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Abstract. We propose an adaptive heuristic for model restarts that aligns sym-
metry breaking with the dynamic branching heuristic. Experiments show that this
method performs very well compared to other symmetry breaking methods.

1 Introduction

Symmetry is an important but often problematic feature of constraint satisfaction prob-
lems. One way to deal with symmetry is to add constraints to eliminate symmetric
solutions [1–7]. Posting static symmetry breaking constraints has both good and bad
features. On the positive side, static constraints are easy to post, and a few simple con-
straints can eliminate most symmetry in a problem. On the negative side, static symme-
try breaking constraints pick out particular solutions in each symmetry class, and this
may conflict with the branching heuristic. An alternative is a dynamic approach that
modifies the search method to ignore symmetric states [8–11]. Whilst this reduces the
conflict with the branching heuristic, we may get less propagation. In particular there is
no pruning of symmetric values deeper in the search tree. An effective method to tackle
this tension is model restarts [12]. This restarts search frequently with new and differ-
ent symmetry breaking constraints. The hope is that we will find symmetry breaking
constraints that do not clash with the branching heuristic. The original model restarts
method proposed a random choice of symmetry breaking constraints. We show here that
we can improve performance with an adaptive heuristic that aligns symmetry breaking
with the dynamic branching heuristic.

2 An Adaptive Model Restarts Heuristic

Our adaptive heuristic collects information about branching decisions in earlier restarts
in order to build a heuristic friendly ordering of variables within the static symmetry
breaking constraints. This ordering is based on variable scores. We describe three dif-
ferent techniques to obtain these scores. The first two reuse statistics collected by the
branching heuristics. If we use the domain over weighted degree variable heuristic, then
we can use the DOWD ratio to compute variable scores. Score(Xk) = D(Xk)/(w ×
deg(Xk)) [13], where D(Xk) is the domain size, deg(Xk) is the number of constraints
involving the variable, and w the sum of the counters associated with these constraints.
We order variables in increasing order of their scores. We call this the DOWD-based
heuristic. Similarly, we can use statistics associated with impact based branching heuris-
tics to build variable scores [14]. Score(Xk) =

∑
v∈D(x)(1 − impact(x, v)) where
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impact(x, v) is the impact of a branching decision measured by the reduction of the
search space induced when the decision was posted. We now order variables in decreas-
ing order of their scores. We call this the IMPACT-based heuristic. Our third approach is
based on the branching levels of variables. This offers some robustness to the choice of
branching heuristic. For example, it could be used with some other branching heuristic
than DOWD or IMPACT. If a variable is instantiated at level i then it gets a Borda type
score of n− i, where n is the number of variables, and 0 otherwise. We order variables
in decreasing order of the average Borda score over the last restart. We call this the
ADAPT heuristic.

We use these three scoring heuristics within model restarts [12]. Model restarts was
proposed to use a random variable ordering within symmetry breaking constraints in
each restart. Frequent restarting ensures we eventually select a good representative sym-
metric solution that is aligned with the dynamic branching heuristic. Instead of using
randomization, our adaptive heuristics build a variable ordering for symmetry break-
ing in each restart that is aligned with the branching heuristic. This variable ordering
is a permutation of the original variables, and hence itself can be seen as a variable
symmetry. As noted in [15], applying a symmetry to a (sound/complete) set of sym-
metry breaking constraints generates a new (sound/complete) set of symmetry breaking
constraints. Thus, we can safely use this permutation to reorder the variables in the
symmetry breaking constraints.

3 Experimental Results

We carried out experiments with 3 sets of commonly used benchmarks. We used Choco
2.1.2 on an Intel Core 8 CPU, 2.7 Ghz, 4Gb RAM with 1000 sec timeout. We branch
with DOWD or IMPACT heuristics [13, 14].1

The first set of benchmarks, DIMACS graph colouring problems was used in earlier
studies of symmetry breaking for interchangeable values [4, 16]. Such problems are par-
ticulary suitable to a dynamic symmetry breaking labeling rule that avoids symmetric
solutions (DYN) [10]. We compared four symmetry breaking methods, including DYN,
the static symmetry breaking precedence constraint (PREC) [4, 16], model restarts and
one modification of model restarts. We use the suffix ADAPT, DOWD and IMPACT to
denote that variables are reordered in the symmetry breaking PRECEDENCE constraint
based on the corresponding scores.

Model restarts constructs a random permutation of variables in the scope of the sym-
metry breaking PRECEDENCE constraint (MR). Our adapted method works in the fol-
lowing way. The search starts on the model without symmetry breaking constraints.
Until the first restart, we collect statistic about the search tree. If we use the ADAPT

heuristic, we store the information about variables that the solver branched on as de-
scribed in Section 2. If we use DOWD or IMPACT heuristics then the solver accumulates
statistics in weights and impact factors. On the first restart, we order variables based on
their scores obtained from the heuristic. The scores are described in Section 2. Then
we post the PRECEDENCE constraint and align variables in the scope of the constraint

1 We would like to thank Charles Prud’homme for his help in implementing the model restarts
technique.
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with the obtained variable ordering. Statistics for the ADAPT heuristic are reset to zero
after first and later restarts. Statistics for DOWD and IMPACT heuristics have built-in
mechanisms to gradually forget pervious decisions. Between the first and the second
restarts we again collect search statistics. On the second and later restarts, we remove
the PRECEDENCE constraint that we posted on the previous restart from the model and
post a new PRECEDENCE constraint where the variables in its scope are aligned with
the ordering obtained from the heuristic. We continue this procedure until we find a so-
lution or timeout. Note that our adaptive approach can be applied to all problems where
model restarts can be applied as we replace a random ordering of variables with one
derived from heuristics.

MR + DOWD and MR + IMPACT use the DOWD and IMPACT heuristics, whilst
MR + ADAPT uses our adaptive version of model restarts.

We also consider limiting the cost of symmetry breaking. In MRsh, MRsh + ADAPT,
MRsh + DOWD and MRsh + IMPACT, we shorten the PRECEDENCE constraint to the
first 2m variables, where m is the number of values. The intuition behind this idea is
based on an empirical observation that an instantiation of a relatively small number
of variables in the scope of the PRECEDENCE constraint entails the constraint in most
benchmarks. The value 2m was chosen based on statistical analysis of the benchmarks.
We use a geometric restart policy with the base of 100 backtracks and a growth coeffi-
cient of 1.1. This ensure that restarts are rapid as in [12]. Tables 1–2 give average times
and the number of backtracks for the DOWD and IMPACT branching heuristics over
10 runs. In addition, Table 1 shows the number of runs where a problem was solved.
We also computed geometric means for these instances to reduce impact of outliers.
However, as this gives the same picture of results and we have limited space, we do
not include these results here. We removed instances solved by all methods in under 3
seconds and separated results for satisfiable and unsatisfiable.

Effect of the adaptive heuristic. By comparing PREC, MR and MRsh with their
adaptive counterparts, we see that our adaptive heuristic ADAPT dramatically improves
performance on the majority of instances. For example, the adaptive heuristic helps
solve 9 additional benchmarks if we compare MR and MR + ADAPT. The adaptive
heuristic is especially useful on unsatisfiable instances. Note that many of these addi-
tionally solved benchmarks are easy once we remove conflict between the branching
heuristic and static symmetry breaking. We observed that DOWD-based adaptive order-
ing also performs well. Unfortunately, the IMPACT ordering does not perform well on
these benchmarks.

Effect of shortening. By comparing MR + ADAPT and MRsh + ADAPT, as well as
other models with their shortened counterparts, we see that shortening achieves much
better performance. However, it slightly increases the number of backtracks in some
cases. Shortening does not increase significantly the number of solved instances, or
change substantially the search tree. However, it improves the efficiency of search.
Overall, MRsh + ADAPT gives the best performance over all benchmarks among all
symmetry breaking methods using the DOWD and IMPACT branching heuristic.

Our second and third case studies consider classes of problems on which model
restarts has been shown to outperform other static and dynamic symmetry breaking
methods [12]. We ran experiments with the “signature” based static symmetry breaking
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constraints proposed for variable and value interchangeability in [11] and denoted here
as GCC-based. We decomposed the GCC constraint into AMONG constraints so we
can have access to the cardinality variables. Following [12] we only order partitions
within the symmetry breaking constraints. We compute a score for all variables in each
partition with respect to the used heuristic and sort the partitions according to these
scores. Again, the main advantage of our approach is that instead of random ordering
of partitions in model restarts we align them with branching heuristics.

We generated 20 problems of each size and averaged statistics over these problems.
We report time to find an optimum solution and prove optimality. Note that all results are
shown on instances that are solved by all techniques for at least 10 generated problems.

As in [4, 12], we tested on graph colouring and Concert Hall scheduling problems.
In [12], the model restarts technique was shown to outperform other symmetry break-
ing methods on these benchmarks. Hence, we only compare our adaptive strategy with
the simple static symmetry breaking constraints and the highly effective model restarts
technique (GCC-based +MR). As previously, we biased the ordering of variables in the
simple static symmetry breaking constraint to put large partitions first. Figure 1 (left
part) shows the results for uniform and biased graph colouring problems with q = 0.5
using IMPACT branching heuristic. The results confirm that model restarts is better than
static symmetry breaking. Our adaptive ordering of partitions significantly improves
performance of model restarts. In particular, the ADAPT heuristic is more robust com-
pared to the IMPACT heuristic.

For the Concert Hall Problem, we generated problems as in [4]. As it is important to
put large partitions first, we assumed that any partition with size greater than 4 is a large
partition (the maximum partition size is 8 in this setup). The number of halls is 12 or 14.
Figure 1 (right part) shows the results for 14 halls. As can be seen from the graphs, using
an adaptive heuristic to order partitions improves model restarts significantly using both
DOWD or IMPACT branching heuristics. Moreover, ADAPT shows the best performance
across all instances.

4 Other Related Work

Crawford et al. proposed a general method to break symmetry statically using lex-leader
constraints [17]. Most static symmetry breaking constraints (including the PRECE-
DENCE constraints used here) can be derived from such constraints. Efficient algorithms
have been developed to propagate many static symmetry breaking constraints (e.g. [21–
24]). Lex-leader constraints pick out the lexicographically smallest solution in each
symmetry class. However, this may conflict with the branching heuristic. A number
of dynamic methods have been proposed to deal with this conflict. For example, SBDS
posts lex-leader constraints dynamically during search [8]. Another dynamic method for
breaking symmetry is SBDD [9]. This checks if a node of the search tree is symmetric
to some previously explored node. GAPLex is a hybrid method that combines together
static and dynamic symmetry breaking [25]. However, it is limited to dynamically post-
ing lex-leader constraints, and to searching with a fixed variable ordering (which can be
a considerable burden). Dynamic Lex is another hybrid method that dynamically posts
static symmetry breaking constraints during search which works with dynamic variable
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Fig. 1. Mean times for uniform (top left) and biased (bottom left) graph colouring benchmarks
with q=0.5 using IMPACT based branching. Mean times for Concert Hall Problem benchmarks
with 14 halls using DOWD (top right) and IMPACT based branching (bottom right).

ordering heuristics [26]. This method adds lex-leader constraints during search that are
compatible with the current partial assignment. Hence the first solution found is not
removed by symmetry breaking. However, unlike here, the method assumes that values
are tried in a fixed order.

5 Conclusions

Static symmetry breaking constraints are often an easy and effective way to deal with
symmetry in a constraint or optimisation problem. However, there can be a conflict
between static symmetry breaking constraints and branching heuristics. To reduce this
conflict, we propose a simple adaptive heuristic for model restarts. This orders variables
within symmetry breaking constraints to align with the dynamic branching heuristic.
Experimental results suggest that it is a very promising alternative between purely static
and purely dynamic symmetry breaking methods. In particular, the results show that the
proposed ADAPT heuristic works well across all benchmarks and two state-of-the-art
branching heuristics. Our adaptive method thus appears to be more robust compared to
the original model restarts algorithm.
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