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Abstract. This work takes place in the context of biochemical kinetics
simulation for the understanding of complex biological systems such as
haemostasis. The classical approach, based on the numerical solving of
differential systems, cannot satisfactorily handle local geometrical con-
straints, such as membrane binding events. To address this problem, we
propose a particle-based system in which each molecular species is rep-
resented by a three-dimensional entity which diffuses and may undergo
reactions. Such a system can be computationaly intensive, since a small
time step and a very large number of entities are required to get signifi-
cant results. Therefore, we propose a model that is suitable for parallel
computing and that can especially take advantage of recent multicore
and multiprocessor architectures. We present our particle-based system,
detail the behaviour of our entities, and describe our parallel computing
algorithms. Comparisons between simulations and theoretical results are
exposed, as well as a performance evaluation of our algorithms.

Keywords: Particle-based system, parallel computing, biochemical ki-
netics, microscopic scale simulation.

1 Introduction

A common way to improve the understanding of complex biological systems is
to run experiments on models in order to test hypotheses. The results are then
extrapolated from the models to the real systems they represent. One usually
distinguishes in vivo experimentation, taking place in a living organism, from in
vitro experimentation, run in test tubes. One challenge for the upcoming years
would be to save the various expenses of some of these experiments by running
reliable computer simulations of predictive numerical models.

Complex biological systems necessarily involve the occurence of biochemical
events such as chemical reactions; numerical simulations of these complex sys-
tems thus imply the modelisation of their kinetics. Biochemical kinetics can be
simulated in many ways, but this is originally done by implementing empirical



laws, e.g. mass-action or Henri-Michaelis-Menten [1], into a set of ordinary dif-
ferential equations that is solved using a numerical method [2]. The presence of
biological material, such as membranes, can induce heterogeneity in the medium
where the biochemical events occur. Partial differential equations are thereby re-
quired to take into account this spatial heterogeneity. The differential equation
approach relies on the hypothesis that the medium is large enough to provide sig-
nificant results. When it comes to small volumes, e.g. inside a biological cell, this
assumption fails, which makes this approach only suitable for macroscopic scale
simulations. Gillespie [3,4] thus introduced stochastic simulation algorithms to
mimic accurately the behaviour of the solution of the chemical master equation
that describes biochemical kinetics at the mesoscopic scale. This approach takes
into account the discrete and stochastic aspects of biochemical reactions [5] and
makes the numerical simulation of biochemical kinetics possible, whatever the
volume. The case of heterogeneous media has also been treated [6].

It is now widely accepted that, in addition to the discrete and stochastic
aspects, spatial constraints must also be taken into account in order to simulate
accurately biochemical kinetics [7]. As an example, the blood coagulation cascade
[8] involves enzymatic reactions that take place both in solution and on a mem-
brane surface. Moreover, as the clotting process goes on, a fibrin mesh is formed
and the medium becomes insoluble: classical enzyme kinetics no longer applies.
Simulations of such complex phenomena are typically achieved using particle-
based methods that intend to describe biochemical kinetics at the microscopic
scale [9]. These methods track individual molecules, named particles or entities,
as they diffuse in three dimensions, collide and react. The main drawbacks with
particle-based methods stand in the small time steps and the very large number
of particles required to obtain significant results, which makes the simulations
computationaly intensive. Although other particle-based simulations of biochem-
ical kinetics at the microscopic scale already exist [10-13], none of them, to our
knowledge, focused on a noteworthy gain of computational performances.

This work addresses this issue using a particle-based method for the simula-
tion of biochemical kinetics at the microscopic scale that is suitable for parallel
computing and that can especially take advantage of recent multicore and mul-
tiprocessor architectures. We present our model in two steps. First, we introduce
our particle-based system and detail the behaviour of our entities, as well as their
specific scheduling scheme. Then, we describe the cache-aware simulation engine
and the parallel computing algorithms that we developed for performance pur-
pose. This description is followed by a validation section in which we illustrate
our approach on both a reversible and an enzymatic reactions and compare the
results of our method with those obtained with the classical approach. As our
work intends to improve the performances of the simulations, we then show the
computational gain that our algorithms offer. Finally, we discuss our choices and
give some perspectives for our work.



2 Model

2.1 Particle-Based System

Our method uses a particle-based approach, illustrated on Fig. 1, to simulate
the kinetics of biochemical systems with spatial and stochastic details [14]. Two
kinds of biochemical species can be represented: the Species3D entities which
diffuse in solution (in a Volume) and the Species2D entities which diffuse along
a physiological membrane (on a Surface). Each molecular species is represented
by its geometrical shape, i.e. an ellipsoid for the 3D species in solution and a
disc for the 2D species bound to a membrane.

+surfaces
+ Surface

AN

|BoxedVqume| |SphericalVqume| |PIanarSurface| |SphericaISurface|

+ reactions
3

I neactionll i --I—rReactionl

+species3D " " + species2D
H ¥ zn| | I 7n|‘_P_

Fig. 1. UML class diagram of our model — The Species class represents an entity
diffusing in a Volume or on a Surface, and which may undergo a Reaction.

Each entity diffuses in the reactional volume according to Brownian mo-
tion, with a diffusion coefficient computed from the entity’s radii, the volume
temperature and viscosity. It can also undergo two main biochemical reactions:
unimolecular ones or bimolecular ones. These reactions are responsible for the
creation or the destruction of other entities and, as a result, they govern the
variations of the chemical concentrations in the system. The whole life cycle of
an entity is detailed in Fig. 2 algorithm. The following sections describe each
step of this algorithm.

Unimolecular Reactions. Unimolecular reactions are phenomena which can
transform a biochemical species (the reagent) into one or more products. A
reaction R converting a molecular species C in a couple A and B is represented
by the scheme:
k
1
R:C—-A+B (1)

where k is the reaction rate characterising the velocity of the phenomenon.
A molecular species can take part in one or many reactions. In order to
simulate a system of n reactions, it is necessary to compute the probability of
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Fig. 2. Life cycle of an entity — This diagram summarises the global behaviour of an
entity during one simulation step. First, the entity checks if an unimolecular reaction
should happen. If not, the entity diffuses in the environment according to Brownian
motion. Then, if a collision happens, the entity tries to react with the collided one and
undergoes a bimolecular reaction if necessary. This process is repeated until the time
step allocated to the entity is elapsed.

each one, i.e. the probability P(R;) of the event “the reaction R; occurs on a

given time step At” and the probability P(R) of the event “no reaction occurs”.
These probabilities, also detailed in [15], are given by:

P(R) = - x(1—exp(—§n:ij4t))
j=1

P(R) = exp(—zn:kj x At) .

This system determines which reaction will occur during the current time step
At thanks to uniform random sampling.

Brownian Motion and Collision Detection. Brownian motion characterises
the erratic motion of an entity within a fluid. It arises from the collisions between
the solvent particles and the entity itself which seems to move randomly under
these impacts [16]. The theory associated with the brownian motion of ellipsoidal
molecules is studied in [17,18]. At the microscopic scale, this phenomenon is
usually modeled using three-dimensional random walks, i.e. Markov processes
defined by a succession of random elementary steps. The future position and
orientation of the entity solely depend on its current location, which means the
process is memoryless. This succession of elementary steps can be approximated
by random Gaussian sampling. As a matter of fact, during a time step At,
each three-dimensional translation and rotation are computed from six random



variables following a Gaussian law with a zero mean and a standard deviation
of V2D At, where D is the diffusion coefficient of the entity.

During its diffusion step, an entity may encounter one of its close neighbours.
To determine if a collision occured between two molecular species, we use the
collision detection algorithms for ellipsoids presented in [19]. Then we use a
dichotomy algorithm to manage the collision and avoid the overlap of the entities.
Such collisions can lead to bimolecular reactions.

Bimolecular Reactions. As opposed to unimolecular ones, bimolecular re-
actions can only occur when collisions happen in the system. As a result, two
reagents are necessary to create a product. A reaction R between two species A
and B, producing C, can be represented as follows:

K
R:A+B—C (3)

where k is the reaction rate. To simulate such reactions, the probability P(R)
that a reaction occurs upon a collision between the species A and B has to be
determined. This probability is maximal, i.e. P(R) = 1, when all the collisions
between the reagents lead to the creation of a product. The corresponding max-
imum rate constant kpax can easily be computed by using our simulator and by
fitting the concentrations with the solution of the mass action law equation. It is
worth noting that the values we obtain for different simulations are rather con-
sistent with Von Smoluchowski theory [1] which states that the maximum rate
constant is kpax = 4m(Da + Dg)(ra +1rB)Na, where Dy and rp are respectively
the diffusion coefficient and the radius of the species A (likewise for B), and
Ny is the Avogadro number. Once kmax has been determined, the probability
P(R) is given by the ratio k— where k is the rate constant that we want to
simulate. A reaction R occurs only if the value of a random variable X, following
a standard uniform distribution, is less than P(R).

However, if two entities do not react the first time they collide, there is a
very high probability that they will during the next simulation steps. This is
due to the fact that the entities are still very close to each other after their first
encounter. To avoid the bias introduced by this recollision problem, we decide
to consider only the first collision in a sequence of encounters.

Scheduling. The interactions between our entities are not predetermined and
the overall behaviour of the system is unknown. Because these entities are not
just numerical equations which results could be added, as in a synchronous
system, they introduce concurrency in the simulation. When two entities collide
and react in one place, a third one cannot pretend having reacted with one
of them (which could have just disappeared) in another place during the same
time step; the state of the system has been irreversibly changed by the preceding
reaction and all the following actions have to consider this new state. Therefore
we chose to use an asynchronous and chaotic iteration scheme to schedule the



entities [20]. Although a common time step ensures the temporal consistency of
the entities, the asynchronous scheduler executes every entity one after another
inside this time step in order to take into account every single event. However,
since every entity is affected by the previous ones actions, a fixed scheduling
order would have implied an unwanted priority between them. As shown on Fig.
3, the chaotic scheduler gets rid of this artifact with a random reordering at
each new step. The convergence and stability of such a scheduling scheme in the
context of differential system solving were strictly validated in [21].

Entities
Entity 3 — S S —

Entity 1 — M N S

-
At step

Fig. 3. Asynchronous and chaotic scheduling — This figure shows the execution order
of three entities scheduled according to the asynchronous and chaotic iteration scheme.
Three simulation steps are represented. The scheduler executes every entity exactly
once in a time step, randomly reordering the sequence at each new step.

2.2 Parallel Asynchronous Scheduler

According to the law of large numbers, a particle-based biochemical kinetics sim-
ulation requires many entities (approximately 10°) to be significant. Moreover,
the microscopic scale implies the use of very short time steps (approximately 10
nanoseconds) and therefore, many iterations are required to compute the whole
simulation. To speed up such intensive computations, we developed algorithms
suitable for parallel computing on multicore and multiprocessor architectures.

Background: Cache-Aware Simulation Engine. As detailed in [22], we
previously designed a simulation engine that can harness the full potential of all
the Central Processing Units (CPUs) (would they be processors, physical cores,
or logical cores) in a parallel computer.

To prevent cache-memory trashing, the whole set of entities to schedule is
subdivided in as many subsets as there are CPUs. Since our simulations imply a
common repetitive time step, some work-stealing [23] is used at the end of each
step to dynamically balance the CPU workloads, keeping all of them busy until
the end. This stealing relies on the knowledge of the cache-memory hierarchy to
minimise trashing. The assignment of every entity to the CPU in charge of its
execution is arbitrary at first but is dynamically adjusted: each executed entity
keeps track of its neighbours’ current CPU and moves to the most represented



one for the next simulation step. It is then very likely for an entity and its
neighbours to be run on the same CPU, and thus to find their respective data
already up to date in the same cache-memory. This solution is more generic
than a spatial partitioning and offers a better load balancing when it comes to
heterogeneous spatial distributions or gregarious behaviours.

This cache-aware simulation engine shows a very good scalability related
to the number of CPUs used [22]. However, it was formerly dedicated to syn-
chronous simulations and, as stated in section 2.1, our particle-based biochemical
model relies on an asynchronous scheduling scheme.

From Synchronous to Asynchronous Parallel Scheduling. The first issue
we have to deal with consists in keeping the consistency of any entity when ac-
cessed by many CPUs simultaneously. Each entity has its own reader-writer-lock
[23] which is locked for writing (one at a time) when its behaviour is executed.
When an entity collects informations from its neighbours, it locks them for read-
ing (many reader-lock operations are allowed at the same time on a given lock).
In case it needs to modify a neighbour, the reader-lock is promoted to writer-lock
(one at a time). Even though the consistency is now guaranteed for concurrent
accesses, the main drawback with overlapped lock operations stands in dead-
lock situations: several entities having to lock themselves and one another, thus
waiting endlessly for these locks to become free.

To prevent this new issue from happening, we turn the locking operations
into attempts that may immediately fail if the lock is not free. This requires
that the behaviour of the entities has to be written so that all the decision
making takes place in local variables; the entities are finally modified only if
all the chain of locking operations succeeds. When a locking failure occurs, the
currently executed behaviour is simply given up as if it has never been started; it
will be rescheduled later in the same time step. Nevertheless, when approaching
the end of the step, a live-lock situation may occur: the rescheduled entities which
interact with one another on different CPUs are probably the only remaining
ones and will forever miss their locking attempts.

To get around this situation, as soon as an entity fails twice to be scheduled in
the same time step, we postpone its execution to the next step. As the scheduling
follows a random order, it is very unlikely for these concurrent entities, amongst
many other ones now, to be scheduled simultaneously one more time. Of course,
a postponed entity has to be scheduled twice in this next step to ensure a long
term temporal consistency between entities.

Although these locking attempts, rescheduling and postponing decisions may
seem to raise the computation workload, they actually do not so much. Since our
scheduler tends to assign the entities to the CPUs according to their neighbour-
hood, most of the time a whole set of interacting entities is scheduled by only
one CPU. Consequently, the locking attempts are serialised and mostly succeed,
thus it is scarcely ever necessary to reschedule or even postpone some entities.



3 Results

This section presents some results which validate our algorithms on simple simu-
lations. We achieve this validation by comparing the simulation results obtained
with our approach with the ones determined by solving the differential equations
of the mass action law. Then, we study how simulation speed scales related to
the number of CPUs involved.

3.1 Validation

We chose to illustrate our approach on a reversible reaction and an enzymatic
reaction as they are the most frequent in biochemical kinetics. These reactions
are modeled by one bimolecular reaction and one or two unimolecular reactions.
As an example for the simulation of a reversible reaction, our approach is illus-
trated on the interaction of blood coagulation factor Xa with its tight-binding
inhibitor, tissue factor pathway inhibitor (TFPI). The whole biochemical de-
scription of this interaction can especially be found in [24]. Then, we illustrate
our method on the activation of prothrombin (II) into thrombin (ITa) by an enzy-
matic complex (PTpiex) that can be found in the venom of the Australian snake
Pseudonaja textilis. This interaction is fully detailed in [25]. Table 1 gathers all
the data we used to set up our validation simulations.

Table 1. Validation parameters — This table presents the validation conditions of our
model. It gathers every data necessary to reproduce our results. It should be noted
that the shape of factors Xa and II are assumed to be prolate ellipsoids whereas the
other species have a spherical shape.

Reversible reaction Enzymatic reaction
kon KM kcat
Xa + TFPI & Xa - TFPI PTptex + II 5 PTptex - II — PTpiex + 1la
koff
kon =0.9 x 10°M T .57 1 Kv=183x10°M
ko = 3.6 x 107*s7! Kcat = 5.87s7*
Initial concentrations
[Xa], = 170nM [PTptex], = 100nM
[TFPI], = 2.5nM [, = 1.4 uM
Dimensions
Xa TFPI | Xa-TFPI || PTptex 11 PTpiex - 11 IIa
T = 26.0 A re =22.5A
ry =26.0Ar =225A)r =359A|r =39.3A|ry =225Ar =45.0A|r =25.0A
r, =51.5A 7, = 60.0 A

The results computed from our simulations are illustrated on Fig. 4, and are
consistent with the ones coming from reference laws: the mean relative errors at
steady state are about 1% for both reversible and enzymatic reactions. These



two validations are essential before addressing more complex simulations. One
may notice that we do not deal with membrane binding events in these examples.
This point will be developed in the perspective section.

Reversible reaction Enzymatic reaction
170 25 1500
[Xa] —— P
169.5 [TEPI] 1o = 1250 - —
[XadFPI] —a— %
169 | = 1000 | a] —=
% 1158 %
= 1685 | = < 750 t /
2 {2 Z
168 | = 500 -
_ = /
1675 | 105= 250 | /
167 . . . \ 0 0 . . .
0 7 14 21 28 35 0 5 10 15 20
Time (sec) Time (sec)

Fig. 4. Reversible and enzymatic reaction validation — These curves illustrate the val-
idation of our model on two kinds of reaction. Smooth curves are computed from mass
action law whereas noisy ones are the results of our simulations.

3.2 Performances

We ran many simulations, similar to the preceding ones, on a single computer
with two Intel® Xeon® X5680 processors at 3.33 GHz clockspeed and a 12-
Mbyte level-3 cache each. Thanks to the 2-way SMT technology, the twelve
CPU cores provided here can be seen as twenty four logical CPUs running si-
multaneously. Figure 5 reports the computational frequency, i.e. the number of
simulation steps per second, as well as the number of simulated entities running
at a given rate, depending on the number of CPUs used. Both curves seem to
scale linearly but with a slight change in the slopes around twelve CPUs. When
using only the first dozen of CPUs, the physical cores fully exploit their respec-
tive hardware resources and cache hierarchy, but when it comes to the second
dozen of CPUs, the 2-way SMT technology is involved and implies the sharing of
the same resources for twice as much workload. This explains the slightly lower
efficiency.

These results show that, as long as the CPUs come along with some cache
memory, the simulation performances scale linearly with the number of CPUs
involved. This lets us foresee that the cache-aware design of our simulator would
enable even bigger simulations when using over twenty four CPUs.
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Fig. 5. Performance scaling — One curve illustrates the scaling of the computational
frequency, depending on the number of CPUs used, for a simulation with 22438 entities.
The other one shows the number of entities that our simulator can handle at a given
computational frequency (280 Hz).

4 Discussions and Perspectives

4.1 Alternatives for Computing Power

Intensive computations can be handled by several technologies involving many
computing units. Some of these parallel solutions are local, taking place in a
single computer, such as multicore and multiprocessor computers or graphical
processing units (GPUs), whereas others are distributed, implying communi-
cation through a network (dedicated or not), such as computer clusters, grid
computing or cloud computing.

While distributed solutions are flexible and may provide a huge amount of
computing units, the communication delays make them only suitable for com-
putational problems which can be naturally subdivided into many independent
subproblems requiring very little or even no synchronisation. Our simulations are
made of multiple recurrent interactions which cannot be split in fixed and inde-
pendent subsets beforehand; they require intensive synchronisations between the
computing units. Because the hardware of general purpose parallel computers
ensures very efficiently the cache-memory coherency, we decided to focus on this
technology in the design of our simulation engine. Even in this favourable local
context, our experiments showed that the slightest clumsiness in synchronisation
and cache usage impacted significantly the overall computing performance; this
definitely discouraged us from investigating distributed solutions.

GPUs are local to a computer and provide much more computing units than
CPUs do. Our experiments highlighted that, not only the data transfer delay
with the GPUs was far from being negligible compared to the computation du-
ration, but also the programming model associated with this technology [26]
was well-suited for a synchronous simulation scheme in which thousands of en-



tities can compute simultaneously an identical behaviour without taking care of
any unexpected data change in their neighbourhood. Unfortunately, as stated
in section 2.2, the asynchronous simulation scheme associated with our model
implies a careful synchronisation strategy. Although some synchronisation prim-
itives are available on GPUs, their usage totally contradicts the programming
model of these devices and tends to ruin dramatically the raw computing per-
formance they are capable of. Consequently, we prefer saving this technology for
synchronous simulations of physical phenomena which could however interact
with our particle-based asynchronous simulations.

4.2 Perspectives and Future Work

Due to the fact that we chose the microscopic scale, our diffusion algorithm
requires a very short time step in order not to miss collisions (approximately
10 nanoseconds). This constraint somewhat limitates the performances of the
simulations. As a matter of fact, two main parameters govern these performances:
the number of entities executed during each simulation step and the length of
this time step. Parallel computing enables us to increase the first parameter by
using more computational units. However, it has no impact on the second one.
We are currently working on a statistical method to address this problem. For the
time being, we recommend the use of our simulator for short time applications,
i.e. biochemical processes lasting no longer than ten seconds.

Beside this time step optimisation, a part of our model still needs to be
thoroughly validated. As stated previously in section 2.1, the molecular species
in solution may bind with membranes. Altough such bindings (and unbindings)
are fully implemented, we still have to ensure the consistency of our results
with experimental ones. In the present situation, our simulator provides nothing
more than the classical approach. Nevertheless, this method is the only one
capable of handling local geometrical constraints in biochemical systems. We
will therefore focus our future work on modeling and validating these membrane
binding events.
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