
Verification of Numerical Programs: From Real
Numbers to Floating Point Numbers

Alwyn E. Goodloe1, César Muñoz1, Florent Kirchner2, and Löıc Correnson2

1 NASA Langley Research Center, USA, {a.goodloe,cesar.a.munoz}@nasa.gov
2 CEA, LIST, France, {florent.kirchner,loic.correnson}@cea.fr

Abstract. Numerical algorithms lie at the heart of many safety-critical
aerospace systems. The complexity and hybrid nature of these systems
often requires the use of interactive theorem provers to verify that these
algorithms are logically correct. Usually, proofs involving numerical com-
putations are conducted in the infinitely precise realm of the field of real
numbers. However, numerical computations in these algorithms are often
implemented using floating point numbers. The use of a finite representa-
tion of real numbers introduces uncertainties as to whether the properties
verified in the theoretical setting hold in practice. This short paper de-
scribes work in progress aimed at addressing these concerns. Given a
formally proven algorithm, written in the Program Verification System
(PVS), the Frama-C suite of tools is used to identify sufficient conditions
and verify that under such conditions the rounding errors arising in a C
implementation of the algorithm do not affect its correctness. The tech-
nique is illustrated using an algorithm for detecting loss of separation
among aircraft.

1 Introduction

Virtually every aerospace application is composed of numerical algorithms. The
mathematics in these algorithms is both continuous and discrete. The hybrid
nature of aerospace applications often means that interactive theorem provers are
required to reason about their logical correctness. As the models and algorithms
are refined into an implementation, care must be taken so that assumptions made
in the abstract models are not violated by the implementation. Of particular
concern are the issues that arise when moving from the infinitely precise field
of real numbers to an implementation using a floating point representation [4,8]
such as the IEEE 754 standard [5]. It is well-known that overflows, underflows,
and accumulated rounding errors in floating point arithmetic can produce results
that significantly differ from the ideal. Hence, properties that were demonstrated
to hold in the abstract models may be violated in a concrete implementation.
Therefore one cannot assert that theorems proven in the setting of the real
numbers carry over to the implementation without additional arguments.

The domain of application of the case study in this paper is air traffic man-
agement (ATM). Advances in surveillance and communication systems allow for
ATM concepts where computer programs provide safety-critical functionality.

For instance, the self-separation operational concept proposed by NASA [10]
relies on airborne conflict detection and resolution (CD&R) systems that assist
pilots and air traffic controllers to maintain safety in the airspace by keeping
aircraft separated. Computer-based separation assurance systems are critical el-
ements of air/ground distributed operational concepts for the next generation of
air traffic management systems.

The Formal Methods group at NASA Langley has developed the Airborne
Coordinated Conflict Resolution and Detection (ACCoRD) formal framework for
reasoning about aircraft separation assurance systems.3 The framework, which is
written in the Program Verification System (PVS) [9], consists of more than 1500
lemmas and includes formally verified algorithms for conflict detection, conflict
resolution, conflict recovery, loss of separation recovery, and conflict prevention
bands. This paper reports work in progress on a verification approach that is
being applied to formally prove the correctness of the C implementations of some
of these algorithms.

2 Conflict Detection

This paper concerns a conflict detection algorithm, namely CD2D, developed
by NASA as part of the ACCoRD framework. CD2D is pairwise state-based
2-D conflict detection algorithm. Pairwise refers to the fact that CD2D only
considers two aircraft called the ownship and the intruder. State-based refers to
the use of an Euclidean airspace where the aircraft fly at constant velocity. In
particular, in CD2D, the position and velocity of the ownship are represented
by 2-D position so = (sox, soy) and vector vo = (vox, voy), respectively, and
the position and velocity of the intruder are represented by si = (six, siy) and
vi = (vix, viy), respectively. As it simplifies the mathematical development, most
definitions in ACCoRD use a relative coordinate system where the intruder is
static at the center of the system. In this relative system, the ownship is located
at s = so − si and moves at relative velocity v = vo − vi.

In air traffic management, a loss of separation is a violation of the separation
requirement between two aircraft. If the vertical dimension is ignored, the sepa-
ration requirement is given by a minimum horizontal distance D. A conflict is a
predicted loss of separation within a lookahead time T . In this paper, D and T
are global constants. Loss of separation and conflict are formalized in ACCoRD
as follows.

los?(s) ≡
√

s2x + s2y < D , conflict?(s,v) ≡ ∃0 ≤ t ≤ T : los?(s + tv).

The PVS function cd2d , that models the CD2D algorithm, takes as parame-
ters the state of the aircraft, i.e., so,vo, si,vi and returns a Boolean value that
indicates whether or not a loss of separation with respect to the minimum dis-
tance D is predicted to occur within the lookahead time T .

3 http://shemesh.larc.nasa.gov/people/cam/ACCoRD.

cd2d(so ,vo , si ,vi) ≡ let s = so − si ,v = vo − vi in los?(s) or ω(s,v) < 0 ,

where ω is a continuous function that characterizes conflicts. It is defined as
follows.

ω(s,v) ≡

{
s · v if s2 = D2,

v2s2 + 2τ(s · v) + τ2(s,v)−D2v2 otherwise,

where τ(s,v) ≡ min(max(0,−(s · v)), Tv2). When v2 6= 0, τ(s,v)
v2 denotes the

time of closest approach for the aircraft and ω(s,v)
v2 + D denotes the minimum

distance.
The ACCoRD development has a formal proof that the function cd2d is sound

and complete with respect to the predicate conflict?, i.e., that the following
statement holds.

Proposition 1. Given a distance D > 0 and a lookahead time T > 0, for all
vectors s = so − si and v = vo − vi,

(soundness) If conflict?(s,v) holds then cd2d(so ,vo , si ,vi) returns true.
(completeness) If cd2d(so ,vo , si ,vi) returns true then conflict?(s,v) holds.

Soundness and completeness are closely related to the concepts of missed-alerts
and false-alerts, respectively.

It should be noted that the theoretical development presented in this section
assumes infinite precision real numbers and does not consider physical limitations
of the aircraft. In a concrete implementation of the CD2D algorithm, those
considerations become significant. In particular, arbitrary large/small numbers
in the presence of floating point numbers and the use of floating point arithmetic
introduce uncertainties as to whether properties verified in the ideal theoretical
setting, such as Proposition 1, hold in practice.

3 Verification in Practice

In order to formally prove a statement such as Proposition 1 for a C program,
it is necessary to have a verification environment that provides a specification
language supporting both real numbers and floating point arithmetic and that
easily integrates with automated and interactive theorem provers. Frama-C is an
open-source framework developed at CEA comprising a suite of tools for static
analysis of C programs in the form of plugins implementing abstract interpreta-
tion, slicing, and deductive verification engines. In particular, Frama-C uses the
deductive verification plugin Jessie [6], which generates verification conditions
for C programs. These verification conditions are submitted to different theorem
provers via the Why3 back-end [2]. In particular, Why3 connects to the Gappa [7]
tool, which specializes in verifying properties of numerical programs. Frama-C

supports annotations written in the ANSI C Specification Language (ACSL) [1],
an assertion language for specifying behavioral properties of C programs in a
first-order logic. As PVS, ACSL supports mathematical expressions over the
real numbers. Furthermore, ACSL has a built-in model of IEEE-754 arithmetic
including the rounding modes, casts, and infinity. The analysis presented here as-
sumes IEEE-754 in strict form, i.e., the generated verification conditions ensure
no overflows or special values, and rounding to nearest with ties to even.

A straightforward C implementation of cd2d does not satisfy Proposition 1
due to the use of floating point arithmetic in C. Indeed, in the presence of com-
putation errors, it is impossible to write a program that satisfies both correctness
and completeness. In practice, there is a trade-off between soundness and com-
pleteness in any implementation of a conflict detection algorithm. From a safety
point of view, soundness is usually considered the more desirable of the two prop-
erties since it eliminates the possibility for missed-alerts. Therefore, the target
property for the verification presented here is soundness. However, it should be
noted that completeness also has safety implications. For example, a program
that always returns true would be trivially sound. Of course, such a program
will have an unacceptable rate of false alerts and quickly erode the trust that a
pilot may have on these kinds of systems.

This paper proposes a systematic construction of a C program, namely cd2d,
from its PVS counterpart, namely cd2d , that is provably sound. The proof is
conducted in the Frama-C environment and reuses Proposition 1 and other core
geometric properties proved in PVS. The construction of cd2d starts by trans-
lating every real-valued function f involved in the definition of cd2d into an
identical logical ACSL function f and into a C function f. Function f uses real
number arithmetic, while function f uses floating point arithmetic. The spec-
ification of the function f states that the absolute error of the floating point
computation is bounded by a given positive constant εf , i.e., |f(x)− f(x)| ≤ εf .
Here only the C basic types double and int are used for the translation. There-
fore, vectors are represented by their components. For instance, the function τ ,
used in Formula 2, is translated into ACSL-annotated C code as follows.4

/∗@ log i c r e a l tauR(r e a l s x , r e a l s y , r e a l v x , r e a l v y , r e a l t) =
@ dmin(dmax(0. ,−dotR(s x , s y , v x , v y)) , t∗sqvR(v x , v y)) ;
@∗/

/∗@ requ i r e s −100. <= s x <= 100. && . . . ;
@ ensures \abs (\ r e s u l t − tauR(s x , s y , v x , v y ,T)) <= E tau ;
@∗/

double tau(double s_x ,double s_y ,double v_x ,double v_y) {
return min(max(0,−dot(s_x , s_y , v_x , v_y)) ,T∗sqv(v_x , v_y)) ; }

In ACSL, the precondition is denoted by the keyword requires, while the
postcondition is denoted by the keyword ensures. By convention, real number

4 Logical definitions in ACSL cannot refer to C constants. Hence, t has been added as
a parameter to tauR.

functions are written with the postfix R. If function f is proven to satisfy its
specification for a certain value of εf , this value is propagated into the specifi-
cation of functions and Boolean conditions that depend on f. At the end of the
process, the cd2d function is written as follows.

int cd2d(double so_x ,double so_y ,double vo_x ,double vo_y ,
double si_x ,double si_y ,double vi_x ,double vi_y) {

double s_x = so_x − si_x ; double s_y = si_x − si_y ;
double v_x = vo_x − vi_x ; double v_y = vi_x − vi_y ;
return los(s_x , s_y) | | omega(s_x , s_y , v_x , v_y) < E_cd2d ; }

In order to appropriately bound the values of the input variables, a system
of units needs to be chosen. As usual in air traffic management, distances are
given in nautical miles, speeds are given in knots (nautical miles per hour), and,
for unit consistency, times are given in hours. Typical bounds for state-based
separation assurance algorithms such as CD2D are |so x|, |so y|, |si x|, |si y| ≤
100 nautical miles and |vo x|, |vo y|, |vi x|, |vi y| ≤ 600 knots. Furthermore, the
constants D and T are set to 5 nautical miles and 0.083 hours (about 5 minutes),
respectively.

An approach to verify that cd2d verifies soundness consists in replaying the
soundness proof of cd2d and adapting, on this process, every proof step to deal
with floating point inaccuracies. This paper takes a different approach. Since
the PVS function cd2d is known to be sound and complete, soundness of cd2d

is equivalent to the following proposition.

Proposition 2 (Soundness of cd2d). Given the specified values of D and T,
for all so x, so y, si x, si y, vo x, vo y, vi x, vi y that satisfy the specified
bounds, if cd2d(so x, so y, vo x, vo y, si x, si y, vi x, vi y) returns true, then
cd2d(so x,so y,vo x,vo y,si x,si y,vi x,vi y) returns 1.

This leaves the question of how to find the error bounds for each f , i.e., εf .
Sophisticated analytical techniques exist for estimating rounding errors [3] and
while these are needed to analyze more complex computations, in many cases
it is possible to exploit the capability of Frama-C to quickly and automatically
prove assertions to discover an appropriate value for εf . The process implements
a search by dichotomy, hinging on the provability of the proof assertions.

Beginning with an initial estimate for εf , the Frama-C/Jessie plugin is in-
voked generating a number of verification conditions. If the automated prover
cannot show that εf is a good bound, the value of εf is increased. On the other
hand, if the provers show that the bound holds, the value of εf is decreased.
The process continues until convergence on a tight bound. In the case of tau,
the initial value of E tau was set to 2−30, but the Gappa solver on the back-end
could not prove the postcondition. Next, E tau was set to 2−10, which the solver
easily discharged. The dichotomy process eventually reached a bound on an ab-
solute error of 2−21. Proposition 2 is formally verified in Frama-C for the value
E cd2d = 2× 2−1.

4 Conclusion

This work in progress contributes a methodology for proving the correctness
of implementations of numerical programs whose soundness and completeness
have already been demonstrated in the ideal setting of real numbers. In particu-
lar, the approach proposed here focuses on discovering and proving the bounds
on floating-point rounding errors that can invalidate in practice the theorems
proven on reals. As a first case study, the technique was applied to candidate
algorithms in the ACCoRD framework. These algorithms feature strong cor-
rectness conditions, use only bounded loops and conditionals, and employ well
behaved mathematical operations. In addition, the algorithms have well defined
bounded input, and units were chosen that kept the magnitude of the computed
values from growing big enough to produce large rounding errors. Future work
will apply the approach to more sophisticated programs and consider relative
error in addition to the absolute error. Also, the task remains to validate the
safety implications of the error bounds shown in the paper. As the methodology
evolves, the Frama-C tool support is expected to evolve by incorporating new
algorithms and plugins to aid in the verification of numerical programs.

References

1. Patrick Baudin, Pascal Cuoq, Jean-Christophe Filliâtre, Claude Marché, Benjamin
Monate, Yannick Moy, and Virgile Prevosto. ACSL: ANSI/ISO C Specification
Language, version 1.6, 2012.

2. François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paskevich.
Why3: Shepherd your herd of provers. In Boogie 2011: First International Work-
shop on Intermediate Verification Languages, pages 53–64, Wroc law, Poland, Au-
gust 2011.

3. Sylvie Boldo and Thi Minh Tuyen Nguyen. Hardware-independent proofs of nu-
merical programs. In NASA Formal Methods, pages 14–23, 2010.

4. David Goldberg. What every computer scientist should know about floating point
arithmetic. ACM Computing Surveys, 23(1):5–48, 1991.

5. IEEE Task P754. ANSI/IEEE 754-1985, Standard for Binary Floating-Point
Arithmetic. IEEE, 1985.

6. Claude Marhé and Yannick Moy. The Jessie Plugin for Deductive Verification in
Frama-C. INRIA Saclay Île-de-France and LRI, CNRS UMR, 2012.

7. Guillaume Melquiond. User’s Guide for Gappa. INRIA, 2012.
8. Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre Jean-

nerod, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol, Damien Stehlé, and
Serge Torres. Handbook of Floating-Point Arithmetic. Birkhäuser Boston, 2010.

9. S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification system. In
Deepak Kapur, editor, Proc. 11th Int. Conf. on Automated Deduction, volume 607
of Lecture Notes in Artificial Intelligence, pages 748–752. Springer-Verlag, June
1992.

10. David J. Wing and William B. Cotton. Autonomous flight rules a concept for
self-separation in U.S. domestic airspace. Technical Publication NASA/TP-2011-
217174, NASA, Langley Research Center, Hampton VA 23681-2199, USA, Novem-
ber 2011.

