Skip to main content

Evaluating Human-Human Communication Protocols with Miscommunication Generation and Model Checking

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7871))

Abstract

Human-human communication is critical to safe operations in domains such as air transportation where airlines develop and train pilots on communication procedures with the goal to ensure that they check that verbal air traffic clearances are correctly heard and executed. Such communication protocols should be designed to be robust to miscommunication. However, they can fail in ways unanticipated by designers. In this work, we present a method for modeling human-human communication protocols using the Enhanced Operator Function Model with Communications (EOFMC), a task analytic modeling formalism that can be interpreted by a model checker. We describe how miscommunications can be generated from instantiated EOFMC models of human-human communication protocols. Using an air transportation example, we show how model checking can be used to evaluate if a given protocol will ensure successful communication. Avenues of future research are explored.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Airbus: Effective pilot/controller communications. In: Human Performance. Flight Operations Briefing Notes. Airbus, Blagnac Cedex (2006)

    Google Scholar 

  2. Argón, P., Delzanno, G., Mukhopadhyay, S., Podelski, A.: Model checking communication protocols. In: Pacholski, L., Ružička, P. (eds.) SOFSEM 2001. LNCS, vol. 2234, pp. 160–170. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Austin, J.: How to do things with words, vol. 88. Harvard University Press (1975)

    Google Scholar 

  4. Bass, E.J., Bolton, M.L., Feigh, K., Griffith, D., Gunter, E., Mansky, W., Rushby, J.: Toward a multi-method approach to formalizing human-automation interaction and human-human communications. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, pp. 1817–1824. IEEE, Piscataway (2011)

    Google Scholar 

  5. Bass, E.J., Baxter, G.D., Ritter, F.E.: Creating models to control simulations: A generic approach. AI and Simulation of Behaviour Quarterly 93, 18–25 (1995)

    Google Scholar 

  6. Bastide, R., Basnyat, S.: Error patterns: Systematic investigation of deviations in task models. In: Coninx, K., Luyten, K., Schneider, K.A. (eds.) TAMODIA 2006. LNCS, vol. 4385, pp. 109–121. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Baxter, G.D., Bass, E.J.: Human error revisited: Some lessons for situation awareness. In: Proceedings of the Fourth Annual Symposium on Human Interaction with Complex Systems, pp. 81–87. IEEE (1998)

    Google Scholar 

  8. Bochmann, G., Sunshine, C.: Formal methods in communication protocol design. IEEE Transactions on Communications 28(4), 624–631 (1980)

    Article  Google Scholar 

  9. Bolton, M.L.: Automatic validation and failure diagnosis of human-device interfaces using task analytic models and model checking. Computational and Mathematical Organization Theory, 1–25 (2012), http://dx.doi.org/10.1007/s10588-012-9138-6

  10. Bolton, M.L., Bass, E.J.: Enhanced operator function model: A generic human task behavior modeling language. In: Proceedings of the IEEE International Conference on Systems Man and Cybernetics, pp. 2983–2990. IEEE, Piscataway (2009)

    Google Scholar 

  11. Bolton, M.L., Bass, E.J.: A method for the formal verification of human interactive systems. In: Proceedings of the 53rd Annual Meeting of the Human Factors and Ergonomics Society, pp. 764–768. HFES, Santa Monica (2009)

    Google Scholar 

  12. Bolton, M.L., Bass, E.J.: Formally verifying human-automation interaction as part of a system model: Limitations and tradeoffs. Innovations in Systems and Software Engineering: A NASA Journal 6(3), 219–231 (2010)

    Article  Google Scholar 

  13. Bolton, M.L., Bass, E.J.: Using task analytic models to visualize model checker counterexamples. In: Proceedings of the 2010 IEEE International Conference on Systems, Man, and Cybernetics, pp. 2069–2074. IEEE, Piscataway (2010)

    Chapter  Google Scholar 

  14. Bolton, M.L., Bass, E.J.: Evaluating human-automation interaction using task analytic behavior models, strategic knowledge-based erroneous human behavior generation, and model checking. In: Proceedings of the IEEE International Conference on Systems Man and Cybernetics, pp. 1788–1794. IEEE, Piscataway (2011)

    Google Scholar 

  15. Bolton, M.L., Bass, E.J.: Using model checking to explore checklist-guided pilot behavior. International Journal of Aviation Psychology 22, 343–366 (2012)

    Article  Google Scholar 

  16. Bolton, M.L., Bass, E.J., Siminiceanu, R.I.: Using phenotypical erroneous human behavior generation to evaluate human-automation interaction using model checking. International Journal of Human-Computer Studies 70, 888–906 (2012)

    Article  Google Scholar 

  17. Bolton, M.L., Bass, E.J., Siminiceanu, R.I.: Using formal verification to evaluate human-automation interaction in safety critical systems, a review. IEEE Transactions on Systems, Man and Cybernetics: Systems (in press, expected 2013)

    Google Scholar 

  18. Bolton, M.L., Siminiceanu, R.I., Bass, E.J.: A systematic approach to model checking human-automation interaction using task-analytic models. IEEE Transactions on Systems, Man, and Cybernetics, Part A 41(5), 961–976 (2011)

    Article  Google Scholar 

  19. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cambridge (1999)

    Google Scholar 

  20. De Moura, L., Owre, S., Shankar, N.: The SAL language manual. Tech. Rep. CSL-01-01, Computer Science Laboratory, SRI International, Menlo Park (2003)

    Google Scholar 

  21. Dietrich, F., Hubaux, J.: Formal methods for communication services. Tech. Rep. SSC/1999/023, Institute for Computer Communications and Applications, Swiss Federal Institute of Technology (1999)

    Google Scholar 

  22. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed explicit-state model checking in the validation of communication protocols. International Journal on Software Tools for Technology Transfer 5(2), 247–267 (2004)

    Article  Google Scholar 

  23. Fields, R.E.: Analysis of Erroneous Actions in the Design of Critical Systems. Ph.D. thesis, University of York, York (2001)

    Google Scholar 

  24. Gibson, W., Megaw, E., Young, M., Lowe, E.: A taxonomy of human communication errors and application to railway track maintenance. Cognition, Technology & Work 8(1), 57–66 (2006)

    Article  Google Scholar 

  25. Harris Corporation: Harris Corporation awarded $331 million contract by FAA for data communications integrated services program (2012), http://harris.com/view_pressrelease.asp?act=lookup&pr_id=3518 (accessed December 16, 2012)

  26. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–677 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hollan, J., Hutchins, E., Kirsh, D.: Distributed cognition: toward a new foundation for human-computer interaction research. ACM Transactions on Computer-Human Interaction 7(2), 174–196 (2000)

    Article  Google Scholar 

  28. Hollnagel, E.: The phenotype of erroneous actions. International Journal of Man-Machine Studies 39(1), 1–32 (1993)

    Article  Google Scholar 

  29. Hörl, J., Aichernig, B.K.: Formal specification of a voice communication system used in air traffic control, an industrial application of light-weight formal methods using VDM++. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1709, pp. 1868–1868. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  30. Hörl, J., Aichernig, B.K.: Validating voice communication requirements using lightweight formal methods. IEEE Software 17(3), 21–27 (2000)

    Article  Google Scholar 

  31. John, B.E., Kieras, D.E.: The goms family of user interface analysis techniques: comparison and contrast. ACM Transactions on Computer-Human Interaction 3(4), 320–351 (1996)

    Article  Google Scholar 

  32. Jones, R.K.: Miscommunication between pilots and air traffic control. Language Problems and Language Planning 27(3), 233–248 (2003)

    Article  Google Scholar 

  33. Kieras, D.E., Wood, S.D., Meyer, D.E.: Predictive engineering models based on the epic architecture for a multimodal high-performance human-computer interaction task. ACM Transactions on Computer-Human Interaction 4(3), 230–275 (1997)

    Article  Google Scholar 

  34. Kirwan, B., Ainsworth, L.K.: A Guide to Task Analysis. Taylor and Francis, London (1992)

    Google Scholar 

  35. NASA Aviation Safety Reporting System: Pilot/controller communications. Tech. rep., NASA Ames Research Center (2012)

    Google Scholar 

  36. Paternò, F., Santoro, C.: Preventing user errors by systematic analysis of deviations from the system task model. International Journal of Human-Computer Studies 56(2), 225–245 (2002)

    Article  Google Scholar 

  37. Paternò, F., Santoro, C., Tahmassebi, S.: Formal model for cooperative tasks: Concepts and an application for en-route air traffic control. In: Proceedings of the 5th International Conference on the Design, Specification, and Verification of Interactive Systems, pp. 71–86. Springer, Vienna (1998)

    Google Scholar 

  38. Pek, E., Bogunovic, N.: Formal verification of communication protocols in distributed systems. In: Proceedings of MIPRO 2003, Computers in Technical Systems and Intelligent Systems, pp. 44–49. MIPRO (2003)

    Google Scholar 

  39. Pritchett, A.R., Feigh, K.M., Kim, S.Y., Kannan, S.: Work models that compute to support the design of multi-agent socio-technical systems (under review)

    Google Scholar 

  40. Reason, J.: Human Error. Cambridge University Press, New York (1990)

    Book  Google Scholar 

  41. Sidhu, D.P., Leung, T.: Formal methods for protocol testing: A detailed study. IEEE Transactions on Software Engineering 15(4), 413–426 (1989)

    Article  Google Scholar 

  42. Sunshine, C.A.: Formal methods for communication protocol specification and verification. Tech. rep., RAND Corporation, Santa Monica (1979)

    Google Scholar 

  43. Traum, D., Dillenbourg, P.: Miscommunication in multi-modal collaboration. In: AAAI Workshop on Detecting, Repairing, and Preventing Human–Machine Miscommunication, pp. 37–46. AAAI, Palo Alto (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bolton, M.L., Bass, E.J. (2013). Evaluating Human-Human Communication Protocols with Miscommunication Generation and Model Checking. In: Brat, G., Rungta, N., Venet, A. (eds) NASA Formal Methods. NFM 2013. Lecture Notes in Computer Science, vol 7871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38088-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38088-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38087-7

  • Online ISBN: 978-3-642-38088-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics