Skip to main content

Gene Regulatory Networks from Gene Ontology

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7875))

Abstract

Gene Ontology (GO) provides a controlled vocabulary and hierarchy of terms to facilitate the annotation of gene functions and molecular attributes. Given a set of genes, a Gene Ontology Network (GON) can be constructed from the corresponding GO annotations and semantic relations among GO terms. Transitive rules can be applied to GO semantic relations to infer transitive regulations among genes. Using information content as a measure of functional specificity, a shortest regulatory path detection algorithm is developed to identify transitive regulations in GON. Since direct regulations may be overlooked during the detection of gene regulations, gene functional similarities deduced from GO terms are used to detect direct gene regulations. Both direct and transitive GO regulations are then used to construct a Gene Regulatory Network (GRN). The proposed approach is evaluated on seven E.coli sub-networks extracted from an existing known GRN. Our approach was able to detect the GRN with 85.77% precision, 55.7% recall, and 66.26% F1-score averaged across all seven networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steuer, R., Humburg, P., Selbig, J.: Validation and functional annotation of expression-based clusters based on gene ontology. BMC Bioinformatics (2006)

    Google Scholar 

  2. Mundra, P.A., Rajapakse, J.C.: SVM-RFE with MRMR filter for gene selection. IEEE Transactions on Nanobiosciences 9 (2010)

    Google Scholar 

  3. Zhou, X.H., Kao, M.J., Wong, W.H.: Transitive functional annotation by shortest-path analysis of gene expression data. In: PNAS, vol. 99, pp. 12783–12788 (2002)

    Google Scholar 

  4. Franke, L., van Bakel, H., Fokkens, L., de Jong, E.D., Egmont-Petersen, M., Wijmenga, C.: Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. American Journal of Human Genetics 78, 1011–1025 (2006)

    Article  Google Scholar 

  5. Cheng, J., Cline, M., Martin, J., Finkelstein, D., Awad, T., Kulp, D., Siani-Rose, M.: A knowledge-based clustering algorithm driven by gene ontology. Journal of Biopharmaceutical Statistics 14, 687–700 (2004)

    Article  MathSciNet  Google Scholar 

  6. Kustra, R., Zagdański, A.: Data-fusion in clustering microarray data: Balancing discovery and interpretability. TCBB 7, 59–63 (2010)

    Google Scholar 

  7. Ashburner, M., Ball, C.A., Blake, J.A.: Gene ontology: tool for the unification of biology. Nature Genetics 25, 25–29 (2000)

    Article  Google Scholar 

  8. Barrell, D., Dimmer, E., Huntley, R.P.: The goa database in 2009 - an integrated gene ontology annotation resource. NAR 37, 396–403 (2009)

    Article  Google Scholar 

  9. Alterovitz, G., Xiang, M., Mohan, M.: Go pad: the gene ontology partition database. NAR 35, 322–327 (2007)

    Article  Google Scholar 

  10. Lin, D.: An information theoretic definition in similarity. In: ICML, pp. 266–304 (1998)

    Google Scholar 

  11. Jiang, J., Conrath, D.: Semantic similarity based on corpus statistics and lexical taxonomy. In: ROCLING (1997)

    Google Scholar 

  12. Johnson, D.B.: A note on dijkstra’s shortest path algorithm. JACM (1973)

    Google Scholar 

  13. Resnik, P.: Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language. In: JAIR, vol. 11, pp. 95–130 (1999)

    Google Scholar 

  14. Schlicker, A., Domingues, F.S., Rahnenfuhrer, J., Lengauer, T.: A new measure for functional similarity of gene products based on gene ontology. BMC Bioinformatics (2006)

    Google Scholar 

  15. Lord, P., Stevens, R., Brass, A., Goble, C.A.: Investigating semantic similarity measures across the gene ontology: the relationship between sequence and annotation. Bioinformatics 19, 1275–1283 (2003)

    Article  Google Scholar 

  16. Schaffter, T., Marbach, D., Floreano, D.: GeneNetWeaver: In silico benchmark generation and performance profiling of network inference methods. Bioinformatics 27, 2263–2270 (2011)

    Article  Google Scholar 

  17. Rhee, S.Y., Wood, V., Dolinski, K.: Use and misuse of the gene ontology annotations. Nature Reviews Genetics 9, 509–515 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, W., Chang, K., Zheng, J., Divya, J., Kim, JJ., Rajapakse, J.C. (2013). Gene Regulatory Networks from Gene Ontology. In: Cai, Z., Eulenstein, O., Janies, D., Schwartz, D. (eds) Bioinformatics Research and Applications. ISBRA 2013. Lecture Notes in Computer Science(), vol 7875. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38036-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38036-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38035-8

  • Online ISBN: 978-3-642-38036-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics