Skip to main content

Cascaded Reduction and Growing of Result Sets for Combining Object Detectors

  • Conference paper
Multiple Classifier Systems (MCS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7872))

Included in the following conference series:

Abstract

In this paper cascaded reduction and growing of result sets is introduced as a principle for combining the results of different object detectors. First, different candidate operating points are selected for each object detection algorithm. This procedure is based on the analysis of precision and recall of the individual methods. Selecting an appropriate operating point prior to fusion is important because it regulates the cardinal number of the result set. As diversity and correlation between object detectors also depend on the elements of the result sets, this and the application of set operations allow to create a final set of detected objects by including missing and excluding false detections. The approach allows both diverse and correlated detectors to contribute to the performance of the combined detector. The performance of the proposed algorithm is compared to other combining algorithms. It outperforms or competes with existing state of the art combiners for several datasets. Additionally, the results provide a significant improvement in the interpretability of the combining rules. As a unique feature of the proposed algorithm, the found operating points can be used to reconfigure the object detection algorithms to adapt their individual results to the needs of the combination procedure allowing a reduction in runtime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aeberhard, M.: Object existence probability fusion using dempster-shafer theory in a high-level sensor data fusion architecture. In: IEEE Intelligent Vehicles Symposium, pp. 770–775 (2011)

    Google Scholar 

  2. Al-Ani, A., Deriche, M.: A new technique for combining multiple classifiers using the dempster-shafer theory of evidence. Journal of Artificial Intelligence Research 17, 333–361 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Baum, T., Navarro-Quezada, A., Knogge, W., Douchkov, D., Schweizer, P., Seiffert, U.: Hypharea - automated analysis of spatiotemporal fungal patterns. Journal of Plant Physiology 168(1), 72–78 (2011)

    Article  Google Scholar 

  4. Chen, X., Harrison, R., Zhang, Y.-Q.: Genetic fuzzy fusion of svm classifiers for biomedical data. In: IEEE Congress on Evolutionary Computing (2005)

    Google Scholar 

  5. Chen, X., Li, Y., Harrison, R., Zhang, Y.-Q.: Type-2 fuzzy logic-based classifier fusion for support vector machines. Applied Soft Computing 8(3), 1222–1231 (2008); Forging the Frontiers - - Soft Computing

    Google Scholar 

  6. Cheng, F., Huang, S., Ruan, S.: Advanced motion detection for intelligent video surveillance systems. In: ACM Symposium on Applied Computing (2010)

    Google Scholar 

  7. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes (VOC) Challenge. International Journal of Computer Vision 88, 303–338 (2010)

    Article  Google Scholar 

  8. Greenacre, M.J.: Theory and application of correspondence analysis. Academic Press, London (1984)

    Google Scholar 

  9. Kang, S., Park, S.: A fusion neural network classifier for image classification. Pattern Recogn. Lett. 30(9), 789–793 (2009)

    Article  MathSciNet  Google Scholar 

  10. Khan, F.S., Anwer, R.M., van de Weijer, H., Bagdanov, A.D., Vanrell, M., Lopez, A.M.: Color Attributes for Object Detection. In: CVPR (2012)

    Google Scholar 

  11. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(3), 226–239 (1998)

    Article  Google Scholar 

  12. Knauer, U., Meffert, B.: Fast computation of region homogeneity with application in a surveillance task. In: ISPRS Technical Commission V Symposium. ISPRS (2010)

    Google Scholar 

  13. Kuncheva, L.I.: ’Fuzzy’ vs ’non-fuzzy’ in combining classifiers designed by boosting. IEEE Transactions on Fuzzy Systems 11(6), 729–741 (2003)

    Article  Google Scholar 

  14. Lee, D.: Multisensor fusion-based object detection and tracking using active shape model. In: Digital Information Management, pp. 108–114 (2011)

    Google Scholar 

  15. Leung, K.T., Parker, D.S.: Empirical comparisons of various voting methods in bagging. In: 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2003)

    Google Scholar 

  16. Liu, N., Dellandrea, E., Zhu, C., Bichot, C.-E., Chen, L.: A Selective Weighted Late Fusion for Visual Concept Recognition. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012 Ws/Demos, Part III. LNCS, vol. 7585, pp. 426–435. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision, pp. 674–679 (1981)

    Google Scholar 

  18. Merz, C.J.: Using correspondence analysis to combine classifiers. Machine Learning 36(1-2), 33–58 (1999)

    Article  Google Scholar 

  19. Sevenson, A.: Separating Axis Theorem (SAT) Explanation. Internet (2009)

    Google Scholar 

  20. Song, Z.: Contextualizing object detection and classification. In: IEEE Conference on Computer Vision and Pattern Recognition (2011)

    Google Scholar 

  21. Spinello, L., Arras, K.O.: Leveraging rgb-d data: Adaptive fusion and domain adaption for object detection. In: IEEE Conference on Robotics and Automation (2012)

    Google Scholar 

  22. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: IEEE Computer Vision and Pattern Recognition, vol. 2, p. 200. IEEE (1999)

    Google Scholar 

  23. Suja, T.B.: Fusion based object detection. In: National Conference on Communications, pp. 1–3 (2010)

    Google Scholar 

  24. Teschner, M.: Algorithmen und Datenstrukturen Bereichsbume. Foliensatz (2011)

    Google Scholar 

  25. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 511–518 (2001)

    Google Scholar 

  26. Xu, L., Kryzak, A., Suen, C.V.: Methods of Combining Multiple Classifiers and Their Application to Handwriting Recognition. IEEE Transactions on Systems, Man, and Cybernetics 22(3), 418–435 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Knauer, U., Seiffert, U. (2013). Cascaded Reduction and Growing of Result Sets for Combining Object Detectors. In: Zhou, ZH., Roli, F., Kittler, J. (eds) Multiple Classifier Systems. MCS 2013. Lecture Notes in Computer Science, vol 7872. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38067-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38067-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38066-2

  • Online ISBN: 978-3-642-38067-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics