An Adaptive Model Restarts Heuristic

Nina Narodytska and Toby Walsh

NICTA and UNSW, Sydney, Australia {Nina.Narodytska, Toby.Walsh}@nicta.com.au

Abstract. We propose an adaptive heuristic for model restarts that aligns symmetry breaking with the dynamic branching heuristic. Experiments show that this method performs very well compared to other symmetry breaking methods.

1 Introduction

Symmetry is an important but often problematic feature of constraint satisfaction problems. One way to deal with symmetry is to add constraints to eliminate symmetric solutions [1–7]. Posting static symmetry breaking constraints has both good and bad features. On the positive side, static constraints are easy to post, and a few simple constraints can eliminate most symmetry in a problem. On the negative side, static symmetry breaking constraints pick out particular solutions in each symmetry class, and this may conflict with the branching heuristic. An alternative is a dynamic approach that modifies the search method to ignore symmetric states [8–11]. Whilst this reduces the conflict with the branching heuristic, we may get less propagation. In particular there is no pruning of symmetric values deeper in the search tree. An effective method to tackle this tension is model restarts [12]. This restarts search frequently with new and different symmetry breaking constraints. The hope is that we will find symmetry breaking constraints that do not clash with the branching heuristic. The original model restarts method proposed a random choice of symmetry breaking constraints. We show here that we can improve performance with an adaptive heuristic that aligns symmetry breaking with the dynamic branching heuristic.

2 An Adaptive Model Restarts Heuristic

Our adaptive heuristic collects information about branching decisions in earlier restarts in order to build a heuristic friendly ordering of variables within the static symmetry breaking constraints. This ordering is based on variable scores. We describe three different techniques to obtain these scores. The first two reuse statistics collected by the branching heuristics. If we use the domain over weighted degree variable heuristic, then we can use the DOWD ratio to compute variable scores. $Score(X_k) = D(X_k)/(w \times deg(X_k))$ [13], where $D(X_k)$ is the domain size, $deg(X_k)$ is the number of constraints involving the variable, and w the sum of the counters associated with these constraints. We order variables in increasing order of their scores. We call this the DOWD-based heuristic. Similarly, we can use statistics associated with impact based branching heuristics to build variable scores [14]. $Score(X_k) = \sum_{v \in D(x)} (1 - impact(x, v))$ where

C. Gomes and M. Sellmann (Eds.): CPAIOR 2013, LNCS 7874, pp. 369-377, 2013.

[©] Springer-Verlag Berlin Heidelberg 2013

impact(x,v) is the impact of a branching decision measured by the reduction of the search space induced when the decision was posted. We now order variables in decreasing order of their scores. We call this the IMPACT-based heuristic. Our third approach is based on the branching levels of variables. This offers some robustness to the choice of branching heuristic. For example, it could be used with some other branching heuristic than DOWD or IMPACT. If a variable is instantiated at level i then it gets a Borda type score of n-i, where n is the number of variables, and 0 otherwise. We order variables in decreasing order of the average Borda score over the last restart. We call this the ADAPT heuristic.

We use these three scoring heuristics within model restarts [12]. Model restarts was proposed to use a random variable ordering within symmetry breaking constraints in each restart. Frequent restarting ensures we eventually select a good representative symmetric solution that is aligned with the dynamic branching heuristic. Instead of using randomization, our adaptive heuristics build a variable ordering for symmetry breaking in each restart that is aligned with the branching heuristic. This variable ordering is a permutation of the original variables, and hence itself can be seen as a variable symmetry. As noted in [15], applying a symmetry to a (sound/complete) set of symmetry breaking constraints generates a new (sound/complete) set of symmetry breaking constraints. Thus, we can safely use this permutation to reorder the variables in the symmetry breaking constraints.

3 Experimental Results

We carried out experiments with 3 sets of commonly used benchmarks. We used Choco 2.1.2 on an Intel Core 8 CPU, 2.7 Ghz, 4Gb RAM with 1000 sec timeout. We branch with DOWD or IMPACT heuristics [13, 14].¹

The first set of benchmarks, DIMACS graph colouring problems was used in earlier studies of symmetry breaking for interchangeable values [4, 16]. Such problems are particulary suitable to a dynamic symmetry breaking labeling rule that avoids symmetric solutions (DYN) [10]. We compared four symmetry breaking methods, including DYN, the static symmetry breaking precedence constraint (PREC) [4, 16], model restarts and one modification of model restarts. We use the suffix ADAPT, DOWD and IMPACT to denote that variables are reordered in the symmetry breaking PRECEDENCE constraint based on the corresponding scores.

Model restarts constructs a random permutation of variables in the scope of the symmetry breaking PRECEDENCE constraint (MR). Our adapted method works in the following way. The search starts on the model without symmetry breaking constraints. Until the first restart, we collect statistic about the search tree. If we use the ADAPT heuristic, we store the information about variables that the solver branched on as described in Section 2. If we use DOWD or IMPACT heuristics then the solver accumulates statistics in weights and impact factors. On the first restart, we order variables based on their scores obtained from the heuristic. The scores are described in Section 2. Then we post the PRECEDENCE constraint and align variables in the scope of the constraint

¹ We would like to thank Charles Prud'homme for his help in implementing the model restarts technique.

Table 1. Graph coloring. The average time(sec) over ten runs with a random seed to initialize the branching heuristic. s is the number of runs that finished within the timeout. #vals is the number of values in a problem.

				- 1	nain o	Domain over weighted degree branching	eighte	d degr	ee bra	nching					ŀ			III	pact ba	sed bra	Impact based branching				
problem	#val	DYN	PREC	F.)		MR	+				MR_{sh} +			DYN	z	PREC			MR+				MRsh +	+	
						Dowd		ADAPT	ь		DOWD		ADAPT	_					IMPACT	r Adapt	APT		IMPACT		ADAPT
		s time	s time	s s	time	s ti	time	time ;	e s	time	s ti	time	time:	s	time	time	s	time	s time	s	time s	time	s time	s	time
SAT (Satisfiable instances)	ible inst	nces)																							
8 Sussens	6	10 18 22	10 43	01 68	16 59	10	6.80	0 54	7 10	8 25	10	5 65 11	3.50	110 3	70 11	3 56	C 01 9	0 01 0	105 28	5 018°	5 72 10	5 94	08 22 6	0108	4 26
DSJC125.1	2	10 0.22	2	1.92	1.27	2	0.84	0 0.96	9	0.58	2	0.40	0 0.42	10	0.80	3.86	10	4.	0 94.40	010	01.09	0.82	10 6.87	7 10	0.82
school 1	14	10 1.41	10 4.53	- 53	,	10 9	9.34	0 8.7	- 9		10	.75	0 1.79	10 C	1.26	7.30	6	0.14	0.14	9	0.41	0.19	9 0.16	2	0.30
school1	15	10 0.85	10 3.33	Т	156.20	2		60.9	- 6	,	102	1.46	10 1.54	9	0.26	9.41	6	0.19	0.18	9	0.48	0.22	9 0.22	9	0.38
DSJC125.5	19	10 13.30		-	,	,	,		7	99.79	6 37.	2.39 6	6 128.78	_	128.41	1	6 5	550.26	'	7 38	380.847	285.50	1 353.	353.33 9 264.5	64.50
DSJC125.5	20	10 0.25	10 205.94	9410	59.58 10	10 58	58.85	9 65.31	31 10	1.49	10	0.84	98.0 0	∞	0.44	10 269.3410		9.73	9 67.45	2	3.56 10	3.24		10 38.65 10 1.89	1.89
DSJC250.5	35	9 65.09	1	-	,		,		6	9 132.61		10.12	9 20.60	7	48.81	1	_	0.22	0.24	_	0.28 8	8 197.88	3 415.3510 295.4	3510 2	95.45
DSJC250.5	36	10 0.62		S	0.20	9	2.26	4.69	01 6	0.66	10	0.92	09.0 0	2	3.20	499.66	9	0.19	0.18	∞	3.26 10	69.9	Į	0 32.15 10 1.87	1.87
DSJC250.5	37	10 0.29	10 18.65	62 9	0.20	9	0.53	0 0.40	90	0.25	2	0.29	0 0.29	9	0.28	172.8	172.8910	1.65	0.18	8 10 2	2.25 10	0.24	10 0.24	9	0.26
dneenb	10	10 194.1410	110 23.13	13 9		103.8610 46.18	5.18	10 31.30	30 10	148.9210		88.69	0 11.60	0 9 22.77		10 65.37	2	66.40	8 205.80	2	8.88	49.78	00	126.2210 20.39	20.39
le450 15b	15	10 93.00	2	5	213.6210	20 2	21.52 10	10 15.97	10	8.73	9	2.24	0 3.86	9	132.62	1	9	60.84	10 175.59	9	60.84 10	0 153.8910		78 10 4	40.84
school1 nsh	4	10 0.32	9 777.52	- 52	,	10	1.76	10 3.5	-		10	0.87	0 1.07	9	0.32	1	m	0.12	3 0.13	9	1.40	0.14	3	2	0.71
school1 nsh	15	10 0.21	2	39 10	0.16	2		0 0.18	8	0.16	2	0.18	0.20	2	0.73	261.06	ст.	0.16	3 0.16	2	35 3	0.16	с.	2	0.57
schooll ush	19	10 0.22	_	2610	0.17	2	_		2	0.18	2	21	0 0.19	6	1.10	,	4	0.15	5.01	2	2 07 4	0.15	v	2	0.76
gueen10 10	=		2	35		<u> </u>			-	979.08		<u> </u>	5 516.73	2	496.603	500.89	. ,	,		,		517.91	, -	-	836.35
queen10 10	12	10 8 8 1	10 1 29	10	1.26	۶	_=	0.86	9	0 34	2	0.36	0 40	<u>۽ ۽</u>			2	27	1 07	9	90	0.53	2	9	0.47
	FOTAL S			+		4	T		4			T		_	_		4	T		Ш				L	
solved problems/total	ms/total	15/16	13 /16		11/16	14/16	16	13 /16		13 /16	15/16		16/16	16/16		11/16		15/16	14/16		15/16	16/16	16/16		16/16
TINGAT (Thotischold instance)	otiofoble	inctonoa	۔الـ				1		1			1						1							
IIO) INGNIO	ausiiani	IIIstalice	,																						
myciel5 R50 5gh	5	10 0.95	10 2.98	8 10 2 10	23.96 10 8 80 10		14.93	0 11.27	27 10 8 10	13.66 10	10	6.84 10	0 6.53	10	1.52 10	2.39	1 01	15.89 1	5.89 10 16.45	0I	2 90 10	9.30	10 12.55	9 9	6.73
green8 8	· oc	10 5.16	2	1	713.59	2	9.651	0 201.	109	143.13	10 20	2.8616	10 202.8610 140.87	2	18.25 10		· •	1 ~	352.8	2	4.682	729.62	0	2910 1	53.14
mulsol i 1	47		,			-	11 48 3	3 41 62	- 25		200	24 42	10 56 00	v	75 09	'	,	,	'	~	0.00	'		~	0.38
mulsol.i.1	. 84			-	,	1 3	3.65		, !	,	1 -	98.82	0 48.21	'n	108.72	'	,	,			0.59			m	0.50
school1	13	10 1.11	10 2.75	- 5	,	10		10 7.27	_		10	0.91	0 1.85	9	0.15 10	2.58	1	,		9	- 29.0	,		9	0.35
fpsol2.i.2	59	10 1.14		-		10 7	7.13				10		08.08	∞	1.32			,		5	9.83	•		9	86.68
myciel6g	9	10 0.70	2	1.36 10	41.13	10 29	29.35	10 9.22	2 10	30.73	10 6	6.83	0 6.49	19	7.51	0.701	10	3.49	0 52.2	010	19.82 10	36.22	10 27.8	88 10 1	14.86
DSJC125.5	12	10 4.90		-	,		,	7 67.18	- 8		10 90	90.04	0 65.71	ϵ	477.69		,	,		1 22	- 07.225	٠		3 4	480.15
DSJC250.5	4	10 131.62	-	-	,	,	,			,	3 82	820.791	749.73	1	1	1	,	,	'	,	,	,	'	,	,
le450 15b	13	10 150.46		-	,	10 0	.52	0.63	3		10	22.	0 0.22	6	70.15	1	,	,		10	- 6.65	•	1	2	1.40
school1 nsh	12	10 0.14	10 3.64	4	,	10	1.80	0 0.85	7	815.9010		0.67	0 0.50	9	0.11	2.12	,	,		9	0.69	563.31		2	0.35
school1 nsh	13	10 0.14	10 133.1	.17	٠	10	1.41	0 0.92	- 2	•	10 0	0.63	0 0.53	10	0.18	2 514.7	-0	,	'	10	2.46	,	'	9	0.88
4-FullIns 4	7	10 121.38	-	2	0 407.39	2	3.61	10 1.97	2	46.99	2	10.1	0 0.71	6 21	3.38	6 213.38 9 241.43	∞	57.65	257.65 4 791.36	9	1.61	171.45	10 171.4510 206.6510		0.51
2-Fullins 4	2	10 0.95	10 5.12	2 10	3.33	10	_	10 0.57	10	1.32	10	0.36	0 0.22	10	5.90	0 2.20	2	10 3.91	00.7 01	9	_	0 1.60	10 3.15		0.41
4-Insertions 3	3	2 896.1	2 896.1610 599.48	- 84	,		,				,		1	10 5	56.72 10	92.25	5 8 68		7 567.20	08 564.31		566.94	9 566.94 9 464.88 9 533.4	88 9 5	33.42
huck	10	10 2.09	10 13.84 10 46.62	84 10	46.62	9	0.19	0.34	_	0 14.96 10		0.11	10 0.14	10	3.85	63.85 10 19.25 1	5 10 3	0 36.45	1 741.9	2	0.44 10	16.49	10 16.49 10 541.3810		0.21
homer	12	10 158.25	-	-	٠	10 2	2.73	0 2.51	-		9	0.48	0 0.58	3	752.27 -	•		,		10	4.02	٠		2	0.92
	FOTALS		_				-		<u> </u>			_		-			_			⊢	<u> </u>			_	
solved problems/total	ms/total	16/18	10 / 18		7 /18	15 /18	-	14 /18	_	8 /18	17/18		17/18		17 /18	11 /18		7 /18	8 /18		17 /18	9 /18	8 /18		17/18

Table 2. Graph coloring. The branching heuristic is impact based branching. The average #backtracks over ten runs with a random seed to initialize the branching heuristic. #vals is the number of values in a problem.

#val DYN ble instances) 9 909599 5 304 14 8037 15 3299 19 230634 20 826 35 572804 36 8876+06 10 8.876+06 11 13 - 0 11 3 533154	PREC bt	MR + Dowd bt 159069 994 6397	ADAPT		MR _{sh} + Dowd	ADAPT	DYN	PREC		MR + IMPACT	ADAPT	_	MR _{sh} + IMPACT	
2599 2599 2604 2706 2706 2706 2706 2706 2706	1 1 2 1		ADAP1	ŀ		ADAPI					ADAPI			Andread
25.59 27.106 28.04 29.04 20.04 2	2 -	41 1	š	ŧ		ţ¢	þţ	ţ	þt	þţ	-	Pŧ	ţ	ADAPT
250 250 250 250 250 250 250 250 250 250	. 21			3	3	3	10	10	10	3	3	3	10	3
9 909599 5 304 14 8037 15 3299 19 230634 20 826 35 572804 36 693 37 8 8 10 8.87c+06 14 1.79c+06 15 1.79c+06 16 1.79c+06 11 1.3c+06 11 1.	. 21													
\$ 50.4 14 8037 15 3299 16 3299 20 826 20 826 35 572804 36 2693 37 8872406 11 13 134 11 333154	- 7		115148	380833	229315	122541	68466	59922	387503	1.72e+06	82926	130842	1.99e+06	78942
14 8037 19 23063 19 23063 20 826 35 572804 36 572804 37 8 37 8 37 8 10 8.87c+06 11 134 134 134 13 133154	2 -		928	2847	937	826	9902	40019	5977	1.08e+06	3518	6512	142994	3896
20 826.3 20 826.3 20 826.3 35 572804 37 8 8376406 10 8.876406 11 134 15 0 11 3 - 1	7 -		6999		2673	5699	231	7325	4	4	93	4	4	93
20 230634 35 572804 36 2693 37 8 37 8 10 8.87e+06 14 134 15 0 16 0 11 353154	7 -		3904		1987	3452	39	10283	10	10	125	10	10	127
20 826 35 572804 36 572804 37 8 8 37 8 10 8.87e406 11 1.34 1.34 16 0 16 0 11 1.35154	7 -	,	1	2.07e+067	.61e+062	.42e+06	1.45e+06	,	4.32e+06	-	5.88e+06	3.31e+063	3.51e+063	3.06e+06
35 572804 36 2693 37 2693 37 10 8870406 115 1.790406 14 134 2 15 0 16 0 16 0	1 2	1.05e+06	1.05e+06	12855	2591	2256	2324	1.89e+06	53539	390780	14711	27984	421366	11432
36 2693 37 8 10 8.87e+06 15 1.79e+06 14 134 2 15 0 16 0 16 0	1 2	,	-	1.05e+06	47883	138271	237564		87	87	87	914841	:.03e+061	.42e+06
37 8 8 7 6 1 10 8 8 7 6 4 1 1 1 1 3 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.5	1125	3846	529	493	145	15455	1.34e+06	17	17	7277	25888	159019	4204
10 8.87e+06 15 1.79e+06 14 134 2 15 0 16 0 16 1 11 - 4	1	98	4	15	23	15	98	763464	925	6	1379		4	20
15 1.79e+06 14 134 2 15 0 16 0 11 - 4 12 353154	-	61.15e+06	763242	5.75e+063.	.75e+06	426910	589342	1.21e+061		.02e+062.61e+06	278081	1.18e+062.57e+06		450170
14 134 2 15 0 1 16 0 1 11 - 4 12 353154	- 90+a	6 81512	45835	111520	13011	32670	1.24e+06	,	297147	714565	317851	1.43e + 06		322694
15 0 16 0 11 - 4 11 - 4 12 353154		376	1423		483	1274	367	,	-	1	440	-	1	440
16 0 11 - 4.	111659 0	•	•	•	0	0	2088	478604	0	0	437	0	0	305
11 - 4. 12 353154	0 62002	•	•	•	0	0	4404		0	3342	666	0	255628	739
12 353154	1.11e+06	2.66e+06		3.8e+07		.89e+07	1.05e+07	7.62e+06				1.04e+077	7.71e+061	.66e+07
	10618 7400	3688	2120	1168	1427	1432	3007	6614	4640	3149	2481	2139	17143	2178
TOTALS														
solved problems/total 15/16 13.	13/16 11/16	14/16	13 /16	13 /16	15/16	16/16	16 /16	11 /16	15 /16	14 /16	15 /16	16/16	16 /16	16 /16
JNSAT (Unatisfiable instances)														
5 27100		727665	518428	1.03e+06		423985	52560	30503	540891	459642	_			271010
623	26311 150714	. 47840	10339	128823	12867	10848	8902	40257	174693	1.24e+06 16270		207598 1	37e+06	13847
8 222329	337913 1.86e+07	.86e+07 4.87e+06 5.93e+06		1.93e+078.64e+06	.64e+06e	90+990.9	521777	425590	,	5.97e+064.15e+06	1.15e+06	1.73e + 07	6.76e+064.01e+06	.01e+06
mulsol.i.1 47 -		8022	83800	,	145618	494667	986138	,		,	101		,	<u>1</u>
mulsol.i.1 48 -		1634	,	,	90+990	371767	1.39e+06				101			101
school1 13 5935 16	1645	14005	6040		1038	5910	211	903			125	,	,	125
59		1915	,		1249	530532	13968				5036		,	563975
6 77 <i>S</i> 7	8552 771308	516916	140871	806771	148121	142850	161052	21137	806651	520652	232815	738818	257867	267651
DSJC125.5 12 68793		,	520442	-	.29e+06	933692	5.93e+06				1.26e+06	,	- 4	.23e+06
DSJC250.5 14 760284		,	,	- 4	.75e+064	1.64e+06	,	,	,	,	,	,	,	,
le450 15b 13 3.64e+06		108	113	,	108	113	606155	,	,	,	8237	,	,	8237
	3458	521	136	3.31e+06	321	133	43	2011		,	115	3.87e+06	,	115
_	330336 -	279	156		236	156	150	1.53e+06			1293		,	1293
4-FullIns 4 7 2.96e+06	- 881513	` '	827	854747	2506	1019	1.83e + 06	582695	300621	632518	424	1.37e+06	1.5e+06	424
2-FullIns 4 5 11263 312	31267 9325	657	179	10679	554	173	118198	9011	15523	29506	1618	15523	31130	1833
-Insertions 3 3 1.23e+086.22e+0	- 407	,	,			,	4.75e+065.97e+06		4.35e+07	4.35e+073.49e+073.56e+07	3.56e+07	5e+07 4	1.42e+074	.43e+07
10 361738	334880 1.04e+06		322	1.04e+06	214		5.37e+06 339937		1.02e+063.95e+07	3.95e+07	395		4.41e+07	395
12 1.15e+07			1279	,	813	_	8.01e+06		,	,	2422		,	3181
TOTALS														
solved problems/total 16/18 10,	10/18 7/18	15/18	14 /18	8 /18	17/18	17/18	17/18	11 /18	7 /18	8/18	17/18	9 / 18	8 / 18	17/18

with the obtained variable ordering. Statistics for the ADAPT heuristic are reset to zero after first and later restarts. Statistics for DOWD and IMPACT heuristics have built-in mechanisms to gradually forget pervious decisions. Between the first and the second restarts we again collect search statistics. On the second and later restarts, we remove the PRECEDENCE constraint that we posted on the previous restart from the model and post a new PRECEDENCE constraint where the variables in its scope are aligned with the ordering obtained from the heuristic. We continue this procedure until we find a solution or timeout. Note that our adaptive approach can be applied to all problems where model restarts can be applied as we replace a random ordering of variables with one derived from heuristics.

MR + DOWD and MR + IMPACT use the DOWD and IMPACT heuristics, whilst MR + ADAPT uses our adaptive version of model restarts.

We also consider limiting the cost of symmetry breaking. In MR_{sh} , MR_{sh} + ADAPT, MR_{sh} + DOWD and MR_{sh} + IMPACT, we shorten the PRECEDENCE constraint to the first 2m variables, where m is the number of values. The intuition behind this idea is based on an empirical observation that an instantiation of a relatively small number of variables in the scope of the PRECEDENCE constraint entails the constraint in most benchmarks. The value 2m was chosen based on statistical analysis of the benchmarks. We use a geometric restart policy with the base of 100 backtracks and a growth coefficient of 1.1. This ensure that restarts are rapid as in [12]. Tables 1–2 give average times and the number of backtracks for the DOWD and IMPACT branching heuristics over 10 runs. In addition, Table 1 shows the number of runs where a problem was solved. We also computed geometric means for these instances to reduce impact of outliers. However, as this gives the same picture of results and we have limited space, we do not include these results here. We removed instances solved by all methods in under 3 seconds and separated results for satisfiable and unsatisfiable.

Effect of the adaptive heuristic. By comparing PREC, MR and MR_{sh} with their adaptive counterparts, we see that our adaptive heuristic ADAPT dramatically improves performance on the majority of instances. For example, the adaptive heuristic helps solve 9 additional benchmarks if we compare MR and MR + ADAPT. The adaptive heuristic is especially useful on unsatisfiable instances. Note that many of these additionally solved benchmarks are easy once we remove conflict between the branching heuristic and static symmetry breaking. We observed that DOWD-based adaptive ordering also performs well. Unfortunately, the IMPACT ordering does not perform well on these benchmarks.

Effect of shortening. By comparing MR + ADAPT and $MR_{sh} + ADAPT$, as well as other models with their shortened counterparts, we see that shortening achieves much better performance. However, it slightly increases the number of backtracks in some cases. Shortening does not increase significantly the number of solved instances, or change substantially the search tree. However, it improves the efficiency of search. Overall, $MR_{sh} + ADAPT$ gives the best performance over all benchmarks among all symmetry breaking methods using the DOWD and IMPACT branching heuristic.

Our second and third case studies consider classes of problems on which model restarts has been shown to outperform other static and dynamic symmetry breaking methods [12]. We ran experiments with the "signature" based static symmetry breaking

constraints proposed for variable and value interchangeability in [11] and denoted here as GCC-based. We decomposed the GCC constraint into AMONG constraints so we can have access to the cardinality variables. Following [12] we only order partitions within the symmetry breaking constraints. We compute a score for all variables in each partition with respect to the used heuristic and sort the partitions according to these scores. Again, the main advantage of our approach is that instead of random ordering of partitions in model restarts we align them with branching heuristics.

We generated 20 problems of each size and averaged statistics over these problems. We report time to find an optimum solution and prove optimality. Note that all results are shown on instances that are solved by all techniques for at least 10 generated problems.

As in [4, 12], we tested on graph colouring and Concert Hall scheduling problems. In [12], the model restarts technique was shown to outperform other symmetry breaking methods on these benchmarks. Hence, we only compare our adaptive strategy with the simple static symmetry breaking constraints and the highly effective model restarts technique (GCC-based +MR). As previously, we biased the ordering of variables in the simple static symmetry breaking constraint to put large partitions first. Figure 1 (left part) shows the results for uniform and biased graph colouring problems with q=0.5 using IMPACT branching heuristic. The results confirm that model restarts is better than static symmetry breaking. Our adaptive ordering of partitions significantly improves performance of model restarts. In particular, the ADAPT heuristic is more robust compared to the IMPACT heuristic.

For the Concert Hall Problem, we generated problems as in [4]. As it is important to put large partitions first, we assumed that any partition with size greater than 4 is a large partition (the maximum partition size is 8 in this setup). The number of halls is 12 or 14. Figure 1 (right part) shows the results for 14 halls. As can be seen from the graphs, using an adaptive heuristic to order partitions improves model restarts significantly using both DOWD or IMPACT branching heuristics. Moreover, ADAPT shows the best performance across all instances.

4 Other Related Work

Crawford *et al.* proposed a general method to break symmetry statically using lex-leader constraints [17]. Most static symmetry breaking constraints (including the PRECE-DENCE constraints used here) can be derived from such constraints. Efficient algorithms have been developed to propagate many static symmetry breaking constraints (e.g. [21–24]). Lex-leader constraints pick out the lexicographically smallest solution in each symmetry class. However, this may conflict with the branching heuristic. A number of dynamic methods have been proposed to deal with this conflict. For example, *SBDS* posts lex-leader constraints dynamically during search [8]. Another dynamic method for breaking symmetry is *SBDD* [9]. This checks if a node of the search tree is symmetric to some previously explored node. *GAPLex* is a hybrid method that combines together static and dynamic symmetry breaking [25]. However, it is limited to dynamically posting lex-leader constraints, and to searching with a fixed variable ordering (which can be a considerable burden). *Dynamic Lex* is another hybrid method that dynamically posts static symmetry breaking constraints during search which works with dynamic variable

Fig. 1. Mean times for uniform (top left) and biased (bottom left) graph colouring benchmarks with q=0.5 using IMPACT based branching. Mean times for Concert Hall Problem benchmarks with 14 halls using DOWD (top right) and IMPACT based branching (bottom right).

ordering heuristics [26]. This method adds lex-leader constraints during search that are compatible with the current partial assignment. Hence the first solution found is not removed by symmetry breaking. However, unlike here, the method assumes that values are tried in a fixed order.

5 Conclusions

Static symmetry breaking constraints are often an easy and effective way to deal with symmetry in a constraint or optimisation problem. However, there can be a conflict between static symmetry breaking constraints and branching heuristics. To reduce this conflict, we propose a simple adaptive heuristic for model restarts. This orders variables within symmetry breaking constraints to align with the dynamic branching heuristic. Experimental results suggest that it is a very promising alternative between purely static and purely dynamic symmetry breaking methods. In particular, the results show that the proposed ADAPT heuristic works well across all benchmarks and two state-of-the-art branching heuristics. Our adaptive method thus appears to be more robust compared to the original model restarts algorithm.

References

- Puget, J.F.: On the satisfiability of symmetrical constrained satisfaction problems. In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS (LNAI), vol. 689, pp. 350–361. Springer, Heidelberg (1993)
- Shlyakhter, I.: Generating effective symmetry-breaking predicates for search problems. In: Proc. of Workshop on Theory and Applications of Satisfiability Testing, SAT 2001 (2001)

- 3. Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.: Breaking row and column symmetries in matrix models. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 462–477. Springer, Heidelberg (2002)
- Law, Y., Lee, J.: Symmetry Breaking Constraints for Value Symmetries in Constraint Satisfaction. Constraints 11(2-3), 221–267 (2006)
- Walsh, T.: Symmetry breaking using value precedence. In: Proc. of ECAI 2006, pp. 168–172 (2006)
- Walsh, T.: General Symmetry Breaking Constraints. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 650–664. Springer, Heidelberg (2006)
- Walsh, T.: Breaking value symmetry. In: Proc. of the 23rd National Conf. on AI, pp. 1585– 1588. AAAI (2008)
- Gent, I., Smith, B.: Symmetry breaking in constraint programming. In: Proc. of ECAI 2000, pp. 599–603 (2000)
- Fahle, T., Schamberger, S., Sellmann, M.: Symmetry breaking. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 93–107. Springer, Heidelberg (2001)
- Hentenryck, P.V., Agren, M., Flener, P., Pearson, J.: Tractable symmetry breaking for CSPs with interchangeable values. In: Proc. of the 18th IJCAI (2003)
- Flener, P., Pearson, J., Sellmann, M., Van Hentenryck, P.: Static and dynamic structural symmetry breaking. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 695–699. Springer, Heidelberg (2006)
- Heller, D., Panda, A., Sellmann, M., Yip, J.: Model restarts for structural symmetry breaking.
 In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 539–544. Springer, Heidelberg (2008)
- ChocoTeam: Documentation. CHOCO is a java library for constraint satisfaction problems (CSP) and constraint programming (CP), http://choco.mines-nantes.fr/
- Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004)
- Katsirelos, G., Walsh, T.: Symmetries of symmetry breaking constraints. In: Proc. of ECAI 2010 (2010)
- Walsh, T.: Breaking value symmetry. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 880–887. Springer, Heidelberg (2007)
- Crawford, J., Luks, G., Ginsberg, M., Roy, A.: Symmetry breaking predicates for search problems. In: Proc. of the 5th Int. Conf. on Knowledge Representation and Reasoning (KR 1996), pp. 148–159 (1996)
- Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. Information Processing Letters 47, 173–180 (1993)
- 19. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: Proc. of the 16th ECAI 2004, pp. 146–150 (2004)
- Gomes, C., Selman, B., Crato, N.: Heavy-tailed distributions in combinatorial search. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 121–135. Springer, Heidelberg (1997)
- Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Global constraints for lexicographic orderings. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 93–108. Springer, Heidelberg (2002)
- 22. Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Propagation algorithms for lexicographic ordering constraints. Artificial Intelligence 170(10), 803–908 (2006)
- Law, Y.C., Lee, J.H.M., Walsh, T., Yip, J.Y.K.: Breaking symmetry of interchangeable variables and values. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 423–437. Springer, Heidelberg (2007)

- 24. Katsirelos, G., Narodytska, N., Walsh, T.: Combining symmetry breaking and global constraints. In: Oddi, A., Fages, F., Rossi, F. (eds.) CSCLP 2008. LNCS, vol. 5655, pp. 84–98. Springer, Heidelberg (2009)
- 25. Jefferson, C., Kelsey, T., Linton, S., Petrie, K.: GAPLex: Generalised static symmetry breaking. In: Proc. of 6th Int. Workshop on Symmetry in Constraint Satisfaction Problems, SymCon 2006 (2006)
- 26. Puget, J.-F.: Symmetry breaking using stabilizers. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 585–599. Springer, Heidelberg (2003)