Skip to main content

Similarity Weighted Ensembles for Relocating Models of Rare Events

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7872))

Abstract

Spatially distributed regions may have different influences that affect the underlying physical processes and make it inappropriate to directly relocate learned models. We may also be aiming to detect rare events for which we have examples in some regions, but not others. A novel method is presented for combining classifiers trained on regions with known sensor data and predicting rare events in new regions, specifically the closure of shellfish farms. The proposed similarity weighted ensemble method demonstrates an average 10 fold improvement in accuracy over One Class classification and 3 fold improvement over rules hand-crafted by an expert.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Muttil, N., Chau, K.: Machine-learning paradigms for selecting ecologically significant input variables. Journal Engineering Applications of Artificial Intelligence 20(6), 735–744 (2007)

    Article  Google Scholar 

  2. Bernard, E., Meinig, C.: History and future of deep-ocean tsunami measurements. In: OCEANS 2011, pp. 1–7. IEEE (2011)

    Google Scholar 

  3. D’Este, C., Rahman, A., Turnbull, A.: Predicting shellfish farm closures with class balancing methods. In: Thielscher, M., Zhang, D. (eds.) AI 2012. LNCS, vol. 7691, pp. 39–48. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Chigbu, P., Strange, T., Gordon, S., Jester, K., Baham, J., Young, J., Hughes, R., Remata, R., Martinolich, K., Hilbert, K., Mott, D., Watts, M., McIntosh, M.: Development of decision support tools for aquaculture: the pond experience. Journal of Shellfish Research 25(3), 1091–1099 (2006)

    Google Scholar 

  5. Kelsey, R., Scott, G., Porter, D., Siewicki, T., Edwards, D.: Improvements to shellfish harvest area closure decision making using gis, remote sensing and predictive models. Estuaries and Coasts 33, 712–722 (2010)

    Article  Google Scholar 

  6. Choe, W., Ersoy, O., Bina, M.: Neural network schemes for detecting rare events in human genomic dna. Bioinformatics 16(12), 1062–1072 (2000)

    Article  Google Scholar 

  7. Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, W.: SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16, 341–378 (2002)

    Google Scholar 

  8. Tax, D.: One-class classification. PhD thesis, Delft University of Technology (2001)

    Google Scholar 

  9. Minku, L.L., Yao, X.: Using unreliable data for creating more reliable online learners. In: The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2012)

    Google Scholar 

  10. Opitz, D., Maclin, R.: Popular ensemble methods: An empirical study. Journal of Artificial Intelligence Research 11, 169–198 (1999)

    MATH  Google Scholar 

  11. Tax, D.M.J., Duin, R.P.W.: Combining one-class classifiers. In: Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, vol. 2096, pp. 299–308. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Wang, H., Fan, W., Yu, P., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 226–235. ACM (2003)

    Google Scholar 

  13. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The Weka data mining software: An update. SIGKDD Explorations 11(1) (2009)

    Google Scholar 

  14. Freund, Y., Schapire, R.: Decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hempstalk, K., Frank, E., Witten, I.H.: One-class classification by combining density and class probability estimation. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 505–519. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Baldi, P., Brunak, S., Chauvin, Y., Andersen, C., Nielsen, H.: Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16(5), 412–424 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

D’Este, C., Rahman, A. (2013). Similarity Weighted Ensembles for Relocating Models of Rare Events. In: Zhou, ZH., Roli, F., Kittler, J. (eds) Multiple Classifier Systems. MCS 2013. Lecture Notes in Computer Science, vol 7872. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38067-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38067-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38066-2

  • Online ISBN: 978-3-642-38067-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics