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ON THE FUNCTOR ℓ2

CHRIS HEUNEN

Abstract. We study the functor ℓ2 from the category of partial injections
to the category of Hilbert spaces. The former category is finitely accessible,
and its homsets are algebraic domains; the latter category has conditionally
algebraic domains for homsets. The functor preserves daggers, monoidal struc-
tures, enrichment, and various (co)limits, but has no adjoints. Up to unitaries,
its direct image consists precisely of the partial isometries, but its essential im-
age consists of all continuous linear maps between Hilbert spaces.

I am delighted to dedicate this paper to Samson Abramsky, on the occasion of his
60th birthday. Among all the wisdom he has imparted on me is this contradictory
gem: “Never solve a problem completely, or noone will have a reason to cite you”.
My better nature gladly took some time off to let this paper follow his advice.

1. Introduction

The rich theory of Hilbert spaces underpins much of modern functional analysis
and therefore quantum physics [25, 20], yet important parts of it have resisted cate-
gorical treatment. In any categorical analysis of a species of mathematical objects,
free objects of that kind play a significant role. The important ℓ2–construction is
in many ways the closest thing there is to a free Hilbert space: if X is a set, then

ℓ2(X) =
{

ϕ : X → C

∣

∣

∣

∑

x∈X

|ϕ(x)|2 <∞
}

is a Hilbert space, in fact the only one of its dimension up to isomorphism. The ℓ2–
construction can be made into a functor, if we take partial injections as morphisms
between the setsX , as first observed by Barr [6]. Outside functional analysis, it also
plays a historically important role in the geometry of interaction (which has been
noticed by many authors; an incomplete list of references includes [9, 1, 12, 13, 17]).

Explicit categorical properties of the ℓ2–construction are few and far between
in the literature. These notes gather and augment them in a systematic study.
Section 2 starts with the category of Hilbert spaces: it is self-dual, has two monoidal
structures, and its homsets are algebraic domains, but its enrichment and limit
behaviour is wanting. Section 3 discusses the category of partial injections, which is
more well-behaved: it is also self-dual, has two monoidal structures, and is enriched
over algebraic domains; moreover, it is finitely accessible. Section 4 introduces and
studies the functor ℓ2 itself. It preserves the self-dualities, monoidal structures, and
enrichment. It also preserves (co)kernels and finite (co)products, but not general
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2 CHRIS HEUNEN

(co)limits. Therefore it has no adjoints, and in that sense does not provide free
Hilbert spaces. It is faithful and essentially surjective on objects. Section 5 studies
the image of the functor ℓ2. Up to unitaries, its direct image consists precisely of
partial isometries. Remarkably, it is essentially full, that is, its essential image is
the whole category of Hilbert spaces.

Choice issues are lurking closely beneath the surface of these results. In fact,
ℓ2(X) is not just a Hilbert space; it carries a priviledged orthonormal basis. The
functor ℓ2 is an equivalence between the category of partial injections, and the cat-
egory of Hilbert spaces with a chosen orthonormal basis and morphisms preserving
it. But the latter class of morphisms is too restrictive: all interesting applications
of Hilbert spaces require a change of basis. Following the guiding thought “a gen-
tleman does not choose a basis”, Section 6 suggests directions for further research.

2. The codomain

Definition 2.1. We are interested in the categoryHilb, whose objects are complex
Hilbert spaces, and whose morphisms are continuous linear functions.

2.2. The category Hilb has a dagger, that is, a contravariant involutive functor
† : Hilbop → Hilb that acts as the identity on objects. On a morphism f : H → K
it is given by the unique adjoint f † : K → H satisfying 〈f(x) | y〉 = 〈x | f †(y)〉. For
example, an isomorphism u is unitary when u−1 = u†.

2.3. Furthermore, the usual tensor product of Hilbert spaces provides the category
Hilb with symmetric monoidal structure. The monoidal unit is the 1-dimensional
Hilbert space C. In fact, Hilb has dagger symmetric monoidal structure, i.e. (f ⊗
g)† = f † ⊗ g†, and all coherence isomorphisms are unitaries.

2.4. Direct sums of Hilbert spaces provide the category Hilb with (finite) dagger
biproducts. That is, H ⊕ K is simultaneously a product and a coproduct, the
projections are the daggers of the corresponding coprojections, and (f ⊕g)† = f †⊕
g†. Similarly, the 0-dimensional Hilbert space is a zero object, i.e. simultaneously
initial and terminal.

2.5. Let us emphasize that we take continuous linear maps as morphisms between
Hilbert spaces, rather than linear contractions. The category of Hilbert spaces
with the latter morphisms is rather well-behaved, see e.g. [5]. However, it is the
former choice of morphisms that is of interest in functional analysis and quantum
physics. Unfortunately it also reduces the limit behaviour of the category Hilb, as
the following lemma shows.

Lemma 2.6. The category Hilb:

(i) has (co)equalizers;
(ii) does not have infinite (co)products;
(iii) does not have directed (co)limits.

Proof. Part (i) holds because Hilb is enriched over abelian groups and has ker-
nels [16]. For (ii), consider the following counterexample. Define an N-indexed
family Hn = C of objects of Hilb. Suppose the family (Hn) had a coproduct H
with coprojections κn : Hn → H . Define fn : Hn → C by fn(z) = n · ‖κn‖ ·z. These
are bounded maps, since ‖fn‖ = n · ‖κn‖. Then for all n ∈ N the norm of the
cotuple f : H → C of (fn) must satisfy

n · ‖κn‖ = ‖fn‖ = ‖f ◦ κn‖ ≤ ‖f‖ · ‖κn‖,
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so that n ≤ ‖f‖. This contradicts the boundedness and hence continuity of f .
Finally, part (iii) follows from (ii) and [24, IX.1.1] �

2.7. Despite the previous lemma, Hilb is conditionally (co)complete, in the sense
that it does have objects that partially obey the universal property of infinite
(co)products: for a family Hi of Hilbert spaces,

H =
{

(xi) ∈
∏

i

Hi |
∑

i

‖xi‖2 <∞
}

.

is a well-defined Hilbert space under the inner product 〈(xi) | (yi)〉 =
∑

i〈xi | yi〉 [20].
The evident morphisms πi : H → Hi satisfy πi ◦π†

i = id and πi ◦π†
j = 0 when i 6= j.

A cone fi : K → Hi allows a unique well-defined morphism f : K → H satisfying
πi ◦ f = fi if and only if

∑

i ‖fi‖2 < ∞. Note, however, that the cone (πi) itself
does not satisfy this condition. In this sense, ℓ2(X) is the conditional coproduct of
X many copies of C.

2.8. A similar phenomenon occurs for simpler types of (co)limits. Monomorphisms
in Hilb are precisely the injective morphisms, and epimorphisms are precisely those
morphisms with dense range [15, A.3]. Not every monic epimorphism is an isomor-
phism. For example, the morphism f : ℓ2(N) → ℓ2(N) defined by f(ϕ)(n) = 1

n
ϕ(n)

is injective, self-adjoint, and hence also has dense image. But it is not surjec-
tive, as the vector ϕ ∈ ℓ2(N) determined by ϕ(n) = 1

n
is not in its range. Monic

epimorphisms are called bimorphisms.

2.9. If f, g : H → K are morphisms in Hilb, then so are f + g and zf for z ∈
C. Because composition respects these operations, Hilb is enriched over complex
vector spaces. In general, the homsets are not Hilbert spaces themselves [2], so
Hilb is not enriched over itself, and hence not Cartesian closed. At any rate, there
is another way to structure the homsets of Hilb, which is of more interest here.
Say f ≤ g when ker(f)⊥ ⊆ ker(g)⊥ and f(x) = g(x) for x ∈ ker(f)⊥. The following
proposition shows that this makes all homsets into conditional algebraic domains,
but that this is not respected by composition. Here, by conditional algebraic domain
we mean an algebraic domain [4], except that it does not need to have all directed
suprema, but only bounded ones, in the same sense as 2.7: more precisely, every is
a directed family of parallel morphisms fi in Hilb for which ‖fi‖ converges has a
supremum. This is closely related to [8, 2.1.4], but Hilb is not a restriction category
in the sense of that paper: setting f to be the projection onto ker(f)⊥ does not
satisfy fg = gf .

Proposition 2.10. All homsets in the category Hilb are conditional algebraic
domains, but composition is not monotone.

Proof. The least upper bound of a directed family fi is given by continuous exten-
sion to the closure of

⋃

i ker(fi)
⊥; this makes all homsets into directed-complete

partially ordered sets. If f ≤ ∨

i fi always implies f ≤ fi for some i, then ker(f)⊥

must have been finite-dimensional; thus morphisms f with dim(ker(f)⊥) < ∞ are
the compact elements. It is now easy to see that any morphism is the directed
supremum of compact ones below it, making all homsets into algebraic domains.

Now consider composition. First suppose that f ≤ f ′ and g ≤ g′. If x ∈ ker(f),
then clearly gf(x) = 0. If x ∈ ker(f)⊥, then f(x) = f ′(x), so g′f ′(x) = 0 implies
f(x) ∈ ker(g′) ⊆ ker(g). Because we may write dom(gf) = ker(f) ⊕ ker(f)⊥, we
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conclude ker(gf)⊥ ⊆ ker(g′f ′)⊥. But unless f(ker(gf)⊥) ⊆ ker(g)⊥, it need not be
the case that gf equals g′f ′ on ker(gf)⊥. For an explicit counterexample, let

f = f ′ =

(

1 1
0 1

)

, g =

(

1 0
0 0

)

, g′ =

(

1 0
0 1

)

.

Then f ≤ f ′ and g ≤ g′. But ker(gf)⊥ = {( x
−x ) | x ∈ C}⊥ = {( xx ) | x ∈ C}, and

gf ( xx ) = ( 2x0 ) 6= ( 2xx ) = g′f ′ ( xx ), so gf 6≤ g′f ′. �

3. The domain

Definition 3.1. A partial injection is a partial function that is injective, wherever
it is defined. More precisely, it(s graph) is a relation R ⊆ X × Y such that for each
x there is at most one y with (x, y) ∈ R, and for each y there is at most one x with
(y, x) ∈ R. Sets and partial injections form a category PInj under composition of
relations S ◦R = {(x, z) | ∃y : (x, y) ∈ R, (y, z) ∈ S}.
3.2. Notationally, a partial injection f : X → Y can be conveniently represented
as a span (X Foof1oo // f2 //Y ) of monics in Set. Here, f1 is (the inclusion of)
the domain of definition of f , and f2 is its (injective) action on that domain.
Composition in this representation is by pullback. We will also write Dom(f) =
f1(F ) for the domain of definition, and Im(f) = f2(F ) for the range of f .

If it wasn’t already, the span notation immediately makes it clear that PInj is
a dagger category: (X Foof1oo // f2 //Y )† = (Y Foof2oo // f1 //X ).

3.3. The category PInj has two dagger symmetric monoidal structures. The first
one, that we denote by ⊗, acts as the Cartesian product on objects. Because the
Cartesian product of injections is again injective, ⊗ is well-defined on morphisms
of PInj as well. The monoidal unit is a singleton set 1. Notice that ⊗ is not a
product, and hence not a coproduct either.

The second dagger symmetric monoidal structure onPInj, denoted by⊕, is given
by disjoint union on objects. It is easy to see that a disjoint union of injections is
again injective, making ⊕ well-defined on morphisms of PInj. The monoidal unit
is the empty set. Notice that ⊕ is not a coproduct, and hence not a product either.

Lemma 3.4. The category PInj:

(i) has (co)equalizers;
(ii) has a zero object;
(iii) does not have finite (co)products;

Proof. The equalizer of f, g : X → Y is the inclusion of
{

x ∈ X | x 6∈ (Dom(f) ∪Dom(g)) ∨
(

x ∈ (Dom(f) ∩Dom(g)) ∧ f(x) = g(x)
)}

into X . The empty set is a zero object in PInj.
Towards (iii), notice that if (X κX //X + Y YκYoo ) were a coproduct in PInj,

then one must have Dom(κX) = X , Dom(κY ) = Y and Im(κX) ∩ Im(κY ) = ∅,
because otherwise unique existence of mediating morphisms is violated. Hence
any coproduct must contain the disjoint union of X and Y . Let f : X → Z and
g : Y → Z be any morphisms. Then a mediating morphism m : X + Y → Z has to
satisfy m(x) = f(x) for x ∈ Dom(f) and m(y) = g(y) for y ∈ Dom(g). But such
an m is not unique, unless Dom(f) = X and Dom(g) = Y . In fact, it is not even a
partial injection unless Im(f) ∩ Im(g) = ∅. We conclude that PInj does not have
binary (co)products. �
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3.5. In fact, part (ii) of the previous lemma follows from the existence of directed
colimits, which we now work towards. Recall that a category has directed colimits
if and only if it has colimits of chains, i.e. colimits of well-ordered diagrams [5,
Corollary 1.7]. Observe that for a chain D : I → PInj, if ci : D(i) → X is a cocone
on D, then Dom(ci) ⊆ Dom(D(i ≤ j)) for all j ≥ i. To see this, notice that
ci = cj ◦D(i ≤ j) since ci is a cocone, and therefore

Dom(ci) = Dom(cj ◦D(i ≤ j)) ⊆ Dom(D(i ≤ j)).

This observation suggests that the colimit of a well-ordered diagram in PInj should
consist of all ‘infinite paths’. The following proposition shows that this is indeed a
colimit.

Proposition 3.6. The category PInj has directed colimits.

Proof. Let D : I → PInj be a chain. Define

X = {x ∈
∐

i

D(i) | ∀j≥i[x ∈ Dom(D(i ≤ j))]}/ ∼,

where the coproduct is taken in Set, and the equivalence relation ∼ is generated
by x ∼ D(i ≤ j)(x) for all i ≤ j in I and x ∈ Dom(D(i ≤ j)). For i ∈ I, define
ci : D(i) → X by

Dom(ci) = {x ∈ D(i) | ∀j≥i[x ∈ Dom(D(i ≤ j))]},
and ci(x) = [x].

First of all, let us show that the ci form a cocone. One has:

Dom(cj ◦D(i ≤ j))

= {x ∈ D(i) | x ∈ Dom(D(i ≤ j)) ∧D(i ≤ j)(x) ∈ Dom(cj)}
= {x ∈ D(i) | x ∈ Dom(D(i ≤ j)) ∧ ∀k≥j [D(i ≤ j)(x) ∈ Dom(D(j ≤ k))]}.

The well-orderedness of I implies that

∀k≥i[P (k)] ⇔ ∀k≥j [P (k)] ∧ P (j)
for any property P on the objects of I, whence

Dom(cj ◦D(i ≤ j)) = {x ∈ D(i) | ∀k≥i[x ∈ Dom(D(i ≤ k))]} = Dom(ci).

Moreover cj ◦ D(i ≤ j)(x) = [D(i ≤ j)(x)] = [x] = ci(x) for x ∈ Dom(ci), by
definition of the equivalence relation.

Next, we show that ci is universal. Let di : D(i) → Y be any cocone, and define
m : X → Y by

Dom(m) = {[x] | x ∈ Dom(di)}
and m([x]) = di(x) for x ∈ D(i); this is well-defined since di is a cocone. Then

dom(m ◦ ci) = {x ∈ D(i) | x ∈ Dom(ci) ∧mi(x) ∈ Dom(m)}
= {x ∈ D(i) | ∀j≥i[x ∈ Dom(D(i ≤ j))] ∧ x ∈ Dom(di)}
= Dom(di)

by 3.5, and m ◦ ci(x) = m([x]) = di(x) for x ∈ D(i). Thus m ◦ ci = di, so m is
indeed a mediating morphism.

Finally, if m′ : X → Y satisfies m ◦ ci = di, then it follows from the above
considerations that Dom(m′) = Dom(m) and m′(x) = m(x) for x ∈ Dom(m).
Hence m is the unique mediating morphism. �
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3.7. Recall that an object X in a category C is called finitely presentable when the
hom-functor C(X,−) : C → Set preserves directed colimits. Explicitly, this means
that for any directed poset D : I → C, any colimit cocone di : D(i) → Y and any
morphism f : X → Y , there are j ∈ I and a morphism g : X → D(j) such that
f = dj ◦ g. Moreover, this morphism g is essentially unique, in the sense that if
f = di ◦ g = di ◦ g′, then D(i→ i′) ◦ g = D(i→ i′) ◦ g′ for some i′ ∈ I.

D(i) //

di ##●
●●

●●
●●

●●
D(i′) //

di′

��

D(i′′) //

di′′

zz✈✈
✈✈
✈✈
✈✈
✈

· · · // D(j) //

dj

ss❣❣❣❣❣
❣❣❣❣

❣❣❣❣
❣❣❣❣

❣❣❣❣
❣❣❣❣

❣❣ · · ·

Y X
f

oo

g

OO✤
✤
✤

A category is called finitely accessible [5] when it has directed colimits and every
object is a directed colimit of finitely presentable objects.

Lemma 3.8. A set is finitely presentable in PInj if and only if it is finite.

Proof. The only thing, in the situation of 3.7 with X finite, is to notice that if a
partial injection g is to exist, we must have Dom(g) = Dom(f). The rest follows
from [5, 1.2.1]. �

Theorem 3.9. The category PInj is finitely accessible.

Proof. It suffices to prove that every set in PInj is a directed colimit of finite ones.
But that is easy: X is the colimit of the directed diagram consisting of its finite
subsets. �

Definition 3.10. An inverse category is a category C in which every morphism
f : X → Y allows a unique morphism f † : Y → X satisfying f = ff †f and f † =
f †ff †. Equivalently, it is a dagger category satisfying f = ff †f and pq = qp for
idempotents p, q : X → X . The proof of equivalence of these two statements is
the same as for inverse semigroups (see [23, Theorem 1.1.3] or [8, Theorem 2.20]).
Inverse categories are a special case of restriction categories [8].

The categoryPInj is an inverse category under its dagger (see 3.2). The following
categorification of the Wagner–Preston theorem [23, Theorem 1.5.1] shows that it
is in fact a representative one. See also [8, 3.4].

Proposition 3.11. [21] Any locally small inverse category C allows a faithful em-
bedding F : C → PInj that preserves daggers.

3.12. Like any inverse category, the homsets of PInj carry a natural partial or-
der: f ≤ g when f = gf †f . Concretely, f ≤ g means Dom(f) ⊆ Dom(g) and
f(x) = g(x) for x ∈ Dom(f). It is easy to see that this makes homsets into
directed-complete partially ordered sets, with Dom(

∨

i fi) =
⋃

iDom(fi) for a di-
rected family of morphisms fi : X → Y . In fact, as in Proposition 2.10, homsets are
algebraic domains: any partial injection is the supremum of compact ones below
it, which are those partial injections with finite domain. Moreover, composition
respects these operations. Thus PInj is enriched in algebraic domains. This is a
satisfying reflection of Theorem 3.9 on the level of homsets.
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4. The functor

Definition 4.1. There is a functor ℓ2 : PInj → Hilb, acting on a set X as

ℓ2(X) = {ϕ : X → C |
∑

x∈X

|ϕ(x)|2 <∞},

which is a well-defined Hilbert space under the inner product 〈ϕ |ψ〉 = ∑

x∈X ϕ(x)ψ(x).
The action on morphisms sends a partial injection (X Foof1oo // f2 //Y ) to the linear
function ℓ2f : ℓ2(X) → ℓ2(Y ) determined informally by ℓ2f = ( ) ◦ f †. Explicitly,

(ℓ2f)(ϕ)(y) =
∑

x∈f
−1

2
(y)

ϕ(f1(x)).

4.2. In verifying that ℓ2f is indeed a well-defined morphism of Hilb, it is essential
that f is a (partial) injection.

∑

y∈Y

∣

∣(ℓ2f)(ϕ)(y)
∣

∣

2
=

∑

y∈Y

∣

∣

∑

x∈f
−1

2
(y)

ϕ(f1(x))
∣

∣

2 ≤
∑

y∈Y

∑

x∈f
−1

2
(y)

|ϕ(f1(x))|2

=
∑

x∈F

|ϕ(f1(x))|2 ≤
∑

x∈X

|ϕ(x)|2 <∞.

That this breaks down for functions f in general, instead of (partial) injections,
was first noticed in [6], and further studied in [13]. That is, ℓ2 is well-defined on the
category of sets and partial injections; on the category of finite sets and functions;
but not on the category of sets and functions; nor on the category of finite sets and
relations. Functoriality of ℓ2 is easy to verify.

4.3. The following calculation shows that the ℓ2 functor preserves daggers. For a
partial injection (X Foof1oo // f2 //Y ), ϕ ∈ ℓ2(X) and ψ ∈ ℓ2(Y ):

〈(ℓ2f)(ϕ) |ψ〉ℓ2(Y ) =
∑

y∈Y

(ℓ2f)(ϕ)(y) · ψ(y) =
∑

y∈Y

∑

x∈f
−1

2
(y)

ϕ(f1(x)) · ψ(y)

=
∑

x∈F

ϕ(f1(x)) · ψ(f2(x)) =
∑

x∈X

∑

x′∈f
−1

1
(x)

ϕ(x) · ψ(f2(x′))

=
∑

x∈X

ϕ(x) · (
∑

x′∈f
−1

1
(x)

ψ(f2(x
′))) = 〈ϕ | ℓ2(f †)(ψ)〉ℓ2(X).

4.4. The functor ℓ2 preserves the tensor product ⊗, i.e. it is symmetric (strong)
monoidal. There is a canonical isomorphism C ∼= ℓ2(1). The required natural
morphisms ℓ2(X)⊗ℓ2(Y ) → ℓ2(X⊗Y ) are given by mapping (ϕ, ψ) to the function
(x, y) 7→ ϕ(x)ψ(y). That there are inverses is seen when one realizes that ℓ2(X⊗Y )
is the Cauchy-completion of the set of functions X × Y → C with finite support.
The required coherence diagrams follow easily.

4.5. Also, the ℓ2 functor is symmetric (strong) monoidal with respect to ⊕. There is
a canonical isomorphism between the 0-dimensional Hilbert space and the set ℓ2(∅)
consisting only of the empty function. The natural morphisms ℓ2(X) ⊕ ℓ2(Y ) →
ℓ2(X ⊕ Y ) map (ϕ, ψ) to the cotuple [ϕ, ψ] : X ⊕ Y → C. One sees that these
are isomorphisms by recalling that ℓ2(X ⊕ Y ) is the closure of the span of the
Kronecker functions δx and δy for x ∈ X and y ∈ Y , on which the inverse acts as
the appropriate coprojection. Coherence properties readily follow.
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4.6. From the description of the structure of homsets in PInj andHilb as algebraic
domains in 3.12 and 2.9, respectively, it is clear that the functor ℓ2 preserves this
enrichment: ℓ2(

∨

i fi) =
∨

i ℓ
2fi if fi : X → Y is a directed family of morphisms in

PInj. See also [18, Theorem 13].

4.7. The functor ℓ2 preserves (co)kernels and finite (co)products (because PInj

has very few of the latter). But it follows from Lemma 2.6(iii) and Proposition 3.6
that ℓ2 cannot preserve arbitrary (co)limits. For an explicit counterexample to
preservation of equalizers, take X = {0, 1}, Y = {a}, and let f, g : X → Y be the
partial injections f = {(0, a)} and g = {(1, a)}. Their equaliser in PInj is ∅. But

eq(ℓ2(f), ℓ2(g)) = {ϕ ∈ ℓ2(X) | ℓ2(f)(ϕ) = ℓ2(g)(ϕ)}

=
{

ϕ ∈ ℓ2(X) | ∀y∈Y .
∑

u∈f
−1

2
(y)

ϕ(f1(u)) =
∑

v∈g
−1

2
(y)

ϕ(g1(v))
}

= {ϕ : {0, 1} → C | ϕ(0) = ϕ(1)} ∼= C.

Hence eq(ℓ2(f), ℓ2(g)) ∼= C 6∼= {∅} = ℓ2(eq(f, g)).

Corollary 4.8. The functor ℓ2 : PInj → Hilb has no adjoints.

Proof. If ℓ2 had an adjoint, it would preserve (co)limits, contradicting 4.7. �

4.9. The functor ℓ2 is clearly faithful. It is also essentially surjective on objects:
every Hilbert space H has an orthonormal basis X , so H ∼= ℓ2(X). It cannot be
full because of 4.8, but it does reflect isomorphisms: if ℓ2f is invertible, so is f .

4.10. If X is a set, ℓ2(X) is not just a Hilbert space; it comes equipped with a
chosen orthonormal basis (given by the Kronecker functions δx ∈ ℓ2(X) for x ∈ X).
Hence we could think of ℓ2 as a functor to a category of Hilbert spaces H with a
priviledged orthonormal basis X ⊆ H . If we choose as morphisms (H,X) → (K,Y )
those continuous linear f : H → K satisfying f(X) ⊆ Y and ff †f = f , then the
functor ℓ2 in fact becomes (half of) an equivalence of categories [3, 4.3].

4.11. Lemma 4.8 showed that ℓ2(X) is not the free Hilbert space on X , at least
not in the categorically accepted meaning. It also makes precise the intuition
that ‘choosing bases is unnatural’: the functor ℓ2 : PInj → Hilb cannot have a
(functorial) converse, even though one can choose an orthonormal basis for every
Hilbert space.

It is perhaps also worth mentioning that ℓ2 is not a fibration in the technical sense
of the word, not even a nonsplit or noncloven one, as the reader might perhaps think;
Cartesian liftings in general do not exist because ‘choosing bases is unnatural’.

5. The image

5.1. The choice of morphisms in 4.10 is quite strong, and does not capture all
morphisms of interest to quantum physics. From that point of view, one would at
least like to relax to partial isometries : morphisms i of Hilbert spaces that satisfy
ii†i = i. Equivalently, the restriction of i to the orthogonal complement of its
kernel is an isometry. The following proposition proves that, up to isomorphisms,
the direct image of the functor ℓ2 consists precisely of partial isometries.

Definition 5.2. For a category C, denote by C∼= the category with the same
objects as C whose morphisms are the bimorphisms of C.
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The category Hilb∼= carries two dagger symmetric monoidal structures: ⊕ and
⊗. Because having (co)limits only depends on a skeleton of the specifying dia-
gram, Hilb∼= does not have (co)equalizers, nor (finite) (co)products, but does have
directed (co)limits.

Proposition 5.3. A morphism in Hilb is a partial isometry if and only if it is of
the form v ◦ ℓ2f ◦ u for morphisms f in PInj and unitaries u, v in Hilb∼=.

Proof. Clearly a map of the form v◦ℓ2f◦u is a partial isometry. Conversely, suppose
that i : H → K is a partial isometry. Choose an orthonormal basis X ⊆ H for its
initial space ker(i)⊥, and choose an orthonormal basis X ′ ⊆ H for ker(i), giving a
unitary u : H → ℓ2(X ⊕X ′). Let Y = i(X) ⊆ K. Then Y will be an orthonormal
basis for the final space ker(i†)⊥ because i acts isometrically on X . Choose an
orthonormal basis Y ′ ⊆ K for ker(i†), giving a unitary v : ℓ2(Y ⊕ Y ′) → K. Now,
if we define f = (X ⊕X ′ Xoooo // i //Y ⊕ Y ′ ), then i = v ◦ ℓ2f ◦ u. �

5.4. However, partial isometries are not closed under composition. To see this,
consider the partial isometries ( 10 ) : C → C2 and ( sin(θ) cos(θ) ) : C2 → C for a
fixed real number θ. Their composition is ( sin(θ) ) : C → C, which is not a partial
isometry unless θ is a multiple of π/2. There are other compositions that do make
partial isometries into a category [19], but these are not of interest here. Instead,
we shall extend the previous proposition to highlight one of the most remarkable
features of the functor ℓ2.

5.5. The example in 5.4 shows that any linear function C → C between -1 and
1 is a composition of partial isometries. Note that the projections πi : C

m → C

and coprojections π†
i : C → Cn are partial isometries, as are the weighted diag-

onal ∆/
√
n : C → Cn given by ∆(x) = (x, . . . , x) and the weighted codiagonal

∆†/
√
m : Cm → C given by ∆†(x1, . . . , xm) =

∑

i xi. Moreover, it is easy to see
that if f and g are (compositions of) partial isometries, then so is f ⊕ g. Finally,
any linear map f : Cm → Cn has a matrix expansion, and can hence be written in

terms of biproduct structure as f = ∆† ◦ (⊕m

i=1

⊕n

j=1 π
†
j ◦πj ◦f ◦π†

i ◦πi)◦∆. Thus

any f : Cm → Cn with ‖f‖ ≤ 1/
√
mn is a composition of partial isometries.

5.6. The essential image of a functor F : C → D is the smallest subcategory of D
that contains all morphisms F (f) for f in C, and that is closed under composition
with bimorphisms of D.

It follows from 5.5 that the essential image of the functor ℓ2 contains at least all
morphisms of Hilb of finite rank. For infinite rank that strategy fails because ∆ is
then no longer a valid morphism (see 2.7). Nevertheless, Theorem 5.11 below will
prove that the essential image of ℓ2 is all of Hilb. In preparation we accommodate
an intermezzo on polar decomposition.

A morphism p : H → H in Hilb is nonnegative when 〈px |x〉 ≥ 0 for all x ∈ H ,
and positive when 〈px |x〉 > 0. Nonnegative maps are precisely those of the form
p = f †f for some morphism f .

Proposition 5.7. For every morphism f : H → K between Hilbert spaces, there ex-
ist a unique nonnegative map p : H → H and partial isometry i : H → K satisfying
f = ip and ker(p) = ker(i).

Proof. See [14, problem 134]. �



10 CHRIS HEUNEN

5.8. The previous proposition stated the usual formulation of polar decomposition,
but the unicity condition ker(p) = ker(i) is something of a red herring. It should be
understood as saying that both i and p are uniquely determined on the orthogonal
complement of ker(f) = ker(p) = ker(i). On each point of ker(f), one of i and
p must be zero, but the other’s behaviour has no restrictions apart from being a
partial isometry or positive map, respectively. Dropping the unicity condition, we
may take p to be a positive map, by altering i to be zero on ker(f), and p to be
nonzero on ker(f). More precisely, define p′ = p on ker(f)⊥ and p′ = id on ker(f);
since ker(f) is a closed subspace, H ∼= ker(f)⊕ker(f)⊥, and this gives a well-defined
positive operator p′ : H → H . Similarly, setting i′ = i on ker(f)⊥ and i′ = 0 on
ker(f) gives a well-defined partial isometry i′ : H → K, satisfying f = i′p′.

In the following we have to consider bimorphisms rather than isomorphism be-
cause of the issues in 2.8. In the finite-dimensional case, bimorphisms are isomor-
phisms.

Lemma 5.9. Positive operators on Hilbert spaces are bimorphisms.

Proof. Let p : H → H be a positive operator in Hilb. If p(x) = 0 then certainly
〈p(x) |x〉 = 0 which contradicts positivity. Hence ker(p) = 0, and so p is monic.

To see that p is epic, suppose that p◦f = p◦g for parallel morphisms f, g. Then
〈p ◦ (f − g)(x) |x〉 = 0 for all x. By positivity, For each x there is px > 0 such that
p ◦ (f − g)x = px · (f − g)(x). Hence 〈(f − g)(x) |x〉 = 0 for all x, that is, f = g
and p is epic. �

Definition 5.10. A functor F : C → D is essentially full when for each morphism
g in D there exist f in C and u, v in C∼= such that g = v ◦ Ff ◦ u.

It follows that the essential image of such a functor is all of D.

Theorem 5.11. The functor ℓ2 : PInj → Hilb is essentially full.

Proof. Let g be a morphism in Hilb. By Proposition 5.7 and 5.8, we can write
g = pi for a positive morphism p and a partial isometry i. Use Proposition 5.3 to
decompose i = v′ ◦ ℓ2f ◦ u for f in PInj and unitaries v′, u. Finally, Lemma 5.9
shows that v = p ◦ v′ in Hilb∼= satisfies g = v ◦ ℓ2f ◦ u. �

5.12. Writing 2 for the ordinal 2 = (0 ≤ 1) regarded as a category, the category
C2 is the arrow category of C: its objects are morphisms of C, and its morphisms
are pairs of morphisms of C making the square commute. A functor F : C → D

is essentially full when F 2 : C2 → D2 is essentially surjective on objects. From
this point of view Definition 5.10 is quite natural. Nonetheless we might consider
weakening it to take u = id or v = id. But this would break the previous theorem.
For example, if g : ℓ2(X) → ℓ2(Y ) is a morphism in Hilb, there need not be f : X →
Y in PInj and v in Hilb∼= with g = v ◦ ℓ2f . For a counterexample, take X = Y =
{a, b}, and g(a) = g(b) = a; if g = v ◦ ℓ2f , then (v ◦ ℓ2f)(a) = (v ◦ ℓ2f)(b),
so (ℓ2f)(a) = (ℓ2f)(b), so f(a) = f(b), whence f cannot be a partial injection.
Similarly, because of the dagger, if g : ℓ2(X) → ℓ2(Z) is a morphism in Hilb, there
need not be f : Y → Z in PInj and u in Hilb∼= with g = ℓ2f ◦ u.

6. The future

6.1. Theorem 5.11 naturally raises a coherence question: is there any regularity
to the bimorphisms u and v that enable us to write an arbitrary morphism of
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Hilb in the form v ◦ ℓ2f ◦ u? How do they behave under composition? Curiously
enough, essentially full functors do not seem to have been studied in the categorical
literature at all. The results in this article suggest such a study.

It would be very interesting to reconstruct Hilb (up to equivalence) from Hilb∼=

and PInj via the ℓ2 functor. The objects are easily recovered, because they are
the same as those of Hilb∼=. Theorem 5.11 also lets us recover the homsets and
identities, as soon as we can identify when two morphisms in Hilb of the form
v ◦ ℓ2f ◦ u are equal. The main problem is how to recover composition, which
requires a way to turn ℓ2g ◦ v ◦ ℓ2f into w ◦ ℓ2h ◦ u. (Note that turning ℓ2g ◦ v
into w ◦ ℓ2h would be sufficient, because we could then use functoriality of ℓ2 and
composition in PInj. But 5.12 obstructs this; the bimorphism v in the middle is
crucial.) This will likely lead into bicategorical territory.

6.2. The ℓ2–construction has a continuous counterpart, that turns a measure space
(X,µ) into a Hilbert space L2(X,µ) of square integrable complex functions on X .
The L2–construction is quite fundamental and well-studied, but surprisingly enough
functorial aspects seem not to have been considered before. One possibility is to
mimic Definition 4.1, and endow the category of measure spaces with essential
injections (X,µ) → (Y, ν) as morphisms, i.e. subsets R ⊆ X × Y such that ν({y |
xRy}) = 0 for all x ∈ X and µ({x | xRy}) = 0 for all y ∈ Y .

The importance of L2–spaces lies in the following formulation of the spectral
theorem: every normal operator f : H → H is of the form f = u−1 ◦ g ◦ u for a
unitary u : H → L2(X,µ) and an operator g induced by multiplication with a mea-
surable function X → C. This perspective warrants choosing complex measurable
functions as (endo)morphisms on measure spaces, with multiplication for compo-
sition. With 5.8 in mind, we could even restrict to a groupoid of positive maps.
A solution to 6.1 could then be regarded as reconstructing quantum mechanics (as
embodied by Hilb) from its continuous, quantitative aspects (encoded by the L2

functor), and its discrete, qualitative aspects (encoded by the ℓ2 functor).
At any rate, the continuous cousin L2 of ℓ2 poses an interesting research topic.

6.3. Letting L be the class of positive morphisms, and R the class of partial isome-
tries in Hilb:

(1) every morphism f can be factored as f = rl with l ∈ L and r ∈ R;
(2) every commutative square as below with l ∈ L and r ∈ R allows a unique

diagonal fill-in d making both triangles commute.

· //

l

��

·
r

��· //

d

@@✁
✁

✁
✁ ·

The second property would follows from Lemma 5.9 for isomorphisms l. The estab-
lished notion of orthogonal factorization system additionally demands that (3) both
L and R are closed under composition, and (4) all isomorphisms are in both L and
R. But (3) is not satisfied by 5.4, and the map −1: H → H is a counterexample
to (4).

Write 3 for the ordinal 3 = (0 ≤ 1 ≤ 2), regarded as a category. Then objects of
C3 are composable pairs of morphisms. Recall that a functorial factorization is a
functor F : C2 → C3 that splits the composition functor. Lemma 5.9 ensures that
polar decomposition at least provides a functorial factorization system. It is usual
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to require extra conditions on top of a functorial factorization, such as in a natural
weak factorization system. For details we refer to [11]. It leads too far afield here,
but polar decomposition does not satisfy the axioms of a natural weak factorization
system.

In short, polar decomposition unquestionably provides a notion of factorization.
But it does not fit existing categorical notions, despite the fact that factorization
has been a topic of quite intense study in category theory [10, 7, 11, 22, 26]. This
is an interesting topic for further investigation.
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