisfied byi; soCS =
∑

i∈FS CS
i . At

various steps, we transfer clients between locations according to the assignment in theCDUFL solutionS,
and the cost incurred in this reassignment can be charged against theCS

i s of the appropriate supply points.
So the cost of phase A1 is

∑
i∈Fc CS

i , and the cost of the first step of phase A2 is
∑

i∈FR CS
i .
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As in [18], we can bound the remaining cost of phase A2, incurred in transferring clients according to
the tree edges byFS/δα+

(∑
i∈FR CS

i

)
/(2α−1). When we move clients up to the root of a component, we

move strictly less thanM clients along any edge(i, i′) in that component, and sincei ∈ FR, we pay at least
δαMl(i) opening cost fori. The only unaccounted cost now is the cost incurred in step (b) of phase A2,
where we have a treeT rooted at{r, r′}. Let i′ ∈ FB be the location nearest to{r, r′}, and (say)ci′r ≤ ci′r′ .
Note that we have already bounded the cost in transferring clients tor, so we only need to bound the cost

incurred in transferring at mostM clients fromr to i′. This is at mostM · C
S
r +CS

r′

Xr+Xr′
≤

(
CS
r +CS

r′
)
/(2α− 1),

because{r, r′} sendXr +Xr′ = (nr +nr′)− (Nr +Nr′) ≥ (2α− 1)M units to demand points inFB , all
of which are at distance at leastci′r from {r, r′}.

Finally, consider phase A3 and somei ∈ FG. If
∑

j∈D′(i) Yj ≤ Ni, then the cost incurred is at

mostCS
i + M · CS

i

Xi
≤ CS

i

(
1 + 1

α

)
(asXi > Ni ≥ αM ). Now consider the case

∑
j∈D′(i) Yj > Ni.

For anyiq ∈ {iℓ+1, . . . , it} and anyir ∈ {i0, . . . , iℓ}, we haveciriq ≤ 2ciiq , so the cost of transferring
Yiq ≤ M −niq clients to eachiq, q = ℓ+1, . . . , t is at most2CS

i . Observe that(t− ℓ+1)M >
∑t

r=0Nir ,

i.e., M +
∑t

q=ℓ+1 Yir >
∑ℓ

r=0Nir , so after this reassignment, there are less thanM residual clients in
i0, . . . , iℓ. By our order of transferring clients, all these residual clients are ati0, i1 (otherwise we would have
at leastNi0+Ni1 ≥ M residual clients) with at mostM−Ni0 ≤ (1−α)M of them located ati1. The cost of

reassigning these residual clients is at most(1−α)Mcii1+Mciiℓ+1
≤ (1−α)M · CS

i∑t
r=1 Yir

+M · CS
i∑t

r=ℓ+1 Yir

,

sinceCS
i is the total cost of supplying at leastYir demand to eachir, r = 1, . . . , t. The latter expression is

at mostCS
i

(
1−α
α + 1

2α−1

)
, since

∑t
r=1 Yir > Ni0 ≥ αM ,

∑t
r=ℓ+1 Yir >

∑ℓ
r=0Nir −M ≥ (2α − 1)M .)

Thus, the cost ofS2 is at most

FS

δα
+

∑

i∈Fc

CS
i +

∑

i∈FR

CS
i ·

(
1+ 1

2α−1

)
+

∑

i∈FG

CS
i ·max

{
1+ 1

α , 2+
1−α
α + 1

2α−1

}
≤ FS

δα
+CS

(
1
α+

2α
2α−1

)
.

So if S is the solution given by part (ii) of Theorem 4.2, the cost ofS2 is at most
(

2
δα + 1

α + (1 + δ)( 1α +

2α
2α−1 )

)
C∗
I2

, and plugging in the value ofδ yields theg(α) = 2
α + 2α

2α−1 + 2
√

2
α2 + 4

2α−1 approximation

bound stated in Theorem 3.5.

4.2 A local-search based approximation algorithm forCDUFL

We now describe our local-search algorithm forCDUFL, which leads to the proof of Theorem 4.2. Let
F̂ = F̂u∪F̂c be the facility-set of theCDUFL instance, wherêFu∩F̂c = ∅. Here,F̂u are the uncapacitated
facilities with opening costs{f̂i}, and facilities inF̂c have (finite) capacities{ui} and zero opening costs.
Let D̂ be the set of clients and̂cij be the cost of assigning clientj to facility i. The goal is to open facilities
and assign clients to open facilities (respecting the capacities) so as to minimize the sum of the facility-
opening and client-assignment costs. We can find the best assignment of clients to open facilities by solving
a network flow problem, so we focus on determining the set of facilities to open.

The local-search algorithm consists of three moves:add(i′), delete(i), swap(i, i′), which respectively,
add a facilityi′ not currently open, delete a facilityi that is currently open, and swap facilityi that is open
with facility i′ that is not open. We note thatall previous (local-search) algorithms forCFL that work with
non-uniform capacities use moves that are more complicatedthan the moves above (and involve adding
and/or deleting multiple facilities at a time). The algorithm repeatedly executes the best cost-improving
move (if one exists) until no such move exists. (As mentionedearlier, to ensure polynomial time, we only
consider moves that yield significant improvement and henceterminate at an approximate local optimum;
but this has only a marginal effect on the approximation bound.) We assume for simplicity that each client
has unit demand. This is without loss of generality because,even with non-unit client-demands, one can

10



compute the best local-search move (and hence run the algorithm), and for the purposes of analysis, one can
always treat a client with integer demandd asd co-located unit-demand clients.

Analysis. Let Ŝ denote a local-optimum returned by the algorithm, with facility-opening cost (and set of
open facilities)F̂ and assignment cost̂C. Let sol be an arbitraryCDUFL solution, with facility-cost (and
set of open facilities)F sol and assignment costCsol. Note that we may assume thatF̂c ⊆ F̂ ∩ F sol. For a
facility i, we useD̂Ŝ(i) andD̂sol(i) to denote respectively the (possibly empty) set of clients served byi in

Ŝ andsol. For a clientj, let Ĉj andCsol
j be the assignment cost ofj in Ŝ andsol respectively.

We borrow ideas from the analysis of the corresponding local-search algorithm forUFL in [1], but the
presence of capacitated facilities means that we need to reassign clients more carefully to analyze the change
in assignment cost due to a local-search move. In particular, unlike the analysis in [1], where upon deletion
of a facility s ∈ F̂ we reassign only the clients currently assigned tos, in our case (as in the analysis of
local-search algorithms forCFL), we need to perform a more “global” reassignment (i.e., even clients not
assigned tos may get reassigned) along certain (possibly long) paths in asuitable graph. This also means
that we need to construct a suitable mapping between paths instead of the client-mapping considered in [1].

We construct a directed graphG with node-setD̂ ∪ F̂ , and arcs fromi to all clients inD̂
Ŝ
(i) and arcs

from all clients inD̂sol(i) to i, for every facilityi. Via standard flow-decomposition, we can decomposeG
into a collection of (simple) pathsP, and cyclesR, so that (i) each facilityi appears as the starting point of
max{0, |D̂Ŝ(i)| − |D̂sol(i)|} paths, and the ending point ofmax{0, |D̂sol(i)| − |D̂Ŝ(i)|} paths, and (ii) each
client j appears on a unique pathPj or on a cycle. LetPst(s) ⊆ P andPend(o) ⊆ P denote respectively
the collection of paths starting ats and ending ato, andP(s, o) = Pst(s) ∩ Pend(o). For a pathP =
{i0, j0, i1, j1, . . . , ik, jk, ik+1 := o} ∈ P, defineD̂(P ) = {j0, . . . , jk}, head(P ) = j0, andtail (P ) = jk.
A shift alongP means that we reassign clientjr to ir+1 for eachr = 0, . . . , k (openingo if necessary).
Note that this is feasible, since ifo ∈ F̂c, we know that|D̂

Ŝ
(o)| ≤ |D̂sol(o)| − 1 ≤ uo − 1. Let shift(P ) :=∑

j∈D̂(P )

(
Csol
j − Ĉj

)
be the increase in assignment cost due to this reassignment,which is an upper bound

on the actual increase in assignment cost ifo is added toF̂ . Also, letcost(P ) :=
∑

j∈D̂(P )

(
Csol
j + Ĉj

)
. We

define a shift along a cycleR ∈ R similarly, lettingshift(R) :=
∑

j∈D̂∩R

(
Csol
j − Ĉj

)
. By considering a

shift operation for every path and cycle inP ∪R (i.e., suitableadd moves), we get the following result.

Lemma 4.4 For everyo ∈ F sol and anyQ ⊆ Pend(o), we have
∑

P∈Q shift(P ) ≥
{
−f̂o if o ∈ F sol \ F̂ ,

0 otherwise.

For every cycleR ∈ R, we haveshift(R) ≥ 0. Thus, we havêC ≤ F sol + Csol.

Bounding the opening cost of facilities inF̂ \ F
sol. For this, we only need paths that start at facility in

F̂ \F sol. Note that all facilities in(F̂ \F sol)∪(F sol \ F̂ ) areuncapacitated. To avoid excessive notation, for
a facility o ∈ F sol\F̂ , we now usePend(o) to refer to the collection of paths ending ino that start inF̂ \F sol.
(As before,P(s, o) is the set of paths that start ats and end ato.) For anyo ∈ F sol \ F̂ , we can obtain a
1-1 mappingπ : Pend(o) 7→ Pend(o) such that ifP ∈ P(s, o), s ∈ F̂ \ F sol andπ(P ) = P ′ ∈ P(s′, o),

then (i) if |P(s, o)| ≤ |Pend(o)|
2 , we haves 6= s′; (ii) if s = s′, thenP = P ′; and (iii) π(P ′) = P . Say that

o ∈ F sol \ F̂ is capturedby s if |P(s, o)| > |Pend(o)|
2 . Note thato is captured by at most one facility in̂F .

Call a facility in F̂ \ F sol goodif it does not capture any facility, andbadotherwise.

Lemma 4.5 For any good facilitys, we have

f̂s ≤
∑

P∈Pst(s)

shift(P ) +
∑

o/∈F̂ ,P∈P(s,o)

cost
(
π(P )

)
. (1)
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Proof : Consider the movedelete(s). We upper bound the increase in reassignment cost as follows.
Considerj ∈ D̂

Ŝ
(s), and letPj ∈ P(s, o). (Recall thatPj is the unique path containingj.) If o ∈ F̂ ∩F sol,

then we perform a shift alongPj . Otherwise, letπ(Pj) ∈ P(s′, o), wheres′ 6= s. We reassign all clients
on Pj excepttail(Pj) as in the shift operation, and reassigntail(Pj) to s′. Let k = tail(Pj). Since
cs′k ≤ cs′o + Csol

k ≤ cost
(
π(Pj)

)
+ Csol

k , the increase in cost by reassigning clients onPj this way is at

mostcost
(
π(Pj)

)
+ Csol

k − Ĉk +
∑

j′∈D̂(Pj)\{k}

(
Csol
j′ − Ĉj′

)
. Thus, the actual increase in cost due to this

move, which should be nonnegative, is at most

−f̂s +
∑

o∈F̂ ,P∈P(s,o)

shift(P ) +
∑

o/∈F̂ ,P∈P(s,o)

[
shift(P ) + cost

(
π(P )

)]
.

Now consider a bad facilitys. Let capts ⊆ F sol \ F̂ be the facilities captured bys, and letos ∈ capts
be the facility nearest tos.

Lemma 4.6 For any bad facilitys, we have

f̂s ≤
∑

o∈capts

f̂o +
∑

P∈Pst(s)

shift(P ) +
∑

o/∈F̂
P∈P(s,o):π(P )6=P

cost
(
π(P )

)
+

∑

o∈capts\{os}
P∈P(s,o):π(P )=P

cost(P ). (2)

Proof : Consider the moveswap(s, os). We reassign clientj ∈ D̂
Ŝ
(s) as follows. LetPj ∈ P(s, o).

• If o ∈ F̂ ∩ F sol, or o = os andπ(Pj) = Pj, we perform a shift alongPj. The increase in assignment
cost is at mostshift(Pj).

Otherwise, letπ(Pj) ∈ P(s′, o).

• If π(Pj) 6= Pj (sos′ 6= s), we reassign̂D(Pj) \ {tail (Pj)} as in the shift operation, and assigntail(Pj)
to s′. As in the proof of Lemma 4.5, the increase in assignment costis at mostshift(Pj)+ cost

(
π(Pj)

)
.

• If π(Pj) = Pj (soo 6= os), we assignj to os. Note thatcosj ≤ Ĉj + csos ≤ Ĉj + cso ≤ Ĉj + cost(Pj),
so the increase in assignment cost is at mostcost(Pj).

This gives the inequality

0 ≤ f̂os − f̂s +
∑

P∈P(s,o):o∈F̂ or
o=os, π(P )=P

shift(P ) +
∑

o/∈F̂

∑

P∈P(s,o):π(P )6=P

[
shift(P ) + cost

(
π(P )

)]

+
∑

o/∈F̂ :o6=os

∑

P∈P(s,o):π(P )=P

cost(P ).

(3)

Now consider the operationadd(o) for all o ∈ capts \ {os}, and apply Lemma 4.4 takingQ = {P ∈
P(s, o) : π(P ) = P}. This yields the inequality0 ≤ f̂o +

∑
P∈P(s,o):π(P )=P shift(P ) for eacho ∈

capt(s) \ {os}. Adding these inequalities to (3), and rearranging proves the lemma.

Proof of Theorem 4.2 : We prove part (i); part (ii) follows directly from part (i) and Lemma 4.1. Lemma 4.4
boundsĈ. Consider adding (1) for all good facilities and (2) for all bad facilities, and the vacuous equality
f̂i = f̂i for all i ∈ F̂∩F sol. The LHS of the resulting inequality is preciselŷF . Thef̂is on the RHS add up to
give at mostF sol. We claim that each pathP ∈ ⋃

s∈F̂\F sol Pst(s) contributes at mostshift(P )+cost(P ) =

2
∑

j∈D̂(P )
Csol
j to the RHS. Thus the RHS is at mostF sol + 2Csol, and we obtain that̂F ≤ F sol + 2Csol.
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Each pathP in
⋃

s/∈F sol,o∈F̂
P(s, o) appears exactly once, either in (1) or in (2), and contributesshift(P ).

Now consider a pathP ∈ ⋃
s/∈F sol,o/∈F̂ P(s, o), and letπ(P ) = P ′ ∈ P(s′, o). Note thatπ(P ′) = P . If

P ′ 6= P , thenP appears twice in our inequality-system: once in the inequality for s contributingshift(P )
(due toP ), and once in the inequality fors′ contributingcost(P ) (due toP ′). If P ′ = P , thens = s′

and s is a bad facility; nowP appears only in (2) (fors) and contributes eithershift(P ) if o = os, or
shift(P ) + cost(P ) otherwise.

Corollary of Theorem 4.2: There is a
(
1 +

√
2
)
-approximation algorithm forCDUFL.

Proof : We takesol in part (i) of Theorem 4.2 to be an optimum solution (with costF opt + Copt) to the
instance, and scale the facility costs byσ before running the local-search algorithm. The solution returned
has costF + C ≤

(
F opt + 2

σ · Copt
)
+

(
σF opt + Copt

)
. Settingσ =

√
2 yields the result.
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A Integrality-gap example for the natural LP-relaxation fo r CDUFL

Let
(
F̂ = F̂u ∪ F̂c, D̂, {f̂i}, {ui}, {ĉij}

)
be aCDUFL instance with facility-set̂F (whereui = ∞ for all

i ∈ F̂u, andf̂i = 0 for all i ∈ F̂c), and client-set̂D. We consider the following LP-relaxation. We usei to
index facilities, andj to index clients. Note that we may assume that all facilitiesin F̂c are open.

min
∑

i∈F̂u

f̂iyi +
∑

j,i

ĉijxij (LP)

s.t.
∑

i

xij ≥ 1 for all j

xij ≤ yi for all i ∈ F̂u, j
∑

j

xij ≤ ui for all i ∈ F̂c

xij , yi ≥ 0 for all i, j.

Hereyi denotes if facilityi is open, andxij denotes if clientj is assigned to facilityi. (We assume that each
client has unit demand.)

Now consider the following simpleCDUFL instance. We have two facilitiesi andi′, andu+1 clients, all
present at the same location. Facilityi is uncapacitated and has opening costf , and facilityi′ has capacity
u (and zero opening cost). Any solution toCDUFL must open facilityi and therefore incur cost at leastf .
However, there is a feasible solution to (LP) of costfu+1 : we setyi = 1

u+1 , andxij = 1
u+1 , xi′j = u

u+1 .
Thus, the integrality gap of (LP) is at leastu+ 1.

B The locality gap of a local-search algorithm for LBFL

We show that the local-search algorithm based onadd, delete, andswap moves—that is, adding/dropping
one facility (withadd permitted only if it preserves feasibility), or deleting one facility and adding another—
has a badlocality gap, which is the maximum ratio between the cost of a locally-optimal solution and
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that of an (globally) optimal solution. Consider theLBFL instance shown below with facility-setF =
{o, s1, s2, . . . , sM}, and client-setD = D1 ∪ D2 ∪ . . . ∪ DM , where theDis are disjoint sets of sizeM .
The facility-opening costs are as follows:fo = M2 + ǫ andfsi = M for eachi ∈ {1, 2, . . . ,M}. For
eachi = 1, . . . ,m and each clientj ∈ Di, we havecoj = 1, csij = M . All other distances are defined by
taking the metric completion with respect to thesecijs. One can verify that the solutionS which opens the
facilities {s1, s2, . . . , sM} is a local optimum. The cost of this solution isM2 +M3. However, the optimal
solution opens facility{o}, and incurs a total cost of2M2 + ǫ. Thus, the locality gap is at leastM/2.

.

DM

D2

1

1 1

1

1
1

M

M

s1
s2

sM

o

D1

M

We can modify this example to show that the locality gap remains bad, even if aim for a bicriteria
solution and consider anadd move to be permissible if every open facility can be assignedat leastαM
clients. The only change is that each setDi now hasαM clients:S is still a local optimum, and the locality
gap is therefore at leastαM/2.

Bad example with zero facility-opening costs. Even in the setting where all facilities have zero open-
ing cost (as in theI2 instance), we can construct bad examples for local-search based onadd, delete,
and swap moves. For simplicity, first suppose thatM = 2. Consider a cycle with4k nodes, which are
labeledo0, j0, s0, j1, o1, j2, s1, j3, . . . , or, j2r, sr, j2r+1, . . . , ok−1, j2k−2, sk−1, j2k−1, o0. We have2k facil-
itiesF = {o0, . . . , ok−1, s0, . . . , sk−1}, and2k clientsD = {j0, j1, . . . , j2k−1} (see Fig. 3). We define the
following distances.

• coij2i mod 2k
= coij(2i−1) mod 2k

= 1 for all i = 0, . . . k − 1.

• csij2i = csij(2i+1)
= k − ǫ for all i = 0, . . . , k − 1.

All other distances are defined by taking the metric completion with respect to thesecijs.
The solutionS which opens facilities{s0, s1, . . . , sk−1} is a local optimum: noadd move is feasible,

and it is easy to see that nodelete move improves the cost. Consider a swap move, which we may assume
is of the formswap(sr, o0) by symmetry. The new client-assignment will not necessarily assign the clients
j2r andj2r+1 (which were previously assigned tosr) to o0. However, the intuition is that the long cycle will
lead to a large increase in assignment cost. The optimal way of reassigning clients is to assignj2k−1, j0 to
oo, assignj2i+1, j2i+2 to si for i ∈ {0, . . . , r − 1} (which is empty ifr = 0), and assignj2i, j2i−1 to si
for i ∈ {r + 1, . . . , k − 1} (which is empty ifr = k − 1). The cost increase due to this reassignment is
2(1− k + ǫ) + (k − 1) · 2 > 0. Thus,S is a local optimum.

The cost ofS is 2k(k − ǫ). However, the optimal solution opens facilities{o0, . . . , ok−1}, and has a
total cost of2k. So this instance shows a locality gap ofk, and sincek can be made arbitrarily large, this
shows an unbounded locality gap.

The above example can be extended to all values ofM . For eachM , letGM be anM -regular bipartite
graph with vertex setV = {o1, o2, ..., oℓ} ∪ {s1, s2, ..., sℓ} with a large girthT . We useGM to construct
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k − ǫ

j2k−2

j2k−3 j2

Figure 3: Bad locality-gap example with 0 facility costs

the followingLBFL instance. The set of facilities is{o1, . . . , oℓ, s1, . . . , sℓ}. For each edge(sn, om) in GM ,
we create a clientjnm with csnjnm = T − ǫ andcomjnm = 1. As before, one can argue that the solutionS
that opens facilities{s1, s2, . . . , sℓ} is a local optimum. The cost of this solution isℓM(T − ǫ), whereas the
solution that opens facilities{o1, . . . , oℓ} has total cost ofℓM . So the locality gap isT , which can be made
arbitrarily large.
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