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Abstract. Kolmogorov complexity theory is used to tell what the algo-

rithmic informational content of a string is. It is defined as the length of

the shortest program that describes the string. We present a program-

ming language that can be used to describe categories, functors, and

natural transformations. With this in hand, we define the informational

content of these categorical structures as the shortest program that de-

scribes such structures. Some basic consequences of our definition are

presented including the fact that equivalent categories have equal Kol-

mogorov complexity. We also prove different theorems about what can

and cannot be described by our programming language.

Keywords: Kolmogorov Complexity, Algorithmic Information, Cate-

gories, Functors, Natural Transformations.

Dedicated to Samson Abramsky in honor of his 60th Birthday

1 Introduction

Kolmogorov complexity is a part of theoretical computer science that was pio-

neered in the early 1960’s by Andrey Kolmogorov, Ray Solomonoff, and Gregory

Chaitin. For reasons ranging from probability theory, to machine learning, and
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computational complexity theory, these three researchers gave a universal defi-

nition of what it means for a string of symbols to be simple or complex.

Consider the following three strings:

1. 00000000000000000000000000000000000000000000000

2. 11011101111101111111011111111111011111111111110

3. 01010010110110101011011101111001100000111111010

All three consists of 0s and 1s and are of length 45. It should be noticed that if

you flipped a coin 45 times the chances of getting any of these three sequences

are equal. That is, the chances for each of the strings occurring is 1/245. In effect,

this shows a failure of classical probability theory in measuring the contents of

a string. Whereas you would not be shocked to see a sequence of coins produce

string 3, the other two strings would be surprising. The difference between these

strings can be seen by looking at short programs that can describe them:

1. Print 45 0’s.

2. Print the first 6 primes.

3. Print ‘01010010110110101011011101111001100000111111010’.

The shorter the program, the less informational content of the string. In contrast,

if only a long program can describe the string, then the string has more content. If

no short program can describe a string, then it is “incompressible” or “random.”

In classical Kolmogorov complexity, rather than talking about programs, one

talks about Turing machines. For a string s, the the Kolmogorov complexity,

K(s), is defined as the size of the smallest Turing machine that starts with

an empty tape and outputs s. Formally, let U be a universal Turing machine,

then K(s) = min{|p| : U(p, λ) = s}. We will also need relative Kolmogorov

complexity: let s and t be two strings, then K(s|t) is the size of the smallest

Turing machine that starts with t on the tape and outputs s. Formally, K(s|t) =

min{|p| : U(p, t) = s}. If K(s) > |s| then s is “incompressible” or “random”.

This notion of Kolmogrov complexity is used in many different areas of theo-

retical computer science. It gives an objective measure of how complicated strings

are. It is our goal to extend these ideas to many other areas of mathematics,

computer science and physics by formulating a notion of Kolmogorov complexity

for category theory which is used in all these diverse areas. In order to measure

how complicated categories, functors, and natural transformations are, we need

a programing language that will describe these categorical structures. In honor

of Sammy Eilenberg, one of the founders of category theory who also had a deep

interest in computer science, we call this programming language “Sammy.” This



language will have variables that can hold categories, functors and natural trans-

formations. The operations of the language will perform common constructs that

people use to formulate different structures. Each line of the program could have

a label that will be used with ”If-Then” statements to control the execution of

the program.

Notice that numbers, strings, trees, graphs, arrays, and other typical data

types are not mentioned in our programming language. This was done on pur-

pose. The other data types can be derived from the categorical structures. Cat-

egories and algorithms are more “primitive” than numbers, strings, etc.

This is not the first time a programing language has been formulated to de-

scribe categorical structure. An important example is in Computational Category

Theory by Rydeheard and Burstall [3]. Tatsuya Hagino’s thesis [2] is another ex-

ample. These languages are, however, different from Sammy. Their programming

languages are made to be implemented and to get computers to actually calculate

with categories. In contrast, there is no intention of implementing Sammy. Our

goal is simply to compare different structures by comparing the length of their

descriptions. In fact, we will not even write many formal Sammy programs. This

is similar to the fact that no one actually ever formally writes the instructions

for a Turing machine.

With Sammy, we will talk about the Kolmogorov complexity of categorical

structures. We discuss when one structure is more complicated than another. We

will also talk about compressibility and randomness. Along these lines, here is a

simple example of the type of ideas we will meet. Consider N, the totally ordered

category of natural numbers 0 // 1 // 2 // · · · , and 2, the category

with two objects and a single isomorphism between them 0
∼ // 1 . A functor

F : N −→ 2 corresponds to an infinite sequence of zeros and ones. The category

of all such functors 2
N
is essentially to the real numbers and has uncountably

many elements. How many of these functors can be mathematically described?

There are only countably many computer programs that describe such functors.

This means that the vast majority of functors N −→ 2 cannot be described by

any program and are essentially random.

Not every categorical structure can be described with our programing lan-

guage. Categorical structures that can be described by Sammy will be called

“constructible.” For example, I do not know how to start from nothing and

make the category of smooth manifolds. However it is probably possible to start

from the category of topological spaces and get the category of smooth mani-



folds. This brings us to the notion of relative Kolmogorov complexity. We will

be interested in how long does a program have to be in order to construct a

categorical structure given some categorical structures.

The fact that certain structures are not constructable with Sammy brings in

the whole area of computability theory. There are limitations to what Sammy

can perform. Usual self-referential limitations are based on variations of the liar

paradox (“This statement is false”) such as Gödel (“This statement is unprov-

able”) or Turing (“This program will output the wrong answer when asked if it

will halt or go into an infinite loop”) (see [5] for a comprehensive survey of such

limitations.) In contrast, the limitations of Kolmogorov complexity are based on

the Berry Paradox: consider the number described by “The least number that

needs more than fifteen words to describe it.” This sentence has twelve words.

That is, there is a description of a number that is shorter than it is supposed to

be. One such limitation within classical Kolmogorov complexity[4] is:

Theorem 1 K : Strings −→ N is not a computable function.

We will show that there are similar limitations for our Kolmogorov complexity

theory.

Section 2 introduces Sammy. That section also describes several “library

functions” or “macros” in Sammy which will be helpful in the rest of the paper.

Section 3 is the heart of the paper where we define and prove many of the central

theorems about our complexity measure. Section 4 is a discussion of computabil-

ity and non-computability with the Sammy language. The paper concludes with

some possible ways this work will progress in the future.

2 A Programing Language for Categories

In order to describe categorical structures, we need a programing language. This

language will be called “Sammy”. The language will consist of typical opera-

tions that are used to describe/create different categories, functors and natural

transformations. Programs will be lists of statements that set variables to dif-

ferent values. The variables could be categories, functors, or natural transfor-

mations. Since categories are special types of functors, and functors are special

types of natural transformations (that is, natural transformations are the deep-

est type), we might state everything in terms of natural transformations. But

that would make the programs needlessly complex. Rather, for the sake of sim-

plicity, we will be ambiguous about the types of our statements (that is, our



operations/functions will be polymorphic.) As we have absolutely no intention

of implementing Sammy, we can be vague about certain issues.

We begin with constants. There is 0, the empty category, 1, the category

with one object and one morphism, and 2, the category 0 −→ 1 with two ob-

jects and one nontrivial morphism. We will also need the constant category Cat

which corresponds to the category of all small categories. There are also several

constant functors: s : 1 −→ 2 and t : 1 −→ 2 that picks out the source and tar-

get of the nontrivial morphism in 2. There are the unique morphisms ! : 0 −→ 1,

! : 0 −→ 2, ! : 0 −→ Cat, ! : Cat −→ 1, and ! : 2 −→ 1. There are also identity

functors and natural transformations.

There are several operations that take a single input. For a functor F : A −→

B if we set C = Source(F : A −→ B) then C = A. That is, Source takes a functor

and outputs the category that is the source of the functor. There is a similar

operation C = Target(F : A −→ B). For a given category A, the operation

F = Ident(A) makes F = IdA. For a category A, if we let C = Op(A) then

C = Aop. The Op operation also acts on functors.

We will at times have to talk about an actual object and morphism in the

category. So for example, a functor F : 1 −→ C “picks” an object c in C and a

functor F : 2 −→ C “picks” a morphism f : c −→ c′. Going the other way, an

object c in C “determines” a functor Fc : 1 −→ C and similarly for a morphism

in C. We write this in Sammy as c = Pick(F : 1 −→ C) and Fc = Determine(c).

For natural transformations of the appropriate source and target there is a

horizontal composition and vertical composition written as α = Hcomp(β, γ) and

α = Vcomp(β, γ). Regular composition of functors is simply a special case of

horizontal composition. For categories A and B, we will have C = Pow(A,B) be

the category of all functors and natural transformations from A to B.

Probably the most important operations are the Kan extensions. For functors

G : A −→ B and F : A −→ C, a right Kan extension of F along G is a

pair (R,α) = KanEx(G,F ) where R : B −→ C and α : R ◦ G −→ F . A Kan

extension induces another functor that is unique. For every H : B −→ C and

β : H ◦G −→ F there is a unique γ = KanInd(F,G;H, β) where γ : H −→ R and

satisfies α · γG = β. Using Kan extensions one can derive, products, coproducts,

pushouts, pullbacks, equalizers, coequalizers, (and constructible) limits, colimits,

ends, coends, etc. It is a well-known fact that if G : A −→ B is a right adjoint

(left adjoint, equivalence, isomorphism), then its left adjoint (right adjoint, quasi-



inverse, inverse) G∗ : B −→ A can be found as a simple Kan extension of the

identity IdA along G, that it, G∗ = KanEx(G, IdA).

For “bootstrapping” purposes we will need an operation that takes two cate-

gories and gives their coproduct and their induced maps. This will help us create

categories like 1⊔1 which will be needed for our Kan extensions to describe prod-

ucts and coproducts; and 2 ⊔ 2 which will be needed to describe equalizers and

coequalizers.

There is a dual notion of a Kan Lifting. For functors F : A −→ B and

G : C −→ B a Kan lifting of F along G is a pair (R,α) = KanLif(G,F ) where

R : A −→ C that satisfies a universal property which can easily be written down.

Since Kan extensions and Kan liftings are only defined up to a unique iso-

morphism, we might ask what is the output of the function KanEx(G,F )? We

do not care. The computer decides which of the many possible outputs it will

output. It is irrelevant from the categorical perspective. This is similar to a real

programing language when we do not know how something is stored or how a

function is calculated. The user is ambivalent as to how the computer does cer-

tain actions. We are also well-aware that the Kan extensions and Kan liftings

might not exist. In that case, the program will not go on.

There is one more operation that needs to be discussed. Let C be a category.

C
2 and C

1 are the categories of arrows and objects of C. The maps s : 1 −→ 2

and t : 1 −→ 2 induce (using the Pow operation on functors) maps Cs : C2 −→

C
1 and C

t : C2 −→ C
1. The pullback of these two maps, C2 ×C1 C

2 is the

composable arrows in the category. The important part of the information about

the category is the composability map ◦ : (C2 ×C1 C2) −→ C2. This map will

help us get into the nitty-gritty of how a category is defined. So we have the

following operation: for a category C, the operation F = Composable(C) gives

us the ◦ map.

We would like some control of how the Sammy program will execute. We do

this with a conditional branch statement: If α1 == α2 Goto L where α1 and

α2 are natural transformations and L is a label of some program line. With such

a conditional branch, we can get all the usual logical operations: AND, NOT,

etc. We can also get the unconditional branch Goto L.

There are a number of remarks that need to be made about Sammy:

This might not be the best language for our purposes. Certain operations can

be derived from other operations and hence a smaller more compact language is

possible. For example, the Target operation can be derived from the Source and



Op operations. Bear in mind that our goal is to count the number of operations

up to a coefficient. So we need not be exact. If one operation can be replaced by

a constant number of other operations, nothing is lost.

This language can not describe all constructions. (We shall see later.) What

can be done with this language will be called “constructible.” It is interesting to

look at what type of categories can be described by this programming language

with no other input.

There is a need for a Church-Turing type thesis. The classic Church-Turing

thesis says that whatever can be computed, can be computed by a Turing ma-

chine. We need such a thesis that says that whatever can be constructed by

categorical means, can be constructed using the Sammy programing language.

Alas, this is a thesis and not a theorem because we cannot characterize what

can be constructed by categorical means. We will see that there are certain con-

structions that cannot be performed by Sammy. However, we believe that no

programming language can make those constructions.

With classical Kolmogorov complexity, there is much discussion about “self-

delimiting” programs. This will not be an issue here. We can easily tell when a

Sammy program begins and when it ends.

With Sammy in hand, we introduce some library functions or macros that

will be used in the future:

The coequalizer 1
s
//

s //
2 ⊔ 2 gives the category ∗ ∗ //oo ∗ which

can be put in a Kan extension and give us pushouts and pullbacks. We can make

many similar constructions.

For functors L : A −→ C and R : B −→ C we can construct the comma

categories as the following pullbacks:

L ↓ R

zz✈✈
✈✈
✈✈
✈✈
✈

$$❍
❍❍

❍❍
❍❍

❍❍

L ↓ C

$$■
■■

■■
■■

■■

||③③
③③
③③
③③

C ↓ R

""❉
❉❉

❉❉
❉❉

❉❉

zz✉✉
✉✉
✉✉
✉✉
✉

A

L
""❊

❊❊
❊❊

❊❊
❊❊

C2

C
t

$$■
■■

■■
■■

■■
■

C
s

zz✉✉
✉✉
✉✉
✉✉
✉✉

B

R
||②②
②②
②②
②②
②

C C

Special instances of comma categories are slice categories and coslice categories.



The coequalizer 1

t
//

s //
2

ρ // ω gives the (infinite) natural numbers as

a monoid. N = ω2 gives the totally ordered category of natural numbers. The

successor function is defined as follows:

r : ω
∼ // ω × 1

Id×s // ω × 2
Id×ρ // ω × ω

◦ // ω.

That is, take any n ∈ ω and associate it with the nontrivial morphism in 2. This

becomes the +1 member of ω. Then compose n with +1. Now take this map r

and look at s = r2 : N = ω2 −→ ω2 = N. This is the successor map.

We construct the category with two objects and a unique isomorphism be-

tween them. First make a category with two distinct copies of 2. By keeping

track of the inclusion maps, we have an induced F and G

1 ⊔ 1

F

��✤
✤

✤

1

t
//

s //

inc
++❲❲❲❲

❲❲❲❲
❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲

inc

33❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣ 2
inc // 2 ⊔ 2 2

incoo 1

too

s
oo

inc
ss❣❣❣❣❣

❣❣❣❣
❣❣❣❣

❣❣❣❣
❣❣❣❣

❣❣❣❣

inc

kk❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲

1 ⊔ 1

G

OO✤
✤

✤

Now use these induced maps in a coequalizer to form the desired category. The

figure on the right is helpful.

1 ⊔ 1

F

��
G

��

∗

����
��
��
��

''◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆ ∗

��❃
❃❃

❃❃
❃❃

❃

ww♣♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣

2 ⊔ 2

��

∗ // ∗ ∗ ∗oo

2 ∗
∼ // ∗oo

3 Kolmogorov Complexity of Categories

For a categoryC (or a functor, or a natural transformation) we defineKSammy(C)

to be the number of operations in the smallest Sammy program that describes

C. For relative Kolmogorov complexity, letting

Γ = {C1,C2, . . . ,Cl, F1, F2, . . . , Fm, µ1, µ2, . . . , µn},



or Γ as a sub2-category of Cat then KSammy(C|Γ ) is the number of operations

in the smallest Sammy program that describes C given Γ as input. We shorten

KSammy to K when no confusion will arise.

If there is a finite number of operations so that one can go from one categorical

structure to another and vice versa, we say that the Kolmogorov complexity of

these categorical structures are approximately the same. In detail, if there exists

a c such that for all appropriate categorical structures, X, one can change X to X′

and vice versa in c Sammy operations, that is |K(X)−K(X′)| ≤ c, then we write

K(X) ≈ K(X′). As an example, notice that only one Sammy operation is needed

to go from category A to functor IdA and vice versa. Hence K(A) ≈ K(IdA).

There is a need for something called an invariance theorem. This basically

says that the Kolmogorov complexity does not depend on the programing lan-

guage that is used to describe the objects. Imagine that you do not like the

Sammy programing language to describe categorical structures and you decide

to invent your own. Perhaps you call it “Saunders” (after the other founder of

category theory, Saunders Mac Lane.) Then since presumably both languages

can program any constructable categorical structure, they can each program the

other’s operations. That means there exist compilers that can translate Sammy

programs into Saunders programs and there are compilers that can translate

Saunders programs into Sammy programs. From this, we can prove the follow-

ing theorem: There exists a constant c such that for all categorical structures X

we have |KSammy(X)−KSaunders(X)| ≤ c.

Rather than list all the results we have for K, let us examine some paradig-

matic theorems:

Theorem 2 There exists a constant cpair such that for all C and D we have

K(C× D) ≤ K(C) +K(D|C) + cpair.

This essentially says that there is a simple way of taking two categories and

forming their product. There is no new information added. But lets look more

carefully at what the theorem say. It says that to form C × D one can form C

and then form D (but you might use some information that you already have

since you already formed C) and then do a few lines of Sammy to get their

product. The reason for the inequality is because there might be an easier way.

For example 0 × D can be formed in a constant amount of operations: it is 0.

There is also a similar theorem with C and D swapped on the right side of the

inequality.



Theorem 3 There exists a constant cdouble such that for all C we have K(C× C) ≤

K(C) + cdouble .

That is, there is a simple way to double a category and no new information is

there.

Theorem 4 There exists a constant ctarget such that for all F : A −→ B we

have K(B) ≤ K(F : A −→ B) + ctarget.

This means that one way to describe B is to first find a program for a functor

F : A −→ B and then use the Target operation to get B. The inequality comes

from the fact that there might be shorter programs to describe B. There are

similar such theorems for the source of a functor, for natural transformations,

for identity functors, etc.

We state the following theorem about composition in terms of natural trans-

formations for generality.

Theorem 5 There exists a constant ccompos such that for any three natural

transformations α : F −→ G, β : F −→ H, and γ : G −→ H such that β = γ ◦α

we have

K(β) ≤ K(α) +K(γ|α) + ccompos.

When γ is the unique natural transformation that satisfies this triangle (e.g.

when α is mono) then the inequality in the above theorem becomes an equality.

The theorem for Kan extensions is similar.

Theorem 6 There exists a constant cKan such that for all G : A −→ B and

F : A −→ C if (LanG(F ), α) is the left Kan extension, than

K((LanG(F ), α)) ≤ K(F ) +K(G|F ) + cKan

or for relative Kolmogorov complexity

K((LanG(F ), α)|Γ ) ≤ K(F |Γ ) +K(G|Γ, F ) + cKan.

As a special case, if G : A −→ B is a right adjoint (left adjoint, equivalence,

or isomorphism), then the Kan extension along G of the IdA is the left adjoint

(right adjoint, quasi-inverse, inverse) G∗ : B −→ A. Since it is easy to go from

one to the other, we have that K(G) ≈ K(G∗). Notice that for an arbitrary

adjunction, this does not mean that K(A) ≈ K(B) (we shall see that it is



true for an equivalence). Nor does there seem to be any hard-and-fast rule that

says something like a left adjoint goes from something with a low Kolmogorov

complexity to a high Kolmogorov complexity. It is easy to find counterexamples

to such ideas.

If G : A −→ B and F : A −→ C are functors, R : B −→ C is a right Kan

extension, H : B −→ C, and β : H ◦ G −→ F then for the unique induced

γ : H −→ R, we have that K(γ) ≈ K(β). The reason for this is that you can

go from one to the other using composition and the KanInd operation. A simple

example of this is product:

H
β1

$$❍
❍❍

❍❍
❍❍

❍❍
β0

zz✈✈
✈✈
✈✈
✈✈
✈

!γ

��
F0 F0 × F1 α1

//
α0

oo F1

It is easy to see that the information in γ is exactly the information in the βs.

It is easy to derive one from the other.

Our work would be in vain if the measure we described was not an invariant

of categorical structure. We have the following important theorem.

Theorem 7 If categories A and B are equivalent, then KSammy(A) ≈ KSammy(B).

Proof. The intuition behind the theorem is that Sammy cannot distinguish

categorical structures that are isomorphic. Say the equivalence is given by the

functor G : A −→ B. From G its easily constructed quasi-inverse is G∗ : B −→ A.

We then have that K(G) ≈ K(G∗). We also get that K(G ◦G∗) ≈ K(G∗ ◦G).

If α : IdA −→ GG∗ is the isomorphic unit of the equivalence given by the Kan

extension, then α−1 : GG∗ −→ IdA is easily constructed (we are assuming that

Kan extensions work on natural transformations). Since α−1 ◦ α = idId we get

that K(α−1) ≈ K(IdA) . We then have

K(A) ≈ K(IdA) ≈ K(GG∗) ≈ K(G∗G) ≈ K(IdB) ≈ K(B).

QED.

There are some important consequences of this theorem. One can easily con-

struct the skeletal category as the coequalizer C2

t
//

s //
C

∼= // Cskeletal . This

gives us K(C) ≈ K(Cskeletal).



In a future paper [6] we will discuss algebraic theories, monads, Morita equiv-

alence and other algebraic notions from the Kolmogorov complexity perspective.

4 Computability and Non-Computability with Sammy

There might be a need to deal with finite numbers. We shall let the number n

correspond a triple (n, Pb, Pe) where n is the totally ordered category with n ele-

ments (keep in mind: 0 // 1 // · · · // n− 2 // n− 1 ), Pb : 1 −→ n

is a functor that points to the beginning of the category (the initial object), and

Pe : 1 −→ n is a functor that points to the end of the category (the terminal

object.) Basic operations with such numbers are easy to describe. For example,

we can connect (n, Pb, Pe) and (m, P ′

b, P
′

e) to get (n+m− 1, Pb, P
′

e) with the

coequalizer: 1

Pe

//

P ′

b //
n ⊔m // (n+m− 1) . (In truth, natural numbers can

simply be given as functors 1 −→ N. We can manipulate numbers by manipulat-

ing such functors. While this is simple and economical, there is a certain appeal

to doing it the way we did. Many prefer to think of their numbers as “things”

and not just pointers to amounts.)

All the finite totally ordered sets should be considered subcategories of N

and, as such, inherit a partial successor function. Before applying this successor

function we must check to make sure that the pointer is not at the Pe position.

A totally ordered category with n elements can be constructed in O(log2n)

number of Sammy statements. Basically, the idea is that one can look at the

binary representation of n and write a program based on that. For example 727

in binary is 1011010111. We can express this number as

(((((((((1×2+0)×2+1)×2+1)×2+0)×2+1)×2+0)×2+1)×2+1)×2+1).

Similarly when making our totally ordered category, we can either (a) double

the length of the category by connecting one copy of itself to itself, or (b) double

itself and add one, depending on the bit at that position. This proves that

K(n) ≤ O(log2n) which is similar to the classical case.

Notice that the above algorithm did not have any input. In contrast, we can

look at a program that loops through input, reads the bit and performs either

(a) or (b). This input will be given as a functor from log2n to 2. The program

moves a pointer forward on log2n. There will be a conditional branch to see



if the pointer is equal to Pe. While this might be a long program, it does not

depend on the size of the input. We have thus proved that

K(n | (F : log2n −→ 2)) = O(1)

where F describes n in binary.

Considering numbers as such triples, we have the following theorem:

Theorem 8 Any partially computable function of natural numbers can be com-

puted with Sammy.

Proof. We prove that Sammy can perform the initial functions, recursion, com-

position, and the µ-minimization operator. The zero function is achieved by

simply setting Pe = Pb. The successor of n is achieved by simply composing

with 2. The projection function is simply a Sammy program that accepts n in-

puts and outputs one of the inputs. Recursion can be done by iteration: we loop

through a number until a pointer reaches Pe. Composition is simply composition

of Sammy programs. µ-minimization is done by doing a loop along N the ordered

category of all natural numbers. QED.

What about complexity theory? In [6] it is shown that categories and functors

can mimic a Turing machine. For every rule of a Turing machine there is a set

amount of steps of a Sammy program. Hence our programming language can

do whatever a Turing machines can do. The size of the Sammy program is, up

to a constant, the same as the number of rules in the Turing machine. That is

KSammy(Fs) = O(KClassical(s)) where Fs is a functor that describes a string. In

a sense, this says that our Kolmogorov complexity is a generalization of classical

Kolmogorov complexity.

We do not see why there should be a theorem that goes the other way. In

other words, we do not think that a Turing machine can mimic an arbitrary

Sammy program. If, in fact there are some categorical constructions that can

be constructed by a Sammy program, but cannot be constructed by a Turing

machine, then our Kolmogorov complexity is stronger than classical Kolmogorov

complexity theory. Here is an example of a category and a functor that can

NOT be constructed by a Turing machine but might be able to be constructed

by a Sammy program. Let Halt be a the “halting category” whose objects are

the natural numbers and whose morphisms are defined below. Similarly there

is the “halting functor’, H , from N, the totally ordered category of the natural

numbers, to 2, the category with two objects and a unique isomorphism between



them, is defined on the right.

HomHalt(n, n) =











ω : if ϕn(n) ↓

Idn : if ϕn(n) ↑

H(n) =











1 : if ϕn(n) ↓

0 : if ϕn(n) ↑

Although, at present time, I do not know how to write a Sammy program to make

such constructions, I believe that using infinite limits and colimits one should

be able to build a type of infinite-time Turing machine to tell if regular Turing

machines will halt or not. (However we are hesitant about making any conjec-

tures. There is an interesting information-theoretic proof of the undecidability

of the halting problem given on page 362 of [1]. Much work remains.)

Although we suspect that Sammy can actually program a larger class of func-

tions than a Turing machine, however, there are some categorical constructions

that are not programmable by Sammy (or any other language.) It is known that

KClassical : Strings −→ N is not a computable function. What about KSammy?

First let us be careful about the definition of KSammy. It is a function that as-

signs to every category, functor, and natural transformation a natural number.

We might as well assume that it only assigns natural transformations since iden-

tity natural transformations are simply functors and identity functors are simply

categories. Let us think of Cat as the discrete category of natural transforma-

tion. We are going to forget the (two) composition structures on Cat because

KSammy does not behave well in terms of composition. So we have a functor

KSammy : Cat −→ N. We prove that this functor is not constructible. The proof

is a self-reference argument similar to the Berry paradox.

Theorem 9 KSammy : Cat −→ N is not constructible.

Proof. Assume (wrongly) that K = KSammy is, in fact, constructible, then

there is a shortest program that describes K. In that case we can ask for the

value of K(K) (this is the core of self reference!). Let K(K) = c. Also, let n be

a natural number and let Pn : 1 −→ N be a functor such that Pn(0) = n. Now

use K and and Pn to construct the following pullback:

Catn
�

� //

��

Cat

K

��
Pn ↓ N

�

� // N.



Pn ↓ N is the sub-total order of natural numbers that start at n. Catn is the

discrete set of natural transformations whose shortest program is greater than or

equal to n operations. This pullback only needed a few more operations than c.

Say that K(Catn|n) = c′. However we can “hardwire” any n into the program.

If we do that, we get K(Catn) = c′ + log n. Choose an n such that n >>

c′+ log n. Then Catn contains objects that require n or more lines of code while

we just described Catn in c′ + log n lines of code. This is like a Berry sentence.

Contradiction! The only thing assumed is that K was constructible. It is not

constructible. QED.

We see this paper as just the beginning of a larger project to understand

the complexity of categorical structures. Our work is far from done. With this

notion of Kolmogorov complexity we get different notions of randomness, com-

pressibility, and different notions of information. We would like to find upper

bounds on some given categorical structures. We also would like to better clar-

ify what is constructible and what is not. Another goal is to continue finding

different categorical versions of the incompleteness theorems. We also would like

to study different complexity measures. Rather than asking what is the shortest

program that produces a categorical structure, we can ask how much time/space

does a program take to create a certain structure. That is, what is the computa-

tional complexity of a structure. We can ask how much time does it take for the

shortest program to produce that structure (logical depth.) All these measures

induce hierarchies and classifications of categorical structures. There are also

many other areas that we plan on studying. Here are a few.

There is a relationship between classical Kolmogorov complexity and Shan-

non’s complexity theory. We would like to formulate a notion of Shannon’s com-

plexity theory for categories. There should be a definition of entropy of a category

which should measure how rigid or flexible categorical structure is. Let C be a

category, then Aut(C) is the group of automorphism functors F : C −→ C. De-

fine the “entropy” (or “Hartley entropy”) of C as H(C) = Log2|Aut(C)|. Just

as there is a relationship between these measures for strings, there should be a

relationship for categorical structures.

So far we have restricted to classical categories, functors, and natural trans-

formations. What about categories with more structure? For example, what

can we say about a category that we know has all limits and colimits? What

about enriched categories, higher categories, categories with structure, quasi-

categories, etc? These different structures have been applied in almost every



area of mathematics, computer science and theoretical physics. What we worked

out above is only the first step. Such a study would be extremely interesting to

shed some light on coherence theory. In this paper we saw that a pivotal fact of

the Kolmogorov complexity of categories is that some categories are defined up

to a unique isomorphism. Coherence theory generalizes such notions and is, in

a sense, a higher dimensional version of uniqueness We will learn much about

categorical information content and coherence theory by seeing the way they

interact.

This work should also be related to the important work in quantum infor-

mation theory. We would like to study some of the physical and mathematical

structures that occur in quantum mechanics with the developed Kolmogorov

complexity tools.

Another area that we would like to explore is Occams razor [5]. This is usually

seen as a criteria in which to judge different physical theories. In short, physicists

formulate functors F :“Physical Phenomena” −→ “Mathematical Structure.”

Universality of the theory demands that “Physical Phenomena” be as large as

possible. In contrast, Occam’s razor demands that “Mathematical Structure”

have low informational content. We would like to use Kolmogorov complexity

on both of these types of categories and the functors that relates them. We feel

that with a better understanding of this we would be able to understand the

question of why it seems that Occam’s razor works so well.
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