
ar
X

iv
:1

30
1.

17
02

v1
 [

cs
.L

O
]

 8
 J

an
 2

01
3

Formal Verification of Nonlinear Inequalities

with Taylor Interval Approximations

Alexey Solovyev and Thomas C. Hales⋆

Department of Mathematics, University of Pittsburgh,
Pittsburgh, PA 15260, USA

Abstract. We present a formal tool for verification of multivariate non-
linear inequalities. Our verification method is based on interval arith-
metic with Taylor approximations. Our tool is implemented in the HOL
Light proof assistant and it is capable to verify multivariate nonlin-
ear polynomial and non-polynomial inequalities on rectangular domains.
One of the main features of our work is an efficient implementation of
the verification procedure which can prove non-trivial high-dimensional
inequalities in several seconds. We developed the verification tool as a
part of the Flyspeck project (a formal proof of the Kepler conjecture).
The Flyspeck project includes about 1000 nonlinear inequalities. We suc-
cessfully tested our method on more than 100 Flyspeck inequalities and
estimated that the formal verification procedure is about 3000 times
slower than an informal verification method implemented in C++. We
also describe future work and prospective optimizations for our method.

1 Introduction

In this paper, we present a tool for formal verification of nonlinear inequalities in
HOL Light [1]. Our tool can verify multivariate polynomial and non-polynomial
inequalities on rectangular domains. The verification technique is based on inter-
val arithmetic with Taylor approximations. A short user manual describing our
tool is available [2]. Solovyev’s thesis [3] contains additional information about
the verification tool and the corresponding formal techniques.

Our work is an integral part of the Flyspeck project [4,5]. This project was
launched in 2003 by T. Hales to produce a complete formal verification of Hales’
proof of the Kepler conjecture [6,7]. There are several major computationally
extensive verification problems in the Flyspeck project. One of these problems
is a formval verification of about 1000 multivariate nonlinear inequalities. We
have successfully tested our formal verification tool on several simple Flyspeck
nonlinear inequalities (we have verified 130 inequalities). In theory, almost all
Flyspeck inequalities can be verified with our formal verification procedure. A
rough estimate shows that the current formal procedure is about 3000 times
slower than the corresponding informal verification algorithm in C++ [8]. With
this estimate, it will take more than 4 years to verify all Flyspeck nonlinear

⋆ Research supported by NSF grant 0804189 and a grant from the Benter Foundation.

http://arxiv.org/abs/1301.1702v1

2

inequalities formally on a single computer (the informal procedure requires about
9 hours).

There exist other formal methods for verification of nonlinear inequalities.
First of all, general quantifier elimination procedures may be used to solve some
polynomial inequalities [9,10,11]. Another method for proving polynomial in-
equalities is known as sums-of-squares (SOS) method [12].

A tool called MetiTarski [13,14] is capable to verify multivariate polynomial
and non-polynomial inequalities on unbounded domains. It approximates non-
polynomial functions by suitable polynomial bounds and then applies quantifier
elimination procedures for resulting polynomials.

The Bernstein polynomial technique [15] allows to verify multivariate poly-
nomial inequalities. Each polynomial can be written as a sum of polynomials in
the Bernstein polynomial basis. Coefficients of this representation give bounds of
the polynomial itself. A complete formal implementation of this method is done
in PVS [16]. Non-polynomial inequalities must be first converted into polynomial
inequalities by finding polynomial bounds. One way to find polynomial bounds
is to use Taylor model approximations [17]. R. Zumkeller’s thesis describes this
method in details [15]. He also implemented an informal global optimization tool
based on Bernstein polynomials [18] in Haskell.

There exists a tool in the PVS proof assistant which uses the same technique
as our tool (interval arithmetic with Taylor approximations) [19] but this tool
works only with univariate functions.

Methods based on quantifier elimination procedures do not scale well when
the number of variables grows and when inequalities become more complicated.
The Bernstein polynomial technique works well for polynomial inequalities but
does not show very good results for inequalities involving special functions in
high dimensions.

2 Verification of Nonlinear Inequalities

2.1 Nonlinear Inequalities and Interval Taylor Approximations

Consider the problem: prove that

∀x ∈ R
n,x ∈ D =⇒ f(x) < 0.

D is assumed to be a rectangle given by D = {(x1, . . . , xn) | ai ≤ xi ≤ bi} =
[a,b]. We also assume that f(x) is twice continuously differentiable in an open
domain U ⊃ D.

One way to solve the problem is to consider a finite partition of D =
⋃

j D
j

such that each Dj is rectangular. Also, we assume that f̄(Dj) < 0 where f̄ is
an interval approximation of f (that is, f̄(Dj) is the interval corresponding to
the interval evaluation of f(x1, . . . , xn) for input intervals xi ∈ [aji , b

j
i]; clearly,

f̄(D) < 0 =⇒ f(D) < 0). It is easy to see that such a partition always exists
if f is continuous, f(D) < 0, and f can be arbitrary well approximated by
f̄ on sufficiently small domains. (It follows by the compactness argument: for

3

each point x ∈ D there is a small rectangle Dj such that x ∈ interior(Dj) and
f̄(Dj) < 0; D is compact, so there are finitely many rectangles Dj such that
D =

⋃

j D
j .)

The main difficulty is finding a suitable partition {Dj}. The easiest way is
the following. Let D0 = D and compute f̄(D0). If this value is less than 0
(in the interval sense), then we are done. Otherwise divide D0 into two regions
D0 = D1

1 ∪ D1
2. Then repeat the procedure for regions with upper index 1. In

general, either f̄(Dk
j) < 0 or we get Dk

j = Dk+1
2j−1∪Dk+1

2j . If we divide each region
such that sizes of new regions become arbitrary small in all dimensions, then the
process will eventually stop and a suitable partition of D will be found. An easy
way to achieve this goal is to divide each region in half along the coordinate for
which its size is maximal, i.e., if Dk

j = {ai ≤ xi ≤ bi} = [a,b] and bm − am =

maxi{bi − ai}, then set D(k+1)2j−1 = [a,b(m,y)] and D
(k+1)
2j = [a(m,y)),b]. Here,

y = (am+ bm)/2 and a(m,y) equals to a with the m-th component replaced by y.
As the result of the procedure above, we get a finite set of subregions S =

{Dk
i } with the property: for eachDk

i ∈ S either f̄(Dk
i) < 0 orDk

i = Dk+1
i1

∪Dk+1
i2

.
In the last case, the verification relies on a trivial theorem

D = D1 ∪D2 ∧ f(D1) < 0 ∧ f(D2) < 0 =⇒ f(D) < 0.

Interval arithmetic works for any continuous function (at least in theory
where numerical errors are not considered) but it is not very efficient in general.
This is due to the dependency problem when even a simple function could require
a lot of subdivisions in order to get the result on the full domain. Even a trivial
inequality f(x) = x − x < 1 will require subdivisions for the domain x ∈ [0, 1].
Indeed, f̄([0, 1]) = [0, 1]− [0, 1] = [−1, 1]. Of course, we can simplify x − x = 0
but it is not possible to do for a function f(x) = x− arctan(x) which has similar
behaviour near 0. For this function, f̄([0, 1]) = [0, 1] − [0, π/4] = [−π/4, 1] and
we don’t get f(x) < 1. One way to decrease the dependency problem is to use
Taylor approximations for computing bounds of f on a given domain D.

Fix y ∈ D = [a,b], then we can write

f(x) = f(y) +

n
∑

i=1

∂f

∂xi

(y)(yi − xi) +
1

2

n
∑

i,j=1

∂2f

∂xi∂xj

(p)(yi − xi)(yj − xj)

where p ∈ [a,b]. Let w = max{y−a,b−y} (all operations are componentwise).
Suppose we have interval bounds for f(y) ∈ [f lo

0 , fhi
0], ∂f

∂xi
(y) ∈ [f lo

i , fhi
i] and

∂2f
∂xi∂xj

(t) ∈ [f lo
ij , f

hi
ij] for all t ∈ D. We can write

∀x ∈ D, f(x) ≤ f(y) +

n
∑

i=1

∣

∣

∣

∣

∂f

∂xi

(y)

∣

∣

∣

∣

wi +
1

2

n
∑

i,j=1

∣

∣

∣

∣

∂2f

∂xi∂xj

(ξ)

∣

∣

∣

∣

wiwj

≤ fhi
0 +

n
∑

i=1

∣

∣[f lo
i , fhi

i]
∣

∣wi +
1

2

n
∑

i,j=1

∣

∣[f lo
ij , f

hi
ij]
∣

∣wiwj .

4

Absolute values of intervals are defined by |[a, b]| = max{−a, b}.
Let’s see how well this approximation works on examples. Again, take f(x) =

x− x and D = [0, 1]. We compute f ′(x) = 1− 1 = 0 and f ′′(x) = 0. Set y = 0.5
and w = 0.5. Suppose f̄(0.5) = [0.4, 0.6]− [0.4, 0.6] = [−0.2, 0.2] (we deliberately
take a very poor interval approximation), then

∀x ∈ [0, 1], f(x) ≤ f̄(0.5)u +

1
∑

i=1

0× 0.5 +

1
∑

i,j=1

0× 0.5× 0.5 = 0.2 < 1.

In the same way, for f(x) = x−arctanx we get f ′(x) = 1− 1
1+x2 , f

′′(x) = −2x
(1+x2)2 .

If x ∈ [0, 1], then f ′′(x) ∈ [−2, 0] = [f lo
11, f

hi
11] and hence |f ′′(x)| ≤ 2. We compute

∀x ∈ [0, 1], f(x) ≤ 0.04 + 0.21× 0.5 + 2× 0.53 ≤ 0.4.

We see that interval arithmetic with Taylor approximations works much bet-
ter. Moreover, we don’t need to abandon direct interval approximations com-
pletely: every time when we have to verify whether f(Di) < 0 we can first find
an interval approximation f̄(Di) and then compute a Taylor approximation. If
we don’t get the inequality in both cases, then we subdivide the domain.

One simple trick which can be done with both interval and Taylor interval
approximations is estimation of partial derivatives on a given domain. If it hap-
pens that fj(Dk) = ∂f

∂xj
(Dk) ≤ 0 or fj(Dk) ≥ 0 then it will be immediately

possible to restrict further verifications to the boundary of Dk = [a,b]. Indeed,
if fj(Dk) ≤ 0 and f(Dk|xj=aj

) < 0 then f(Dk) < 0 since the function is decreas-
ing along the j-th coordinate and its maximal value is attained at xj = aj . The
same is true for increasing functions (consider Dk|xj=bj). Moreover, if {xj = aj}
({xj = bj}) is not on the boundary of the main domain Dk, then it is possible
to completely ignore any further verifications for the region Dk. Indeed, if the
restriction of Dk is not on the boundary of the original domain, then there is
another subdomain Dj such that the restriction of Dk is a subset of Dj and the
inequality is true on Dj . However, we need to be careful. Consider an example.
Suppose f(x) = −x2−1 and D = [−1, 1]. Assume that we have D1 = [−1, 0] and
D2 = [0, 1]. We get f ′(x) = −2x ≥ 0 on [−1, 0]. Hence, the function is increasing
and we can consider the restricted domain {0} which is not on the boundary of
[−1, 1]. Also, f ′(x) = −2x ≤ 0 on [0, 1] and we again get {0} as the restriction
of [0, 1]. If we don’t continue verifications in both cases, then we will not be able
to verify the inequality. In order to avoid this problem, we always check a strict
inequality for decreasing functions, that is, we test if fj(x) ≥ 0 or fj(x) < 0.

Another trick is to check convexity of a function before subdividing a domain

Dk. If we need to subdivide Dk and find that fjj(D) = ∂2f
∂xj∂xj

(D) ≥ 0, then

it is enough to verify f(Dk|xj=aj
) < 0 and f(Dk|xj=bj) < 0. By convexity of f

(i.e., f attains its maximum on the boundary), we get f(Dk) < 0 from these two
inequalities.

5

2.2 Solution Certificate Search Procedure

An informal verification procedure based on the ideas presented above has been
developed in C++ for informal verification of Flyspeck nonlinear inequalities [8].
The starting point of our implementation of a formal procedure for verification of
nonlinear inequalities is a port of this original C++ program into OCaml. This
OCaml program informally verifies a given nonlinear inequality on a rectangular
domain by finding Taylor interval approximations and subdividing domains if
necessary. The result of this program is just a boolean value: yes or no, the
inequality true or false (there is the third option: verification could fail due
to numerical instability or when subdomains become very small without any
definite results).

We have modified the OCaml informal verification procedure such that it re-
turns a partition of the original domain in a special tree-like structure which also
contains all necessary information about verification steps for each subdomain.
We call this structure a solution certificate for a given nonlinear inequality. The
informal procedure is called the solution certificate search procedure.

A solution certificate is defined with the following OCaml record

type result_tree =

| Result_false

| Result_pass

| Result_mono of mono_status list * result_tree

| Result_glue of (int * bool * result_tree * result_tree)

| Result_pass_mono of mono_status

| Result_pass_ref of int

The record mono_status contains monotonicity information (i.e., whether some
first-order partial derivative is negative or positive).

A simplified solution certificate search algorithm is given below in OCaml-like
pseudo code.

let search f dom =

let taylor_inteval = {find Taylor approximation of f on dom}

let bounds = {taylor_interval bounds}

if bounds >= 0 then

Result_false

else if bounds < 0 then

Result_pass

else

let d_bounds = {find bounds of partial derivatives}

let mono = {list of negative and positive partial derivatives}

if {mono is not empty} then

let r_dom = {restrict dom using information from mono}

Result_mono mono (search f r_dom)

else

let dd_bounds = {find bounds of second partial derivatives}

6

if {the j-th second partial derivative is non-negative} then

let dom1, dom2 = {restrict dom along j}

let c1 = search f dom1

let c2 = search f dom2

Result_glue (j, true, c1, c2)

else

let j = {find j such that b_i - a_i is maximal}

let dom1, dom2 = {split dom along j}

let c1 = search f dom1

let c2 = search f dom2

Result_glue (j, false, c1, c2)

If the inequality f(x) < 0 holds on D, then the algorithm (applied to f and D)
will return a solution certificate which does not contain Result_false nodes (of
course, the real algorithm could fail due to numerical instabilities and round-
ing errors). A solution certificate does not contain any explicit information
about subdomains for which verification must be performed. All subdomains
can be restored from a solution certificate and the initial domain D. For each
Result_glue(j, false, c1, c2) node, it is necessary to split the domain in
two halves along the j-th coordinate. The second argument is the convexity flag.
If it is true, then the current domain must be restricted to its left and right
boundaries along the j-th coordinate. For new subdomains, the node contains
their solution certificates: c1 and c2. The domain also has to be modified for
Result_mono nodes. Each node of this type contains a list of indices and boolean
parameters (packed in mono_status record) which indicate for which partial
derivatives the monotonicity argument should be applied; boolean parameters
determine if the corresponding partial derivatives are positive or negative.

The simplified algorithm never returns nodes of type Result_pass_mono.
The real solution certificate search algorithm is a little more complicated. Every
time when monotonicity argument is applied, it checks if the restricted domain
is on the boundary of the original domain or not (the original domain is an
argument of the algorithm). If the restricted domain is not on the boundary of
the original domain, then Result_pass_mono will be returned.

If a solution certificate contains nodes of type Result_pass_mono, then it
is necessary to transform such a certificate to get new certificates which can be
formally verified. Indeed, suppose we have a Result_pass_mono node and the
corresponding domain is Dk. Result_pass_mono requires to apply the mono-
tonicity argument to Dk, that is, to restrict this domain to its boundary along
some coordinate. But it doesn’t contain any information on how to verify the
inequality on the restricted subdomain. We can only claim that there is another
subdomain Dj (corresponding to some other node of a solution certificate) such
that the restriction of Dk is a subset of Dj . In other words, to verify the inequal-
ity on Dk, we first need to find Dj such that the restriction of Dk is a subset of
Dj and such that the inequality can be verified on Dj. To solve this problem,
we transform a given solution certificate into a list of solution certificates and
subdomains for which these new solution certificates work. Each solution cer-

7

tificate in the list may refer to previous solution certificates with Result_ref.
The last solution certificate in the list corresponds to the original domain. The
transformation algorithm is the following

let transform certificate acc =

let sub_certs = {find all maximal sub-certificates

which does not contain Result_pass_mono}

if {sub_certs contains certificate} then

{add certificate to acc and return acc}

else

let sub_certs = {remove certificates consisting of single

Result_ref from sub_certs}

let paths = {find paths to sub-certificates in sub_cert}

let _ = {add sub_certs and the corresponding paths to acc}

let new_cert1 = {replace all sub_certs in certificate

with references}

let new_cert2 = {replace Result_pass_mono nodes in new_cert1

if they can be verified using subdomains

defined by paths in acc}

transform new_cert2 acc

This algorithm maintains a list acc of solution certificates which do not contain
nodes of type Result_pass_mono. The list also contains paths to subdomains
corresponding to certificates. Each path is a list of pairs and it can be used
to construct the corresponding subdomain starting from the original domain.
Each pair is one of ("l", i), ("r", i), ("ml", i), or ("mr", i) where i is an
index. "l" and "r" labels correspond to left and right subdomains after splitting.
"ml" and "mr" correspond to left and right restricted subdomains. The index i
specifies the coordinate along which the operation must be performed. When a
reference node Result_ref is generated for a sub-certificate at the j-th position
in the accumulator list acc, then the argument of Result_ref is j.

3 Formal Verification

The first step of developing a formal verification procedure is formalization of
all necessary theories involving the multivariate Taylor theorem and related top-
ics. Standard HOL Light libraries contain a formalization of Euclidean vector
space [20] and define general Frechet derivatives and Jacobian matrices for work-
ing with first-order partial derivatives. Also, HOL Light contains the general
univariate Taylor theorem. We formalized all other important results includ-
ing the theory of partial derivatives, the equality of second-order mixed partial
derivatives, the multivariate Taylor formula with the second-order error term.

The main formal verification step is to compute a formal Taylor interval
approximation for a function f : Rn → R on a given domain D = [a,b]. Each
formal Taylor approximation includes the following data: a point y = (a+b)/2 ∈
D, a vector w which estimates the width of the domain and has the property

8

w ≥ max{b− y,y − a} (all operations are componentwise), an interval bound
of f(y) ∈ [f lo, fhi], interval bounds of partial derivatives fi(y) ∈ [f lo

i , fhi
i] = di

for all i = 1, . . . , n, interval bounds of second-order partial derivatives on the
full domain fij(x) ∈ [f lo

ij , f
hi
ij] = dij for all i = 1, . . . , n, j ≤ i, and x ∈ D.

Based on this data, an interval approximation of f(x) and its partial derivatives
on D can be computed. For instance, the following theorem gives an interval
approximation of f(x) when n = 2

w1|d1|+ w2|d2| ≤ b ∧ w1(w1|d1,1|) + w2(w2|d2,2|+ 2w1|d2,1|) ≤ e

∧ b+ 2−1e ≤ a ∧ l ≤ f lo − a ∧ fhi + a ≤ h

=⇒
(

∀x, x ∈ [a,b] =⇒ f(x) ∈ [l, h]
)

.

(Here, |di| = |[f lo
i , fhi

i]| = max{−f lo
i , fhi

i }.)
Formal computations of Taylor interval approximations require a lot of ba-

sic arithmetic operations. We implemented efficient procedures for working with
natural numbers and real numbers in HOL Light. Our implementation of for-
mal natural number arithmetic works with numerals in an arbitrary fixed base.
Our implementation improves the performance of standard HOL Light arith-
metic operations with natural numbers by the factor log2 b (where b is a fixed
base constant) for linear operations (in the size of input arguments) and by
the factor (log2 b)

2 for quadratic operations. We approximate real numbers with
floating-point numbers which have fixed precision of the mantissa. This preci-
sion is controlled by an informal parameter which specifies the maximal number
of digits in results of formal floating-point operations. All formal floating-point
operations yield inequality theorems which approximate real results from above
or below. Formal verification procedures are based on our implementation of in-
terval arithmetic which works with formal floating-point numbers. We also cache
results of all basic arithmetic operations to improve the performance of formal
computations.

A description of our formal verification procedure is technical and it can
be found in [3]. Here we give an example which demonstrates how the formal
verification procedure works. Let f(x) = x − 2 and we want to prove f(x) < 0
for x ∈ [−1, 1]. Suppose that we have the following solution certificate

Result_glue {1, false,

Result_pass_mono {[1, incr]},

Result_mono {[1, incr],

Result_pass

}

}

This certificate tells that the inequality may be verified by first splitting the
domain into two subdomains along the first (and the only) variable; then the
left branch follows from some other formal verification result by monotonicity
(Result_pass_mono); the right branch follows by the monotonicity argument
and by a direct verification. This certificate cannot be used directly for a formal

9

verification since we don’t know how the left branch is proved. The first step
is to transform this certificate into a list of certificate such that each certificate
can be verified on subdomains specified by the corresponding paths. We get the
following list of certificates

[

["r", 1], Result_mono {[1], Result_pass};

["l", 1], Result_mono {[1], Result_ref {0}};

[], Result_glue {1, false, Result_ref {1}, Result_ref {0}}

]

The first element corresponds to the right branch of the original Result_glue
(hence, the path is ["r", 1] which means subdivision along the first variable and
taking the right subdomain). A formal verification of the first certificate yields
⊢ x ∈ [0, 1] =⇒ f(x) < 0. The second result is the transformed left branch of
the original certificate. This transformed result explicitly refers to the first proved
result (Result_ref {0}). Now it can be verified. Indeed, Result_ref {0} yields
⊢ x ∈ [0, 0] =⇒ f(x) < 0 (since [0, 0] ⊂ [0, 1] and we have the theorem for [0, 1]
which we use in the reference). Then the monotonicity argument

(∀x, x ∈ [−1, 0] =⇒ 0 ≤ f ′(x)) ∧ (∀x, x ∈ [0, 0] =⇒ f(x) < 0)

=⇒ (∀x, x ∈ [−1, 0] =⇒ f(x) < 0)

yields ⊢ x ∈ [−1, 0] =⇒ f(x) < 0. The last entry of the list refers to two proved
results and glues them together in the right order:

(∀x, x ∈ [−1, 0] =⇒ f(x) < 0) ∧ (∀x, x ∈ [0, 1] =⇒ f(x) < 0)

=⇒ (∀x, x ∈ [−1, 1] =⇒ f(x) < 0)

4 Optimization Techniques and Future Work

4.1 Implemented Optimization Techniques

There are several optimization techniques for formal verification of nonlinear
inequalities. One of the basic ideas of optimization techniques is to compute extra
information for solution certificates which helps to increase the performance of
formal verification procedures.

The first optimization technique is to try out direct interval evaluations with-
out Taylor approximations. If a direct interval evaluation yields a desired result
(verification of an inequality on a domain or verification of a monotonicity prop-
erty), then a special flag is added to the corresponding certificate node. This
flag indicates that it is not necessary to compute full formal Taylor interval and
it is enough to evaluate the function directly with interval arithmetic (which is
faster). These flags are added to Result_pass and Result_mono nodes.

An important optimization procedure is to find the best (minimal) precision
which is sufficient for verifying an inequality on each subdomain. We have a spe-
cial informal implementation of all arithmetic, Taylor interval evaluation, and

10

verification functions which compute results in the same way as the correspond-
ing formal functions. This informal implementation is much simpler (because it
does not prove anything) and faster (since it does not prove anything and all
basic arithmetic is done by native machine arithmetic). For a given solution cer-
tificate, we run a modified informal verification procedure which tests different
precision parameter values for each certificate node. It finds out the smallest
value of the precision parameter for each certificate node such that the veri-
fication result is correct. Then a modified solution certificate is created where
each node contains information about the best precision parameter. A special
version of the formal verification procedure accepts this new certificate and ver-
ifies the inequality with computed precision parameters. This adaptive precision
technique increases the performance of formal arithmetic computations.

4.2 Future Work

There are some optimization ideas which are not implemented yet. The first
idea is to stop computations of bounds of second-order partial derivatives for
Taylor intervals at some point and reuse bounds computed for larger domains.
The error term in Taylor approximation depends quadratically on the size of a
domain. When domains are sufficiently small, good approximations of bounds
of second-order partial derivatives are not very important. This strategy could
save quite a lot of verification time since formal evaluation of second-order partial
derivative bounds is expensive for many functions.

Another unimplemented optimization is verification of sets of similar inequal-
ities on the same domain. The idea is to reuse results of formal computations as
much as possible for inequalities which have a similar structure and which are
verified on the same domains. The basic strategy is to find a subdivision of the
domain into subdomains such that each inequality in the set can be completely
verified on each subdomain. If inequalities in the set share a lot of similar com-
putations, then the verification of all inequalities in the set could be almost as
fast as the verification of the most difficult inequality in the set. This approach
should work well for Flyspeck inequalities where many inequalities share the
same sub-expressions and domains.

An important unimplemented feature is verification of disjunctions of in-
equalities. That is, we want to verify inequalities in the form

∀x ∈ D =⇒ f1(x) < 0 ∨ f2(x) < 0 ∨ . . . ∨ fk(x) < 0.

This form is equivalent to an inequality on a non-rectangular domain since

(P (x) =⇒ f(x) < 0 ∨ g(x) < 0) ⇐⇒ (P (x) ∧ 0 ≤ g(x) =⇒ f(x) < 0).

Many Flyspeck inequalities are in this form. A formal verification of these in-
equalities is simple. It is enough to add indices of functions for which the in-
equality is satisfied to the corresponding nodes of solution certificates. Then it
will be only necessary to modify the formal gluing procedure. It should be able
to combine inequalities for different functions with disjunctions.

11

5 Results and Tests

This section briefly introduces the implemented verification tool and presents
some test results for several polynomial and non-polynomial inequalities. We
also compare the performance of the formal verification tool and the informal
C++ verification procedure for Flyspeck nonlinear inequalities. All tests were
performed on Intel Core i5, 2.67GHz running Ubuntu 9.10 inside Virtual Box
4.2.0 on a Windows 7 host; the Ocaml version was 3.09.3; the base of arithmetic
was 200.

5.1 Overview of the Formal Verification Tool

A user manual which contains information about the tool and installation in-
structions is available at [2]. Here, we briefly describe how the tool can be used.

Suppose we want to verify a polynomial inequality

− 1√
3
≤ x ≤

√
2 ∧ −

√
π ≤ y ≤ 1 =⇒ x2y−xy4+y6+x4−7 > −7.17995.

The following HOL Light script solves this problem

needs "verifier/m_verifier_main.hl";;

open M_verifier_main;;

let ineq = ‘-- &1 / sqrt(&3) <= x /\ x <= sqrt(&2)

/\ -- sqrt(pi) <= y /\ y <= &1

==> x pow 2 * y - x * y pow 4 + y pow 6 - &7 + x pow 4

> -- #7.17995‘;;

let th, stats = verify_ineq default_params 5 ineq;;

First two lines of the script load the verification tool. The main verification
function is called verify_ineq. It takes 3 arguments. The first argument con-
tains verification options. In most cases, it is enough to provide default op-
tions default_params. The second parameter specifies the precision of formal
floating-point operations. The third parameter is the inequality itself given as
a HOL Light term. The format of this term is simple: it is an implication with
bounds of variables in the antecedent and an inequality in the consequent. The
bounds of all variables should be in the form a constant expression ≤ x or
x ≤ a constant expression. For each variable, upper and lower bounds must
be given. The inequality must be a strict inequality (< or >). The inequality
may include sqrt (

√
), atn (arctan), and acs (arccos) functions. The constant

pi (π) is also allowed.

The verification function returns a HOL Light theorem and a record with
some verification information which includes verification time.

12

5.2 Polynomial Inequalities

Here is a list of test polynomial inequalities taken from [16].

– schwefel

〈x1, x2, x3〉 ∈ [〈−10,−10,−10〉 , 〈10, 10, 10〉]
=⇒ −5.8806× 10−10 < (x1 − x2

2)
2 + (x2 − 1)2 + (x1 − x2

3)
2 + (x3 − 1)2.

– caprasse

〈x1, x2, x3, x4〉 ∈ [〈−0.5,−0.5,−0.5,−0.5〉 , 〈0.5, 0.5, 0.5, 0.5〉]
=⇒ − 3.1801 < −x1x

3
3 + 4x2x

2
3x4 + 4x1x3x

2
4 + 2x2x

3
4

+ 4x1x3 + 4x2
3 − 10x2x4 − 10x2

4 + 2.

– magnetism

〈x1, x2,x3, x4, x5, x6, x7〉 ∈ [〈−1,−1,−1,−1,−1,−1,−1〉 , 〈1, 1, 1, 1, 1, 1, 1〉]
=⇒ −0.25001 < x2

1 + 2x2
2 + 2x2

3 + 2x2
4 + 2x2

5 + 2x2
6 + 2x2

7 − x1.

– heart

〈x1, x2, x3, x4, x5,x6, x7, x8〉 ∈ [〈−0.1, 0.4,−0.7,−0.7, 0.1,−0.1,−0.3,−1.1〉 ,
〈0.4, 1,−0.4, 0.4, 0.2, 0.2, 1.1,−0.3〉]

=⇒ − 1.7435 < −x1x
3
6 + 3x1x6x

2
7 − x3x

3
7 + 3x3x7x

2
6 − x2x

3
5

+ 3x2x5x
2
8 − x4x

3
8 + 3x4x8x

2
5 − 0.9563453.

Performance test results are given in Table 1. The column total time contains
total verification time, the column formal contains time of the formal verification
only. The formal verification excludes all preliminary processes: computations
of partial derivatives, search of solution certificates, adaptive precision search
procedures. The last two columns show the corresponding verification time for
the PVS procedure which is based on the Bernstein polynomial technique and
described in [16].

Test results show that our procedure is faster than the Bernstein polynomial
procedure in PVS for most cases. On the other hand, there still exist cases where
our tool is slower.

5.3 Flyspeck Inequalities

The Flyspeck project contains 985 nonlinear inequalities. The informal verifica-
tion program written in C++ can verify all these inequalities in about 10 hours.
Most inequalities (683) can be informally verified in less than 10 seconds. Almost
all inequalities (911) can be informally verified in less than 100 seconds.

We tested our formal verification procedure on several simple Flyspeck in-
equalities. Some of these inequalities are listed below. Table 2 contains perfor-
mance test results for these inequalities. The column total time contains total

13

Table 1. Polynomial inequalities

Inequality ID total time (s) formal (s) total PVS (s) formal PVS (s)

schwefel 26.33 19.15 10.23 3.18
caprasse 8.06 1.29 11.44 1.25
magnetism 7.01 1.35 160.44 82.87
heart 17.30 1.28 79.68 26.14

formal verification time, the column formal contains time of the formal verifi-
cation only (excluding all preliminary processes), the column informal contains
informal verification time by the C++ program.

∆(x1, . . . , x6) = x1x4(−x1 + x2 + x3 − x4 + x5 + x6)

+x2x5(x1 − x2 + x3 + x4 − x5 + x6)

+x3x6(x1 + x2 − x3 + x4 + x5 − x6)

−x2x3x4 − x1x3x5 − x1x2x6 − x4x5x6,

∆4 =
∂∆

∂x4
,

dihx (x1, . . . , x6) =
π

2
− arctan

(

−∆4(x1, . . . , x6)
√

4x1∆(x1, . . . , x6)

)

,

dihy (y1, . . . , y6) = dihx (y21 , . . . , y
2
6).

– 4717061266

4 ≤ xi ≤ 6.3504 =⇒ ∆(x1, x2, x3, x4, x5, x6) > 0.

– 7067938795

4 ≤ x1,2,3 ≤ 6.3504, x4 = 4, 3.012 ≤ x5,6 ≤ 3.242

=⇒ dihx (x1, . . . , x6)− π/2 + 0.46 < 0.

– 3318775219

2 ≤ yi ≤ 2.52 =⇒ 0 < dihy (y1, . . . , y6)− 1.629− 0.763(y4 − 2.52)

− 0.315(y1 − 2.0) + 0.414(y2 + y3 + y5 + y6 − 8.0).

We also found formal verification time of all Flyspeck inequalities which
can be verified in less than one second and which do not contain disjunctions
of inequalities. Table 3 summarizes test results. The columns total time and
formal show total formal verification time and formal verification time without
preliminary processes for the corresponding sets of inequalities. The column
informal contains informal verification time for the same sets of inequalities.

Test results show that our formal verification procedure is about 2000–4000
times slower than the informal verification program.

14

Table 2. Flyspeck inequalities

Inequality ID total time (s) formal (s) informal (s)

2485876245a 5.530 0.058 0
4559601669b 4.679 0.048 0
4717061266 27.1 0.250 0
5512912661 8.860 0.086 0.002
6096597438a 0.071 0.071 0
6843920790 2.824 0.076 0.002
SDCCMGA b 9.012 0.949 0.006
7067938795 431 387 0.070
5490182221 1726 1533 0.375
3318775219 17091 15226 8.000

Table 3. Flyspeck inequalities which can be informally verified in 1 second

time interval (ms) # inequalities total time (s) formal (s) informal (s)

0 57 423 2.159 0
1–100 35 5546 3854 1.134
101–500 11 12098 10451 3.944
501–700 14 32065 28705 8.423
701–1000 9 19040 16688 7.274

References

1. Harrison, J.: The HOL Light theorem prover (2010)
http://www.cl.cam.ac.uk/~jrh13/hol-light/index.html.

2. Solovyev, A.: A tool for formal verification of nonlinear inequalities (2012)
http://flyspeck.googlecode.com/files/FormalVerifier.pdf.

3. Solovyev, A.: Formal Computations and Methods. PhD thesis, University of
Pittsburgh (2012)

4. Hales, T.C.: Introduction to the Flyspeck project. In Coquand, T., Lom-
bardi, H., Roy, M.F., eds.: Mathematics, Algorithms, Proofs. Number 05021 in
Dagstuhl Seminar Proceedings, Dagstuhl, Germany, Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2006)
http://drops.dagstuhl.de/opus/volltexte/2006/432 .

5. Hales, T.C.: The Flyspeck Project (2012) http://code.google.com/p/flyspeck.
6. Hales, T.C., Ferguson, S.P.: The Kepler conjecture. Discrete and Computational

Geometry 36(1) (2006) 1–269
7. Hales, T.C.: Dense Sphere Packings: a blueprint for formal proofs. Volume 400 of

London Math Soc. Lecture Note Series. Cambridge University Press (2012)
8. Hales, T.C.: Some algorithms arising in the proof of the Kepler conjecture. Discrete

and computational geometry 25 (2003) 489–507
9. Tarski, A.: A decision method for elementary algebra and geometry. University of

California Press, Berkeley and Los Angeles, Calif. (1951) 2nd ed.
10. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic

decomposition. In: Automata theory and formal languages (Second GI Conf.,

http://www.cl.cam.ac.uk/~jrh13/hol-light/index.html
http://flyspeck.googlecode.com/files/FormalVerifier.pdf
http://drops.dagstuhl.de/opus/volltexte/2006/432
http://code.google.com/p/flyspeck

15

Kaiserslautern, 1975). Springer, Berlin (1975) 134–183. Lecture Notes in Comput.
Sci., Vol. 33

11. McLaughlin, S., Harrison, J.: A proof-producing decision procedure for real arith-
metic. In: Automated deduction—CADE-20. Volume 3632 of Lecture Notes in
Comput. Sci. Springer, Berlin (2005) 295–314

12. Harrison, J.: Verifying nonlinear real formulas via sums of squares. In Schneider,
K., Brandt, J., eds.: Proceedings of the 20th International Conference on Theorem
Proving in Higher Order Logics, TPHOLs 2007. Volume 4732 of Lecture Notes in
Computer Science. Springer-Verlag, Kaiserslautern, Germany (2007) 102–118

13. Akbarpour, B., Paulson, L.: MetiTarski: An automatic prover for the elementary
functions. In Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk,
F., eds.: Intelligent Computer Mathematics. Volume 5144 of Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg (2008) 217–231

14. Paulson, L.: MetiTarski: Past and future. In Beringer, L., Felty, A., eds.: Interactive
Theorem Proving. Volume 7406 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg (2012) 1–10

15. Zumkeller, R.: Global Optimization in Type Theory. PhD thesis, École Polytech-
nique Paris (2008)

16. Muñoz, C., Narkawicz, A.: Formalization of a representation of Bernstein polyno-
mials and applications to global optimization. Journal of Automated Reasoning
(2012) Accepted for publication.

17. Zumkeller, R.: Formal global optimisation with Taylor models. In Furbach, U.,
Shankar, N., eds.: Automated Reasoning. Volume 4130 of Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg (2006) 408–422

18. Zumkeller, R.: Sergei. A Global Optimization Tool (2009)
http://code.google.com/p/sergei/.

19. Daumas, M., Lester, D., Muñoz, C.: Verified real number calculations: A library
for interval arithmetic. IEEE Transactions on Computers 58(2) (February 2009)
226–237

20. Harrison, J.: A HOL theory of Euclidean space. In: Theorem proving in higher
order logics. Volume 3603 of Lecture Notes in Comput. Sci. Springer, Berlin (2005)
114–129

http://code.google.com/p/sergei/

	Formal Verification of Nonlinear Inequalities with Taylor Interval Approximations

