Skip to main content

Use of a Mixed-Reality System to Improve the Planning of Brain Tumour Resections: Preliminary Results

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7815))

Abstract

The lack of intuitive visualization techniques for neurosurgical planning is a challenging hurdle faced by neurosurgeons and neurosurgery residents. Within this context, this paper describes the development and evaluation of an Augmented Reality (AR) system geared towards planning brain tumour resection interventions. Successful resection of a tumour or hematoma requires careful pre-operative planning to avoid damaging the brain. We hypothesize that our proposed AR system facilitates the planning of tumour resection operations by making more effective use of the visuospatial abilities of individuals to assess patient-specific data. To test our hypothesis, a number of experiments were conducted where subjects were asked to perform relevant spatial judgment tasks using three different conventional visualization approaches as well as the proposed AR system. Our preliminary results indicate that, compared to traditional methods, the proposed AR system a) greatly improves the user performance in tasks involving 3D spatial reasoning about the tumour relative to the anatomical context, b) reduces error associated with mental transformation, and c) supports generic spatial reasoning skills, independent of the sensory-motor tasks performed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Cancer Society: Cancer Facts and Figures 2012. American Cancer Society, Atlanta (2012) (last accessed December 12, 2012)

    Google Scholar 

  2. Canadian Cancer Statistics, produced by Canadian Cancer Society, Statistics Canada, Provincial/Territorial Cancer Registries, Public Health Agency of Canada (2012) (last accessed December 12, 2012)

    Google Scholar 

  3. National Cancer Institute (NCI) booklet (NIH Publication No. 09-1558), (Posted: April 29, 2009)

    Google Scholar 

  4. Hegarty, M., Keehner, M., Cohen, C., Montello, D.R., Lippa, Y., Allen, G.L.: The role of spatial cognition in medicine: Applications for selecting and training professionals. In: Applied Spatial Cognition: From Research to Cognitive Technology, pp. 285–315. Lawrence Erlbaum Associates Publishers (2007)

    Google Scholar 

  5. Biström, J., Cogliati, A., Rouhiainen, K.: Post-WIMP User Interface Model for 3D Web Applications, Helsinki University of Technology Telecommunications Software and Multimedia Laboratory (2005)

    Google Scholar 

  6. Traub, J., Stefan, P., Heining, S.M., Sielhorst, T., Riquarts, C., Euler, E., Navab, N.: Hybrid navigation interface for orthopedic and trauma surgery. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 373–380. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Hutchins, E.L., Hollan, J.D., Norman, D.A.: Direct Manipulation Interfaces. In: Norman, D.A., Draper, S.W. (eds.) User-Centered System Design, pp. 87–124. Lawrence Erlbaum, Hillsdale (1986)

    Google Scholar 

  8. Sielhorst, T., Feuerstein, Navab, N.: Advanced medical displays: A literature review of augmented reality. J. of Display Tech. 44, 451–467 (2008)

    Article  Google Scholar 

  9. Prastawa, M., Bullitt, E., Gerig, G.: Simulation of Brain Tumors in MR Images for Evaluation of Segmentation Efficacy. Medical Image Analysis (MedIA) 13(2), 297–311 (2009)

    Article  Google Scholar 

  10. Kruger, J., Schneider, J., Westermann, R.: ClearView: An Interactive Context Preserving Hotspot Visualization Technique. IEEE Transactions on Visualization and Computer Graphics 12(5), 941–948 (2006)

    Article  Google Scholar 

  11. Drebin, R.A., Carpenter, L., Hanrahan, P.: Volume rendering. SIGGRAPH Comput. Graph. 22(4), 65–74 (1988)

    Article  Google Scholar 

  12. Kniss, J., Kindlmann, G., Hansen, C.: Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets. In: Proc. IEEE Visualization, pp. 255–262 (2001)

    Google Scholar 

  13. Baxter, J.S.H., Peters, T.M., Chen, E.C.S.: A unified framework for voxel classification and triangulation. In: Proc. SPIE, vol. 7964, p. 796436 (2011)

    Google Scholar 

  14. Williams, L.J.: Tunnel vision induced by a foveal load manipulation. The J. of the Human Factors 27(2), 221–227 (1985)

    Google Scholar 

  15. Lerotic, M., Chung, A.J., Mylonas, G., Yang, G.Z.: pq-space based non-photorealistic rendering for augmented reality. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 102–109. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Interrante, V., Fuchs, H., Pizer, S.M.: Conveying the 3D Shape of Smoothly Curving Transparent Surfaces via Texture. IEEE Trans. Visualization and Computer Graphics 3(2), 98–117 (1997)

    Article  Google Scholar 

  17. Abhari, K., Baxter, J.S.H., de Ribaupierre, S., Peters, T., Eagleson, R.: Perceptual Improvement of Volume-Rendered MR Angiography Data using a Contour enhancement Technique. In: International Society for Optics and Photonics (SPIE), USA, vol. 8318, p. 831809 (2012)

    Google Scholar 

  18. Bichlmeier, C., Wimmer, F., Michael, H.S., Nassir, N.: Contextual anatomic mimesis: Hybrid in-situ visualization method for improving multi-sensory depth perception in medical augmented reality. In: Proc. IEEE and ACM Int. Symp. on Mixed and Augmented Reality, ISMAR, pp. 129–138 (2007)

    Google Scholar 

  19. Zhang, Q., Eagleson, R., Peters, T.M.: Volume visualization: A technical overview with a focus on medical applications. J. Digit. Imag. 24(4), 640–664 (2011)

    Article  Google Scholar 

  20. Rajchl, M., Yuan, J., Ukwatta, E., Peters, T.M.: Fast Interactive Multi-region Cardiac Segmentation With Linearly Ordered Labels. In: 9th IEEE International Symposium on Biomedical Imaging, ISBI (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abhari, K. et al. (2013). Use of a Mixed-Reality System to Improve the Planning of Brain Tumour Resections: Preliminary Results. In: Linte, C.A., Chen, E.C.S., Berger, MO., Moore, J.T., Holmes, D.R. (eds) Augmented Environments for Computer-Assisted Interventions. AE-CAI 2012. Lecture Notes in Computer Science, vol 7815. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38085-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38085-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38084-6

  • Online ISBN: 978-3-642-38085-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics