arxiv:1104.3128v2 [cs.DS] 29 Aug 2012

Improved Approximation Guarantees for Lower-Bounded IRgci
Location
(Extended Abstract)

Sara Ahmadiah Chaitanya Swamy

Abstract

We consider théiower-bounded facility locatiofLBFL) problem (also sometimes callexhd-balanced
facility location), which is a generalization afncapacitated facility locatioUFL), where each open
facility is required to serve a certaminimumamount of demand. More formally, an instarcef LBFL
is specified by a seF of facilities with facility-opening costg f; }, a setD of clients, and connection
costs{c;; } specifying the cost of assigning a cliento a facility ¢, where thec;;s form a metric. A
feasible solution specifies a subgébf facilities to open, and assigns each cligrib an open facility
i(j) € F so that each open facility servasleast)M clients where)M is an input parameter. The cost
of such a solution i$ ", - i +3_; ci(;);, and the goal is to find a feasible solution of minimum cost.

The current best approximation ratio idBFL is 448 [18]. We substantially advance the state-of-the-
art for LBFL by devising an approximation algorithm foBFL that achieves a significantly-improved
approximation guarantee 82.6.

Our improvement comes from a variety of ideas in algorithrsigie and analysis, which also yield
new insights intoLBFL. Our chief algorithmic novelty is to present an improved moek for solving
a more-structuretiBFL instance obtained fror via a bicriteria approximation algorithm faBFL,
wherein all clients are aggregated at a suliSenf facilities, each having at least\/ co-located clients
(for somex € [0, 1]). One of our key insights is that one can reduce the resuliBfg. instance, denoted
7> («), to a problem we introduce, calledpacity-discounteddFL (CDUFL). CDUFL is a special case
of capacitated facility locationGFL) where facilities are either uncapacitated, or have findgacity
and zero opening costs. Circumventing the difficulty @BXUFL inherits the intractability oCFL with
respect to LP-based approximation guarantees, we give plesilocal-search algorithm foEDUFL
based on add, delete, and swap moves that achieves the sproziayation ratio (ofl + /2) as the
corresponding local-search algorithm tdFL. In contrast, the algorithm in [18] proceeds by reducing
Z>(«) to CFL, whose current-best approximation ratio is worse thandhatr local-search algorithm
for CDUFL, and this is one of the reasons behind our algorithm’s imgad@pproximation ratio.

Another new ingredient of ourBFL-algorithm and analysis is a subtly different method for-con
structing a bicriteria solution fdf (and henceZ:(«)), combined with the more significant change that
we now choose aandoma from a suitable distribution. This leads to a surprisingréegf improve-
ment in the approximation factor, which is reminiscent @& thileage provided by randompoints in
scheduling problems.

*{sahmadian, cswamy}@math.uwaterloo.ca. Dept. of Combinatorics and Optimization, Univ. Waterl®dgaterloo,
ON N2L 3G1. Supported in part by NSERC grant 327620-09. Thersgauthor is also supported by an Ontario Early Researcher
Award.

http://arxiv.org/abs/1104.3128v2

1 Introduction

Facility location problems have been widely studied in the@tions Research community (see, €.gl, [13]).
In its simplest versionuncapacitated facility locatiolfUFL), we are given a set of facilities with opening
costs, and a set of clients, and we want to open some fegiéitiel assign each client to an open facility so
as to minimize the sum of the facility-opening and cliergigsment costs. This problem has a wide range
of applications. For example, a company might want to opemérehouses at some locations so that its
total cost of opening warehouses and servicing customeniisiized.

We consider thdower-bounded facility locatio{LBFL) problem, which is a generalization @fFL
where each open facility is required to serve a centaimmumamount of demand. More formally, aBFL
instanceZ is specified by a seF of facilities, and a seD of clients. Opening facility: incurs afacility-
opening costf;, and assigning a client to a facility < incurs aconnection cost;;. A feasible solution
specifies a subsdt C F of facilities, and assigns each cliento an open facilityi(j) € F so thateach
open facility serves at leadt! clients whereM is an input parameter. The cost of such a solution is the sum
of the facility-opening and connection costs, thadis,. - f; + Zj ci(j);» and the goal is to find a feasible
solution of minimum cost. As is standard in the study of facillocation problems, we assume throughout
thatc;;s form a metric. We use the terms connection cost and assigronst interchangeably in the sequel.

LBFL can be motivated from various perspectives. This problera waoduced independently by
Karger and Minkoff([8], and Guha, Meyerson, and Munagalaq'e#lled the problertoad-balanced facility
location) [5] (see also[[B]), both of whom arrived BBFL as a means of solving their respective buy-at-bulk
style network design problemd4.BFL arises as a natural subroutine in such settings becausiaingta
near-optimal solution to the buy-at-bulk problem oftenaélataggregating a certain minimum demand at
certain hub locations, and then connecting the hubs via lofklower per-unit-demand cost (and higher
fixed cost).LBFL also finds direct applications in supply-chain logisticelpems, where the lower-bound
constraint can be used to model the fact that it is not prdéitabfeasible to use services unless they satisfy
a certain minimum demand. For example (as noted ih [18]), Mfang, and Xul[[11], useBFL to abstract
a transportation problem faced by a company that has tordegterthe allocation of cargo from customers
to carriers, who then ship their cargo overseas. Here therlbaund arises because each carrier, if used, is
required (by regulation) to deliver a minimum amount of carglso, LBFL is an interesting special case of
universal facility location(UniFL) [12]—a generalization dfFL where the facility cost depends on the num-
ber of clients served by it—with non-increasing facilityst functions.UniFL with arbitrary non-increasing
functions is not a well-understood problem, and the studyB&iL may provide useful insights here.

Clearly, LBFL with M = 1 is simply UFL, and hence, idNNP-hard; consequently, we are interested in
designing approximation algorithms foBFL. The first constant-factor approximation algorithm f@FL
was devised by Svitkina [18], whose approximation ratidig. Prior to this, the only known approximation
guarantees wergicriteria guarantees [8] and [5] independently deviseg, «)-approximation algorithms
via a reduction tdJFL: these algorithms return a solution of cost at mmstnes the optimum where each
open facility serves at least)M clients ¢ < 1, p is a function ofe).

Ourresults and techniques. We devise an approximation algorithm t@FL that achieves a substantially-
improved approximation guarantee &#.6 (Theoreni_3.11), thus significantly advancing the statehefdrt
for LBFL. Our improvement comes from a combination of ideas in allgoridesign and analysis, and yields
new insights about the approximability I0BBFL. In order to describe the ideas underlying our improvement,
we first briefly sketch Svitkina’s algorithm.

Svitkina’s algorithm begins by using the reduction[in[Bt&pbtain a bicriteria solution faf, which is
then used to convefff into anLBFL instanceZ, with facility-set 7/ C F having the following structure: (i)
all clients are aggregated At with each facility; € 7' havingn; > «M co-located clients; (ii) all facilities
in 7' have zero opening costs; and (iii) near-optimal solutian®,ttranslate to near-optimal solutions to

7 (and vice versa). The goal now is to identify a subsefofto close, such that transferring the clients
aggregated at these closed facilities to the remainingn{ofailities in 7 ensures that each remaining
facility serves at leasd/ demand (and the cost incurred is “small). [18] shows that can achieve this
by solving a suitableCFL instance. Essentially the idea is that a facilitthat remains open corresponds
to ademand pointn the CFL instance that require&/ — n; units of demand, and a facilitythat is closed
maps to ssupply poinin the CFL instance having; units that can be supplied to demand points (i.e., open
facilities). Of course, one does not know beforehand whadilifies will be closed and which will remain
open; so to encode this correspondence inahk instance, we create at every locatior F’, a supply
point with (suitable opening cost and) capaditl; and a demand point with demand — n; if n, < M (so
the supply point at hasn; residual capacity after satisfying this demand). (Assume& M for simplicity;
facilities withn; > M are treated differently.) Finally, [18] argues thatRL-solution (where a supply point
may end up sendinlgssthenn; supply to other demand points) can be mapped to a soluti@p Wwithout
increasing the cost incurred by much; sir@eL admits anO(1)-approximation algorithm, one obtains an
O(1)-approximate solution t@,, and hence to the originaBFL instanceZ.

Our algorithm also proceeds by (a) obtainingl&FL instanceZ, satisfying properties (i)—(iii) men-
tioned above, (b) solvind@,, and (c) mapping th&;-solution to a solution td@, but our implementation
of steps (a) and (b) differs from that in Svitkina’s algonith These modified implementations, which are
independent of each other and yield significant improveminthe overall approximation ratio even when
considered in isolation, result in our much-improved agjnation ratio. We detail how we perform step
(a) later, and focus first on describing how we sdlyewhich is our chief algorithmic contribution.

Our key insight is that one can solve thgFL instanceZ, by reducing it to a new problem we introduce
that we callcapacity-discountetFL (CDUFL), which closely resemblasFL and admits an algorithm (that
we devise) with a much better approximation ratio tie#.. A CDUFL-instance has the property that every
facility is either uncapacitated (i.e., has infinite capgcior has finite capacity anzerofacility cost. The
CDUFL instance we construct consists of the same supply and depmnid as in the reduction @, to
CFL in [18], except that all supply points with non-zero openingt are now uncapacitated. (An interesting
consequence is that if all facilities iy haven; < M, theCDUFL instance is in fact &FL-instance!)

We prove two crucial algorithmic results. It is not hard t@ skat the “standard” integrality-gap ex-
ample for the natural LP-relaxation 6FL can be cast as@DUFL instance, thus showing that the natural
LP-relaxation forCDUFL has a large integrality gap (see Appendix A); in fact, we aseaware of any
LP-relaxation forCDUFL with constant integrality gap. Circumventing this diffigylwe devise a local-
search algorithm foCDUFL based on add, swap, and delete moves that achievesathe performance
guaranteesas the corresponding local-search algorithmust [1] (see Sectioi 4]12). The local-search al-
gorithm yields significant dividends in the overall approation ratio because not only is its approximation
ratio for CDUFL better than the state-of-the-art f6FL, but also because it yields separate (asymmetric)
guarantees on the facility-opening and assignment costighvallows one to perform a tighter analysis.
Second, we show that any near-optinedUFL-solution can be mapped to a near-optimal solutioff+4o
(see Sectioh 411). As before, it could be that in@mUFL-solution, a supply point (which corresponds to
facility 7 being closed down) sends less tharsupply to other demand points, so that closing dewntails
transferring its residual clients to open facilities. Birtcg& some supply points are nhow uncapacitated, it
could also be that sends more than, supply to other demand points. We argue that this artifactatso
be handled without increasing the solution cost by much, gsnog the facilities in a carefully-chosen
subset of{i} U {demand points satisfied by and closing down the remaining facilities. Ferery value
of « (recall that theLBFL instanceZ; is specified in terms of a paramete), the resulting approximation
factor forZ, (Theorenl3.b) is better than the guarantee obtained-fan Svitkina’s algorithm; this in turn
translates (by choosing suitably) to an improved solution to the original instance.

We now discuss how we implement step (a), that is, how we oltatanceZ,. As in [18], we arrive
atZ, by computing a bicriteria solution BFL, but we obtain this bicriteria solution in a different fashi

(see Sectioql3). The reduction framBFL to UFL in [8l,[5] proceeds by setting the opening cost of facility
ito f; + £ - >_jep() Gij» WhereD(i) is the set ofM clients closest td, solving the resultingJFL in-
stance, and postprocessing using (single-facility) detebves if such a move improves the solution cost.
We modify this reduction subtly by creating#eL instance, where facility's opening cost is instead set to
fi + 2aM R;(a), whereR;(«) is the distance betweerand thea M -closest client to it. As in the case of
the earlier reduction, we argue that each open fadilitythe resulting solution (obtained by solvituFL
and postprocessing) serves at leadf clients. The overall bound we obtain on the total cost novuthes

various R;(«) terms. Instead of plugging in the (weak) bouhfR;(«) < @ (which would yield
the same guarantee as that obtained via the earlier red)otve are able to perform a tighter analysis by
choosingx from a suitable distribution and leveraging the fact mh]fol Ri(a)da =3 ;cp(;) cij- (This can
easily be derandomized, since there are drllgombinatorially distinct choices far.) These simple modi-
fications (in algorithm-desigandanalysis) yield a surprising amount of improvement in thgrapimation
factor, which is reminiscent of the mileage provided by ¢i@m) a-points for various scheduling problems
(see, e.g./[116]) andFL [15,[17]. Also, we observe that one can obtain further imprognts by using the
local-search algorithm of [2,] 1] to solve the abavEL instance: this is because the resulting solution is
then already postprocessed, which allows us to exploit slgenmetric bounds on the facility-opening and
assignment costs provided by the local-search algorittansea@ling, and improve the approximation ratio.
Finally, we remark that the study @DUFL may provide useful and interesting insights abG&L.
CDUFL is a special case dfFL that despite its special structure inherits the intratitabof CFL with
respect to LP-based approximation guarantees. If one seelevelop LP-based techniques and algorithms
for CFL (which has been a long-standing and intriguing open qu®sttben one needs to understand how
one can leverage LP-based techniquesCioUFL, and it is plausible that LP-based insights developed for
CDUFL may vield similar insights fo€CFL (and potentially LP-based approximation guarantees k).

Related work. As mentioned earliet,BFL was independently introduced by [8] and [5], who used it as
a subroutine to solve thegnt-or-buyand hence, thenaybecasproblem, and theccess network design
problem respectively. Their ideas, which lead to bicrdeguarantees fdrBFL, play a preprocessing role
both in Svitkina’s algorithm fot BFL [18] and (slightly indirectly) in our algorithm.

There is a large body of literature that deals with approximmaalgorithms for (metric)UFL, CFL
and its variants; seé [114] for a survey ofL. The first constant approximation guarantee g was
obtained by Shmoys, Tardos, and Aardall[15] via an LP-raupdigorithm, and the current state-of-the-
art is a 1.488-approximation algorithm due to Li[10]. Losalarch techniques have also been utilized
to obtainO(1)-approximation guarantees fofFL [9, [2,[1]. We apply some of the ideas of [2, 1] in our
algorithm. Starting with the work of Korupolu, Plaxton, aRdjaraman[9], various local-search algorithms
with constant approximation ratios have been devisedCfr, with the current-best approximation ratio
being5.83 + ¢ [19]. Local-search approaches are however not known to WarkBFL; in Appendix[B,
we show that local search based @i, delete, andswap moves yields poor approximation guarantees.
Universal facility location (UniFL), where the facility cost is a non-decreasing function @& tlumber of
clients served by it, was introduced by[[6] 12], and [12] gagenstant approximation algorithm for this. We
are not aware of any work doniFL with arbitrary non-increasing functions (which generedizBFL). [4]
give a constant approximation for the case where the costifins do not decrease too steeply (the constant
depends on the steepness); notice L@ does not fall into this class so their results do not applgher

2 Problem definition and notation

Recall that we have a sétof facilities with facility-opening cost$ f; }, a setD of clients, metric connection
(or assignment) costs:;; } specifying the cost of assigning cliefto facility 7, and a (integer) parameter

M. Our objective is to open a subgétof facilities and assign each cliefito an open facilityi(j) € F', so
that at leasf\/ clients are assigned to each open facility, and the totalicosrred,) ", . f; + Zj Ci(4)j» 1S
minimized. We us€ to denote thid BFL instance.

Let £ andC* denote respectively the facility-opening and assignmest of an optimal solution t@;
we will often refer to this solution as “the optimal solutidn the sequel. We sometimes abuse notation and
also usel™ to denote the set of open facilities in this optimal solutibet OPT = F* + C* denote the total
optimal cost. For a facility € F, letD(i) be the set of\/ clients closest t¢, andR;(«) denote the distance
betweeni and the[aAM/]-closest client ta; that is, if D (i) = {ji,...,jm}, wherec;;, < ... < ¢j,,, then
Ri(a) = cijipyy (for 0 < a <1). Let R*(a) = >, Ri(a). Observe that eacR;(«) is an increasing

function ofa, Mfol Ri(a)da =3 ep) cij» andR;(a) < (ZjeD(i) cij)/(M —[aM]+1) < %
Hence,R*(«) is an increasing function aof, M ' R*(a)da < C*, andR*(a) < Mi—a)-
3 Our algorithm and the main theorem

We now give a high-level description of our algorithm usirgtain building blocks that are supplied in the
subsequent sections. L&denote theBFL instance.

(1) Obtaining a bicriteria solution. Construct aUFL instance with the same set of facilities and clients,
and the same assignment costg ashere the opening cost of facilityis set tof; +2aM R;(«). Use the
local-search algorithm fdgFL in [2] or [1] with scaling parametey > 0 to solve thisUFL instance. (We
seta, v suitably to get the desired approximation; see Thedreh Bet .7’ C F be the set of facilities
opened in th&JFL-solution. Claini3.2 and Lemnha 3.3 show that eaehF’ serves at leastM clients.

(2) Transforming to a structured LBFL instance. We use the bicriteria solution obtained above to trans-
form Z into another structuredBFL instanceZ, as in [18]. In the instanc&,, we set the opening cost
of eachi € F' to zero, and we “move” ta all then; > oM clients assigned to it, that is, all these
clients are now co-located atSoZ, consists of only the points i#” (which forms both the facility-set
and client-set). We will sometimes use the notatiof) to indicate explicitly thafZ,’s specification
depends on the parameter

(3) SolveZ, using the method described in Sectidn 4. Obtain a solutidhkp opening the same facilities
and making the same client assignments as in the solutidn to

Analysis. Our main theorem is as follows.

Theorem 3.1 For any«a € (0.5, 1] and~ > 0, the above algorithm returns a solution Toof cost at most
F*(1+7h(a)) + C*(2h(a) = 1+ 2) + 2yaMR*(a)h(a) + 2aM R (a)

whereh(a) =1+ 2 4+ 22 +4, /-8 Thus, we can compute efficiently a solutioiT tof cost at most:

(i) 92.84 - OPT, by settingx = 0.75,y = 3/h(«);
(i) 82.6- OPT, by letting~y be a suitable (efficiently-computable) functiormofand choosingr randomly

from the interval[0.67, 1] according to the density functigiz) = m

The roadmap for proving Theordm B.1 is as follows. We firstriabthe cost of the bicriteria solution
obtained in step (1) in terms addPT (Lemmal[3.8). This will allow us to bound the cost of an optimal
solution toZ,, and argue that mapping &n-solution to a solution t@ does not increase the cost by much
(Lemmd3.4). The only missing ingredient is a guarantee ercdst of the solution t@, found in step (3),
which we supply in Theorein 3.5, whose proof appears in Sedkio

The following claim follows from essentially the same argnts as in[[B,5].

4

Claim 3.2 Let S’ be adelete-optimakolution to the abov&FL instance; that is, the totalFL-cost does
not decrease by deleting any open facility90f Then, each facility of’ serves at leastM/ clients.

The local-search algorithms farFL in [2,[1] have the same performance guarantees and bothiaelu
delete-move as a local-search operation, so upon termimate obtain a delete-optimal soluti@observe
that opening the same facilities and making the same clissigaments as in the optimal solutionZo
yields a solutionS to the UFL instance constructed in step (1) of the algorithm with facitost F¥ <
F* + 2aM R*(«)) and assignment cogt® < C*. Combined with the analysis inl[2] 1], this yields the
following. (For simplicity, we assume that all local-sdaralgorithms return a local optimum; standard
arguments show that dropping this assumption increasespr@ximation by at most@ -+ ¢) factor.)

Lemma 3.3 For a given parametety > 0, executing the local-search algorithm in [2, 1] on the abtFL
instance returns a solution with facility coB}, and assignment co§t, satisfyingF, < F*+2aM R*(«) +
2C* /v, Cy, < ~v(F* + 2aM R*()) 4+ C*, where each open facility serves at least/ clients.

Lemma 3.4 ([18]) (i) The (assignment) cosly, of an optimal solution td@; is at mos2(Cj, + C*).
(ii) Any solution toZ, of costC' yields a solution t& of cost at most;, + Cy, + C.

Theorem 3.5 For any a > 0.5, there is ag(a)-approximation algorithm fotZy(«), whereg(a) =
2 2 4
20421 + 2\/ o? + 20—1"

Remark 3.6 Our g(«a)-approximation ratio fof,(«) improves upon the approximation obtained in/[18] by
a factor of roughly Zor all .. Thus, plugging in our algorithm for solvirify, in the LBFL-algorithm in [18]
(and choosing a suitable), already yields an improved approximation factoRd® for LBFL.

Qv

|

Proof of Theorem[3.1 : Recall thath(a) = 1+ 2 + 12 44, /-6 Note that2g(a) + 1 < h(a)
for all « € [0, 1]; we use this upper bound throughout below. Combining The@€& and the bounds in

Lemmag 3B and 3.4, we obtain a solutiorZtof cost at most, + (2g() + 1)C, + 2g(a)C*

2C*

< F* 4 2aMR*(a) + = + h(a)y (F + 2aMR*(a)> + (2h(a) — 1)C*

= F*(1+7h(a)) + C*(2h(a) = 1+ 2) + 2yaMR*(a)h(a) + 20 M R*(a).

Part (i) follows by plugging in the values of and-~y, and using the boun&*(«) < m

Let 3 = 0.67. For part (i), we sety = ﬁ where K = <ln2(1/ﬁ) - Eq [M(a)] /(f‘*lffgdm)>z.

Plugging in thisy, we see that the cost incurred is at most

F*(1+ K+/h(a)) + C* <2h(a) 1t %«/h(a)) + 2K aMR* (a)\/h(@) + 2aMR* ().

We now bound the expected cost incurred when one chaesasdomly according to the stated density
function. This will also yield an explicit expression féf (as a function of3), thus showing thafd (and

hence,y) can be computed efficiently. We note ttﬁu[\/f } < +/E [X] and utilize Chebyshev’s Integral
inequality (seel[7]): iff andg are non-increasing and non-decreasing functions respcfrom [a, b] to

A subtle point is that typically local-search algorithmsnténate only with an “approximate” local optimum. Howevene
can then execute all delete moves that improve the solutisf) and thereby obtain a delete-optimal solution.

b b
R, then [’ f(z)g(x)dz < U f(x)di)_(ga 92)dv) " Opserve thak(a) decreases with. Recall thats = 0.67.
We have the following.

o [h(@)] = ea(B) = [% 44 8V6(n/4 — tan (/25— 1)) + 21n

1
BalaMR(@)] = M(/B R*(@)dz) /In(1/8) < C*/In(1/B).

5o _) +1n(1/8)] /In(1/5)

Finally, using Chebyshev’s inequality, we obtain that

Eo [aM R (a)y/A(@)] < [0 /ﬁ 1 R (@)d) 5 11u(1/8) < [0 /eaB)] /1m1/8).

where

1 _
c3(8) = (/B h@)de) /(1 -) = [4In(1/8) + 4VB(1~ /25— 1) +3(1 -) +ln<251_ I]ra-n.

The second inequality follows sinc(efﬁ1 dz\/h(x))/(1 — B) = Equniform in[8,1] [\/h(a)]. Plugging in
these bounds, we get that = (lnz(l/ﬁ)cQ(5)/(:3(@)0'25 and the total cost is at most

* In® ¢ Y * c2(B)c: 1 * *
Fr (14 (D0 1) 4 O (205(8) — 1+ 4(LPSE) 1 4 2 0) < 82.50(F7 +C7). m

4 Solving instanceZ, ()

We now describe our algorithm for solving instaritg«) and analyze its performance guarantee, thereby
proving Theoreni 3]5. As mentioned earlier, one of the kefedihces between our algorithm and the one
in [18] is that instead of reducirif}, to capacitated facility locatiorCFL), we solveZ, by reducing it to a new
problem that we caltapacity-discountetddFL (CDUFL). CDUFL is a special case @FL where all facilities
with non-zero opening cost are uncapacitated (i.e., haueitan capacity). Perhaps surprisingly, despite
this special structureCDUFL inherits the intractability ofCFL with respect to LP-based approximation
guarantees: there is no known LP-relaxationd®WUFL that has constant integrality gap; Apperldix A shows
that the natural LP-relaxation f@DUFL has bad integrality gap. However, as we show in Seéfion 462, w
can obtain a simple local-search algorithm @UFL whose approximation ratio is better than the current-
best approximation foCFL.

Recall thatZ, has only the points itF’ C F, and there ar@; > oM co-located clients at eache F'.
Letl(i) = minycr i ¢;7. To avoid confusion, we refer to the facilities and cliemt$tie CDUFL instance
as supply points and demand points respectively. ChEFL instance created to solv& resembles the
CFL instance created in [18]; the difference is that all supmints with non-zero opening costs are now
uncapacitated. More precisely, at each F’, we create an uncapacitated supply point with opening cost
d min{n;, M }1(i), whered is a parameter we fix later. #f; > M we create a second supply point atith
capacityn, — M and zero opening cost. #f; < M, we create a demand pointéatvith demandM — n,.
LetZ’ denote thisCDUFL instance (see Fig@l 1). L&t", F* denote respectively the set of uncapacitated and
capacitated supply points @. Roughly speaking, satisfying a demand paily non-co-located supply
points translates to leaving facilityopen in theZ; solution; hence, its demand is setltb— n;, which is the
number of additional clients it needs. Conversely, opettiegincapacitated supply pointisgnd supplying
demand points fromtranslates to closingin theZ, solution and transferring its co-located clients to other
open facilities.

@), (b) Z’, and a solutiors for 7’

Figure 1: (a) AnZ; instance. Each box denotes a facility, and the number irthigldox is the number of
co-located clients; a dashed arrow- i’ denotes that' is the closest facility ta.

(b) The corresponding’ instance. The boxes and circles represent supply pointdemdnd points respec-
tively, and points inside a dotted oval are co-located. Adsbbx denotes an uncapacitated supply point,
and a dashed box denotes a capacitated facility whose tamashown inside the box. The number inside
a circle is the demand of that demand point. The arrows iteligaolutionS to Z’, wherei andi’ are the
two open uncapacitated supply points.

Lemma 4.1 ([18]) There exists a solution t& with facility costF" < 6C7, and assignment cost < C7,.

Theorem 4.2 (i) Given anyCDUFL instance, one can efficiently compute a solution with fedpening

costFF < F! + 2¢°! and assignment co&t < F°! + ¢! where F*°! and C*°! are the facility and

assignment costs of an arbitrary solution to thBUFL instance.

(i) Thus, Lemm&4]1 implies that one can compute a solutdff with facility cost /7 and assignment
costCy satisfyingFir < (2 +6)C7,, Cr < (1 +9)C7,.

We defer the description of the local-search algorithmd®UFL, and the proof of Theorein 4.2 to Sec-
tion[4.2. We first describe how to convert afisolution to a solution t@, with a small increase in cost, and
show how this combined with Theordm ¥.2 leads to the appratiam bound foiZ, stated in Theorem 3.5.

4.1 Mapping anZ’-solution to anZ,-solution

An 7’-solution need not directly translate to @nsolution because an open supply paimiay not supply
(and hence, transfer) exactly units of demand (see, e.gandi’ in Fig.[d(b)). Since we have uncapacitated
supply points, we have to consider both the cases whsupplies more than,; demand (a situation not
encountered in[18]), and less thandemand. Suppose that we are given a soluici Z’ with facility
cost F¥ and assignment cost® (see Fig[ll(b)). Again, we abuse notation and BSeto also denote the
set of supply points that are openeddn Let IV, initialized ton; keep track of the number of clients at
locationi € F'. Our goal is to reassign clients (usifgas a template) so that at the end we haye= 0 or

N; > M for eachi € F'. Observe that once we have determined which facilitie”’invill have N; > M
(i.e., the facilities to open in th&,-solution), one can find the best way of (re)assigning ciidytsolving a
min-cost flow problem. However, for purposes of analysisyiit often be convenient to explicitly specify
a (possibly suboptimal) reassignment. We may assume ihaf< (C F°; (i) if S opens an uncapacitated
supply point located at somee F' with n; > M, then the demand assigned to the capacitated supply

point at: equals its capacity; — M:; (iii) for each: € F’ with n; < M, if the supply point at is open
then it serves the entire demand of the co-located demamdt jaoid (iv) at most onencapacitatedsupply
point serves, maybe partially, the demand of any demand;pe@say that this uncapacitated supply point
satisfies the demand point. We reassign clients in threeephas

Al. (Removing capacitated supply points) Consider any location € F' with n; > M. Leti' andi?
denote respectively the capacitated and uncapacitatedyspmints located at. If ' suppliesz units to
the demand point at locatiaf, we transfer: clients from location to i’. Now if i' hasy > 0 leftover
units of capacity inS, then we “move”y clients toi? (which is not open inS). We update theV;s
accordingly. Note that this reassignment effectively gelsf all capacitated supply points. Thus, there
is now exactly one uncapacitated supply point and at mostlengand point at each locatione F7;
we refer to these simply as supply poirdnd demand pointbelow.

Let X; be the total demand from other locations assigned to sumphyt p Let F¢ = {i ¢ 7' : N; < X;},
FR={ie FF: N; > X; >0}, andFP = {i € 7' : X; = 0}. which is the set of supply points that
are not opened i¥. Note thatN; > min{n;, M} > oM for all i € F', andN; = min{n;, M} for all

i € FEU FC (because of properties (i) and (iii) above).

A2. (Taking care of 7 and demand points satisfied byF’) For eachi ¢ F¥, if i suppliesz units to
demand point’, we movez clients from: to i/, and updateV;, N;;. We now haveV; = min{n;, M} —
X; residual clients at eache F't, which we must reduce to 0, or increase to at lédstWe follow the
same procedure as in [18], which we sketch below.

For eachi ¢ F%, we include an edgé¢i, ') wherei’ € F' is the facility nearest ta (recall that
civ = 1(7)). We use an arbitrary but fixed tie-breaking rule here, s &atnponent of the resulting
digraph is a directed tree rooted at either (i) a nede 7'\ F&, or (i) a 2-cycle (r,r'), (r',r),
wherer, ' € FE. We break up each compondninto a collection of smaller components as follows.
Essentially, we move the residual clients of supply pointthe component bottom-up from the leaves
up to the root, cut off the component at the first nad@at accumulates at leasf clients, and recurse
on the portion of the component not containimgMore precisely, let’, denote the subtree dfrooted

at nodeu € I' (if u belongs to a 2-cycle then we do not include the other nodei®Ptieycle inl",).

= If > ier Ni < M, or if I' is of type (i) and all children: of the root satisfy) _, . N; < M, we
leavel’ unchanged.

— Otherwise, let: be a deepest (i.e., furthest from root) nodé&'isuch tha@iepu N; > M. We delete
the arc leaving.. If this disconnects fromI"\ T',,, then we recurse ohi \ T',,.

— Otherwiseu must belong to the root 2-cycle @f. Let ' be the other node of this 2-cycle. If
Ziepﬂ N; > M, we delete”’’s outgoing arc (thus splitting' into I",, andT",.).

After applying the above procedure (to all components) dfare left with a component of type (ii) with

> _ic componentVi = M, we convert it to type (i) by arbitrarily deleting one of thees of the 2-cycle.

Thus, at the end of this process, we have two types of compmnen

(a) AtreeT rooted at a node: we move theV, residual clients of each non-root node 7' to .

(b) A type-(ii) treeT" with root {r,'}: we must have), ., N; < M. Leti' FB be the location
nearest tdr, ' }; we move theV; residual clients of eache T'to'.

Update theN;s to reflect the above reassignment. Observe that we now Nave 0 or N; > M

for eachi ¢ F%, and each € F” hasn; > M, or is a demand point satisfied by a supply point in
FC. Figure[2(a) shows a snapshot after steps Al and A2 have kieeated on the solution shown in
Fig.[d(b). Herei’ ¢ F% has one client left after moving clients to the bottom twadlies, which is
then transferred té;.

A3. (Taking care of ¥ and demand points satisfied by7“) Fori ¢ F¢, let D(i) be the set of demand
pointsj € F', j # i satisfied byi, and letD'(i) = {j € D(i) : N; < M}. Note thatD(i) C F5.
Phase A2 may only increasé; for all j in 72 U F¢, soN; > aM forall j € F€ U (e e D(i)).

Fix i € F¢. We reassign clients so that; = 0 or N; > M for all j € {i} U D'(i), without decreasing
N; for j € D(i) \ D'(i). Applying this procedure to all supply points JAS will complete our task.
DefineY; = M — N; (which is at mostM — n;) for j € D’(i). We consider two cases.
- ZJED,(Z.) Y; < N;. Foreachj € D'(i), if i suppliesz units toj, we transfer clients fromi to j. If
i is now left with less thard/ residual clients, we move these residual clients to thetilmean D(7)
nearest ta.

- ZJED,(Z-) Y; > N; (see FigLR). Letg = ¢, andD’(i) = {i1,...,it}, wheree;; < ... < ¢, Let
t . t N
0=t | Ty | = [Z=m=No] sof > 1 (andf < ¢ sinceN;, + Ni, > M). Note that’ is

the unique index such thaE!_,., Y;, < 30 N;, < 3! ,., Y; + M. This enables us to transfer
Y;, clients to eachi,, ¢ = ¢+ 1,...,t from the locations,, ..., ip—we do this by transferring all
clients ofi, (wherel < r < ¢) before considering,_;—and be left with at mosd/ residual clients
in {7, ...,i.}. We argue that these residual clients are all concentratgdaadi,, with i; having

at most(1 — «r) M residual clients. We transfer these residual clients_tg.

M =38 B

(@) (b)

Figure 2: The number inside a box is the current valué&/gfthe number labeling an arrow is the demand
assignment of th&’-solution. The circles indicate demand poitita/ith N; < M. (a) The situation after
running steps Al and A2 on the solution in Hi§. 1(b). (b) Theation after running step A3.

Theorem 4.3 The above algorithm returns af-solution of cost at mos’% +C% (1 4522;). Thus, taking

S to be the solution mentioned in part (ii) of Theorem 4.2, ard Wr@i/% we obtain a solution
to 7, («) satisfying the approximation bound stated in Thedrerh 3.5.

Proof : Let Sy denote the solution computed 65. For a supply point opened inS, we useCf to denote
the cost incurred in supplying demand frarto the demand points satisfied bysoC* = 3°,_.s C2. At
various steps, we transfer clients between locations doapio the assignment in tH@DUFL solution S,
and the cost incurred in this reassignment can be chargéluisagaaecfs of the appropriate supply points.
So the cost of phase ALJS . . C#, and the cost of the first step of phase A2iS. rr C?.

As in [18], we can bound the remaining cost of phase A2, irezliin transferring clients according to
the tree edges bl® /sa+ (3, 7r C7) /(2a—1). When we move clients up to the root of a component, we
move strictly less thai/ clients along any edgg, i) in that component, and sinée= F%, we pay at least
daMI(i) opening cost for. The only unaccounted cost now is the cost incurred in stgpf(pbhase A2,
where we have a treg rooted at{r,'}. Lets’ € F? be the location nearest {@, '}, and (say);/, < cji,.

Note that we have already bounded the cost in transferriegtsltor, so we only need to bound the cost

S
incurred in transferring at most clients fromr toi’. This is at most\/ - - I; < (C2+C5)/(2a—1),

becausdr, '} sendX, + X, = (n, +n.) — (N, + Nv) > (2. — 1) M units to demand points i#?, all
of which are at distance at least, from {r,r'}.
Finally, consider phase A3 and somec FC.If ZjeD,(i) Y; < N;, then the cost incurred is at

mostC? + M - CTS < CP(1+ %) (@sX; > N; > aM). Now consider the cas®’ ;. ;) ¥ > Ni.
For anyi, € {i¢t1,...,4:} and anyi, € {ig,...,i¢}, we havec; ;, < 2c;,, SO the cost of transferring
Y;, < M —n;, clients to eachiy, ¢ = (+1,...,tisatmosCy. Observe thatt — ¢+ 1)M > L _ N, ,
e, M + ZZ:@H Vi, > S2¢_, N, so after this reassignment, there are less thanesidual clients in

10, - - ., 1p. By our order of transferring clients, all these residuedrds are afy, i; (otherwise we would have
atleastV,,+N;, > M residual clients) with at most/ — N;, < (1—«)M of them located at;. The cost of

S S
reassigning these residual clients is at nfost o) Mc;;, +Mecgi,,, < (1—a)M - tCi v + M = G v
r=1"1r r=~0+1 " r
sinceCs is the total cost of supplying at leagt. demand to each., » = 1,...,t. The latter expression is

at mostCS(l—a + oay), sinced-,_ Vi, > Nig > aM, 3oy Vi, > S o Nip — M > (20— 1)M.)
Thus, the cost ob; is at most

+ZCS+Z cs. (1+2a 1) +y ¢ max{1+1 241zay L 1} §—+Cs<1+2§‘jl>.

i€ FR i€ FG

So if S is the solution given by part (ii) of Theorem #.2, the cosS@ﬁs atmost(Z + L 4+ (1+4)(

20 1))CI , and plugging in the value af yields theg(a) = a + 2a_1 \/Og + 2 T approximation
bound stated in Theoreim 3.5. [|

4.2 Alocal-search based approximation algorithm forcDUFL

We now describe our local-search algorithm &DUFL, which leads to the proof of Theorem #.2. Let
F = FrUF<bethe facility-set of th€DUFL instance, wherg“nF¢ = (). Here,F are the uncapacitated
facilities with opening cost$ fl}, and facilities inF¢ have (finite) capacitie$u; } and zero opening costs.
Let D be the set of clients angl; be the cost of assigning cliepitto facility :. The goal is to open facilities
and assign clients to open facilities (respecting the dépar so as to minimize the sum of the facility-
opening and client-assignment costs. We can find the beghassnt of clients to open facilities by solving
a network flow problem, so we focus on determining the setaifities to open.

The local-search algorithm consists of three mowekt(:’), delete (i), swap(i, '), which respectively,
add a facilityi’ not currently open, delete a facilifythat is currently open, and swap facilitghat is open
with facility ¢ that is not open. We note thall previous (local-search) algorithms fGFL that work with
non-uniform capacities use moves that are more compliciiza the moves above (and involve adding
and/or deleting multiple facilities at a time). The algbnit repeatedly executes the best cost-improving
move (if one exists) until no such move exists. (As mentioeadier, to ensure polynomial time, we only
consider moves that yield significant improvement and heagainate at an approximate local optimum;
but this has only a marginal effect on the approximation lolgukiVe assume for simplicity that each client
has unit demand. This is without loss of generality becaegen with non-unit client-demands, one can

10

compute the best local-search move (and hence run thethlgdriand for the purposes of analysis, one can
always treat a client with integer demas@sd co-located unit-demand clients.

Analysis. Let S denote a local-optimum returned by the algorithm, withlfigebpening cost (and set of
open facilities)ﬁ and assignment cosl. Letsol be an arbitraryCDUFL solution, with facility-cost (and
set of open facilitiesf**! and assignment cost*!. Note that we may assume that C F n F*°!. Fora
facility i, we useDg 5(7) anstol(/) to denote respectively the (possmly empty) set of clieatsed by: in
S andsol. For a clienty, IetC‘ andCSOl be the assignment cost pin S andsol respectively.

We borrow ideas from the anaIyS|s of the corresponding eealch algorithm fouFL in [1], but the
presence of capacitated facilities means that we needdsigeeclients more carefully to analyze the change
in assignment cost due to a local-search move. In particutdike the analysis iri [1], where upon deletion
of a facility s € F we reassign only the clients currently assigned,to our case (as in the analysis of
local-search algorithms faZFL), we need to perform a more “global” reassignment (i.e.neasl@nts not
assigned t@& may get reassigned) along certain (possibly long) pathssimtable graph. This also means
that we need to construct a suitable mapping between paitesaoh of the client-mapping conS|dered|Ih [1].

We construct a directed graygh with node-setD U F, and arcs from to all clients inDz 5(i) and arcs

from all clients |nD501() to 4, for every facility:. Via standard flow-decomposition, we can decomp@se
into a collection of (simple) patt®, and cyclesR, so that (i) each facility appears as the starting point of
max{0,]ﬁg(z‘)\ |Dgo1(i)|} paths, and the ending point nfax{0, | Do (i)| — \D (7)|} paths, and (ii) each
client j appears on a unique patt) or on a cycle. Lefst(s) C P andP"¢(0) C P denote respectively
the collection of paths starting atand ending ab, andP(s,0) = P(s) N P"(0). For a pathP =

{io,jo,il,jl, - ,ik,jk,ik+1 = O} e P, deflneﬁ(P) = {jo, . ,jk}, head(P) = jo, andtaz’l(P) = Jk-
A shift along P means that we reassign clieptto i, for eachr = 0,...,k (openingo if necessary).
Note that this is feasible, sincedfe F¢, we know thatDz(o)| < [Dsei(0)| — 1 < u, — 1. Let shift(P) =
> ieB(p) (Cse! — Cj) be the increase in assignment cAost due to this reassignwieiot) is an upper bound
on the actual increase in assignment costisf added ta. Also, letcost(P) := ZJGD(P) (CS"l +C; ;). We

define a shift along a cycl& € R similarly, letting shift(R) := 5. 6903(0501 C;). By considering a
shift operation for every path and cyclefhuU R (i.e., suitableadd moves) we get the following result.

, —f, foe O\ F,
Lemma 4.4 For everyo € F*!and anyQ C P*"d(0), we have shift(P) > _
y e s (0) 2peg Shift(P) 2 0 otherwise

For every cycleR € R, we haveshift(R) > 0. Thus, we have’ < Fs°l 4 ¢!,

Bounding the opening cost of facilities inF \ Fs°l. For this, we only need paths that start at facility in
F\ F=!. Note that all facilities in('\ F=°!) U (F*°!\ F) areuncapacitated To avoid excessive notation, for
afacility o € F=!\ F', we now useP="?(o) to refer to the collection of paths endingdthat start inF'\ Fs°!,
(As before,P(s, 0) is the set of paths that start aaind end ab.) For anyo € F®°! \ F', we can obtain a
1-1 mappingr : P (0) — P=d(0) such that ifP € P(s,0), s € F \ F**' and=(P) = P’ € P(s',0),
then (i) if [P (s, 0)| < P (1, we haves # s'; (ii) if s = ¢/, thenP = P’; and (iii) 7(P') = P. Say that

0 € Fo\ Fis capturedby sif |P(s,0)| > % Note thato is captured by at most one facility if.
Call a facility in F \ F°! goodif it does not capture any facility, arlshd otherwise.

Lemma 4.5 For any good facilitys, we have

7, < Z shift(P) + Z cost(m(P)). 1)

PeP(s) 0¢ F,PEP(s,0)

11

Proof : Consider the movelelete(s). We upper bound the increase in reassignment cost as follows
Consider; € Ds 3(s), and letP; € P(s,0). (Recall thatP; is the unique path containing) If o € FFs,

then we perform a shift along’J Otherwise, letr(P;) € P(s’,0), wheres’ # s. We reassign all clients
on P; excepttail(P;) as in the shift operation, and reassignl(P;) to . Letk = tail(P;). Since

sl < Cgl 0501 < cost((P)) C,j"l, the increase in cost by reassigning clientsirthis way is at

mostcost ((P)) + O — Gy + Y ieprnm (CF = Cjr). Thus, the actual increase in cost due to this
move, which should be nonnegative, is at most

—fo+ Z shift(P) + Z [shift(P) + cost (W(P)):|

0cF,PeP(s,0) 0¢ F',PEP(s,0) |

Now consider a bad facility. Letcapt, C F=°'\ F be the facilities captured by, and leto, € capty
be the facility nearest te.

Lemma 4.6 For any bad facilitys, we have

fs < Z fot Z shift(P) + Z cost(m(P)) + Z cost(P). (2)

occapt PePst(s) o¢F o€capt \{os}
PeP(s,0):m(P)#P PeP(s,0):m(P)=P

Proof : Consider the movewap(s, os). We reassign client € ﬁg(s) as follows. LetP; € P(s,0).

e If o€ FNF*, oro= o, andn(P;) = P;, we perform a shift along?;. The increase in assignment
cost is at mossthift (P;).

Otherwise, letr(P;) € P(s',0).

o If 7(P}) # P; (sos’ # s), we reassigrD(P i) \ {tail (P;)} as in the shift operation, and assignl(P;)
to s’ As in the proof of Lemm@&4l5, the increase in asagnmenﬂscaﬁtmostshzft(;) + cost (m (P)).

e If m(P;) = P; (oo # o), we assigry to o,. Note thatc, ; < C + Cs0, < C‘ + Cop < C‘ + cost(P;),
so the increase in assignment cost is at neost(F;).

This gives the inequality

0< fo,— fot Z shift(P) + Z Z [shift(P) + cost (w(P))]
PeP(s,0):0€F or o¢ F PEP(s,0):m(P)#P
o=o0s, m(P)=P (3)

+ Z Z cost(P).

oéﬁ:o;ﬁos PeP(s,0):m(P)=P

Now consider the operatioadd(o) for all o € capt, \ {os}, and apply Lemm&a 44 takin@ = {P <
P(s,0) : w(P) = P}. This yields the inequalitp < f, + Zpep(s o)m(P)=p Shift(P) for eacho €
capt(s) \ {os}. Adding these inequalities tbl(3), and rearranging prolled¢gmma. []

Proof of Theorem[4.2 : We prove part (i); part (ii) follows directly from part (i) driemmd4.L. Lemnia4.4
boundsC Consider addind{1) for all good facilities arid (2) for adlbfacilities, and the vacuous equality
fl fl foralli € FNF°.. The LHS of the resulting inequality is premselly Thefzs onthe RHS add up to
give at mostF*°!. We claim that each patR ¢ User B\ fsol Pst(s) contributes at mosthift (P) + cost(P) =

23 O to the RHS. Thus the RHS is at mast® + 2C*°!, and we obtain thak' < Fsol 4 2Cs0l,

12

Each pathPinJ, ¢Fsol e F P(s,0) appears exactly once, eitherlih (1) orlih (2), and contribsfiéft (P).
Now consider a pattt” € J; pwa ¢ P(s,0), and letr(P) = P’ € P(s',0). Note thatr(P') = P. If
P’ #+ P, then P appears twice in our inequality-system: once in the inetyufdr s contributing shift(P)
(due to P), and once in the inequality for' contributing cost(P) (due toP’). If P’ = P, thens = s’
and s is a bad facility; nowP appears only in[{2) (fos) and contributes eitheshift(P) if o = o, or
shift(P) + cost(P) otherwise. |

Corollary of Theoremd.2: There is a(l + ﬂ)—approximation algorithm foCDUFL.

Proof : We takesol in part (i) of Theoreni 4]2 to be an optimum solution (with c6$Pt + C°P') to the
instance, and scale the facility costs dypefore running the local-search algorithm. The solutidorreed
has cost” 4+ C < (FOP' + 2. COPY) 4 (g [Pt 4 C°PY). Settingo = /2 yields the result. n

References

[1] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagaad V. Pandit. Local search heuristics
for k-median and facility location problem&IAM Journal on Computin®3(3):544-562, 2004.

[2] M. Charikar and S. Guha. Improved combinatorial aldoris for facility location problemsSIAM
Journal on Computing34(4):803—-824, 2005.

[38] S. Guha, A. Meyerson, and K. Munagala. A constant facppraximation for the single sink edge
installation problemSIAM Journal on Computin@8(6):2246—2442, 2009.

[4] S. Guha, A. Meyerson, and K. Munagala. Facility locatwith demand dependent costs and general-

ized clustering Manuscript 2000.

[5] S. Guha, A. Meyerson, and K. Munagala. Hierarchical @laent and network design problems. In
Proceedings of the 41st Annual IEEE Symposium on Foundatib@omputer Scienc@ages 603—
612, 2000.

[6] M. Hajiaghayi, M. Mahdian, and V. Mirrokni. The facilitiocation problem with general cost func-
tions. Networks 42:42—-47, 2003.

[7] G. H. Hardy, J. E. Littlewood, and G. Pélyfnequalities Cambridge University Press, 1952.

[8] D. R. Karger and M. Minkoff. Building Steiner trees withdomplete global knowledge. IRro-

ceedings of the 41st Annual IEEE Symposium on Foundatio@®miputer Sciencgages 613—-623,
2000.

[9] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman. Analdfisa local search heuristic for facility
location problemsJournal of Algorithms37(1):146—-188, 2000.

[10] S.Li. A 1.488 approximation algorithm for the uncagated facility location problem. IRroceedings
of the 38th International Colloquium on Automata Languaged Programmingpages 77-88, 2011.

[11] A. Lim, F. Wang, and Z. Xu. A transportation problem wiinimum quantity commitmentTrans-
portation Science40(1):117-129, 2006.

[12] M. Mahdian and M. Pal. Universal facility location. Rroceedings of 11th ESAages 409-421,
2003.

13

[13] P. Mirchandani and R. Francis, editor®iscrete Location TheoryJohn Wiley and Sons, Inc., New
York, 1990.

[14] D. B. Shmoys. The design and analysis of approximatigoréghmes: facility location as a case study.
In S. Hosten, J. Lee, and R. Thomas, editdrgends in Optimization, AMS Proceedings of Symposia
in Applied Mathematics §Jages 85-97, 2004.

[15] D. B. ShmoysE. Tardos, and K. |. Aardal. Approximation algorithms focifdy location problems.
In Proceedings of the 29th Annual ACM Symposium on Theory opQamy, pages 265274, 1997.

[16] M. Skutella. List scheduling in order @f-points on a single machine. In E. Bampis, K. Jansen, and
C. Kenyon, editors.Efficient Approximation and Online Algorithms: Recent Resg on Classical
Combinatorial Optimization Problems and New Applicatiopasges 250-291, Springer-Verlag, Berlin,
2006.

[17] M. Sviridenko. An improved approximation algorithmrfthe metric uncapacitated facility location
problem. InProceedings of 9th IPC(pages 240-257, 2002.

[18] Z. Svitkina. Lower-bounded facility locatiorfransactions on Algorithm$(4), 2010.

[19] J. Zhang, B. Chen, and Y. Ye. A multi-exchange local skalgorithm for the capacitated facility
location problemMathematics of Operations Resear80:389—-403, 2005.

A Integrality-gap example for the natural LP-relaxation for courL

Let (F = F* U F,D,{f;}, {u:},{c,}) be aCDUFL instance with facility-sefF (whereu; = oo for all
ie T, andﬁ- =0foralli e J?C), and client-seD. We consider the following LP-relaxation. We ust®
index facilities, and to index clients. Note that we may assume that all facilitie$“ are open.

min Z ﬁ'yi—l—zajwij (LP)
ieFu g
s.t. Zmij > 1 for all j
' Tij < Y foralli e J?“,j
> wij < ug forall i € Fe
gjcij,yi >0 forall , j.

Herey; denotes if facility: is open, anck;; denotes if clieny is assigned to facility. (We assume that each
client has unit demand.)

Now consider the following simpleéDUFL instance. We have two facilitiésand:’, andu+ 1 clients, all
present at the same location. Facilitis uncapacitated and has opening c¢sand facility:’ has capacity
u (and zero opening cost). Any solution @UFL must open facilityi and therefore incur cost at legkt
However, there is a feasible solution [a{LP) of cgéti: we sety; = — andz;; =

pESY Tirj =
Thus, the integrality gap of (IIP) is at leastt 1.

_1 _u_
u+1? u+1’

B The locality gap of a local-search algorithm for LBFL
We show that the local-search algorithm basecdwdd, delete, andswap moves—that is, adding/dropping

one facility (withadd permitted only if it preserves feasibility), or deletingeofacility and adding another—
has a badocality gap which is the maximum ratio between the cost of a locallyiropt solution and

14

that of an (globally) optimal solution. Consider th8FL instance shown below with facility-sef =
{o,51,82,...,sm}, and client-seD = D; U D, U ... U Dy, where theD;s are disjoint sets of siz&/.
The facility-opening costs are as followg, = M? + ¢ and f,, = M for eachi € {1,2,...,M}. For
eachi = 1,...,m and each clienf € D;, we havec,; = 1, c¢,;; = M. All other distances are defined by
taking the metric completion with respect to thegg. One can verify that the solutigsiwhich opens the
facilities {s1, s2, ..., sar} is a local optimum. The cost of this solutionig? + M3. However, the optimal
solution opens facilityo}, and incurs a total cost @M/ + €. Thus, the locality gap is at leasf /2.

We can modify this example to show that the locality gap rexmdiad, even if aim for a bicriteria
solution and consider amdd move to be permissible if every open facility can be assigaeléasta M
clients. The only change is that each Betnow hasa M clients: S is still a local optimum, and the locality
gap is therefore at least) /2.

Bad example with zero facility-opening costs. Even in the setting where all facilities have zero open-
ing cost (as in theZ, instance), we can construct bad examples for local-seaaskdbonadd, delete,
andswap moves. For simplicity, first suppose th&f = 2. Consider a cycle witldk nodes, which are
labeledoo, jo, S0, 71,015 J2, 815935 - - -+ Ors J2rs Sry J2r+15 - - -, Ok—1, J2k—2, Sk—1, J2k—1, 00 We have2k facil-
ities F = {00, ...,0k_1, 80, - -, Sk—1}, and2k clientsD = {jo, j1,- .., jox—_1} (See Fig[B). We define the
following distances.

=1foralli=0,...k— 1.

® Coijai mod 2t — €0ij(2i-1) mod 2k

=k—cforali=0,...,k—1.

® Csijoi = Csij2it1)

All other distances are defined by taking the metric compietvith respect to thesg;s.

The solutionS which opens facilitieq sg, s1, ..., sx—1} IS @ local optimum: nadd move is feasible,
and it is easy to see that melete move improves the cost. Consider a swap move, which we mayress
is of the formswap(s,, 0g) by symmetry. The new client-assignment will not necesgasisign the clients
Jjor @andjo,+1 (Which were previously assigned &p) to oy. However, the intuition is that the long cycle will
lead to a large increase in assignment cost. The optimal Wegassigning clients is to assiggy._1, jo to
00, 8SSIQNJ2i+1, j2it+2 t0 s; fori € {0,...,r — 1} (which is empty ifr = 0), and assignys;, j2i—1 t0 s;

fori € {r+1,...,k — 1} (which is empty ifr = k — 1). The cost increase due to this reassignment is
201 —k+¢€)+ (k—1)-2>0. Thus,S is a local optimum.
The cost ofS is 2k(k — €). However, the optimal solution opens faciliti¢sy, . .., 0x_1}, and has a

total cost of2k. So this instance shows a locality gapigfand since: can be made arbitrarily large, this
shows an unbounded locality gap.

The above example can be extended to all valuegs oFor eachM, let GM be anM -regular bipartite
graph with vertex se¥ = {o1,09,...,00} U {51, 52, ..., 5, } with a large girthT". We useG* to construct

15

Jok—1 00 Jo
1 1e

k—e k—e
Sk—[L S0
k—e k—e
J2k—2 J1
Tl 1
Ok 01
N /
. [2
J2k-3 * e ® 2
e o o

Figure 3: Bad locality-gap example with O facility costs

the followingLBFL instance. The set of facilities {91, ..., 0,51, ..., s¢}. For each edgés,,, 0,,,) in GM,
we create a clienf,,, with ¢, ;... =T — e andc,,, ;... = 1. As before, one can argue that the solutton
that opens facilitie§ sy, so, ..., sy} is alocal optimum. The cost of this solution/id/ (T — ¢), whereas the
solution that opens facilitiefos, . . ., oy} has total cost of M. So the locality gap i§’, which can be made
arbitrarily large.

16

	1 Introduction
	2 Problem definition and notation
	3 Our algorithm and the main theorem
	4 Solving instance I2()
	4.1 Mapping an I'-solution to an I2-solution
	4.2 A local-search based approximation algorithm for CDUFL

	A Integrality-gap example for the natural LP-relaxation for CDUFL
	B The locality gap of a local-search algorithm for LBFL

