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Abstract. This paper focuses on developing efficient inference teples for
improving conjunctive normal form (CNF) Boolean satisflapi(SAT) solvers.
We analyze a variant of hyper binary resolution from varipasspectives: We
show that it can simulate the circuit-level technique diistwral hashing and how
it can be realized efficiently using so called tree-baseétdhead. Experiments
show that our implementation improves the performanceatéstf-the-art CNF-
level SAT techniques on combinational equivalent checkistances.

1 Introduction

Boolean satisfiability (SAT) solvers provide the cruciatesearch engines for solv-
ing problem instances arising from various real-world peab domains. This paper
focuses on developing efficient inference techniques tadmrgpthe robustness of con-
junctive normal form (CNF) SAT solving techniques. Espbgiaur goal is to improve
CNF-level techniques on instancesiter-based combinational equivalence checking
which is an important industrially-relevant problem domaihe main motivation be-
hind this work is to take notable steps towards the ambitimad of making CNF-level
approaches competitive with circuit-level techniques équivalence checking. This
goal is important as it would notably simplify the curreratstof-the-art techniques
applied in the industry which require alternating betweauit-level techniques and
CNF-level SAT solving. To this end, we identify how known Civel SAT solving
techniques can simulate the circuit-level techniqustafctural hashing—which plays
an integral role in solving miter instances—purely on thesleof a standard CNF en-
coding of Boolean circuits. As the main CNF-level approagh, study a variant of
hyper binary resolutionHBR), which can be used to learn non-transitive hyper binary
resolvents, and analyze this technique from various petisps. While this variant or
HBR has already been studied and implemented previously witieidy PRE [1] and
HYPERBINFAST [2] CNF simplifiers, we extend this previous work both frone tihe-
oretical and practical perspectives.

Our main theoretical observations include: (i) explanagifor how and to what
extent the CNF techniqud$BR, clause learning, and ternary resolution can simulate
structural hashing; (ii) thatiBR can be focused in a beneficial way to produce only
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non-transitiveresolvents that increase transitive reachability of theeulying binary
implications; and (iii) providing an explicit quadratic vat-case example on the num-
ber of binary clauses added, which applies to all known imgletations oHBR, and
that has not been explicitly provided before. As the mairctical contribution, we
show how this variant oIBR can be realized efficiently using so called tree-based
lookahead([B]. In fact, the tree-based lookahead algorifkstribed in this work is a
substantially simplified version of the original idea, asdaiso of independent inter-
est due to its much more general applicability for instandbiv CDCL SAT solvers.
We show experimentally that olireeLook implementation oHBR using tree-based
lookahead clearly outperforms state-of-the-art CNFISAT techniques on instances
encoding on miter-based equivalence checking CNF inssance

The rest of this paper is organized as follows. After pretianies (Secf.]2), we dis-
cuss possibilities of simulating structural hashing on@iNF-level (Sect 13). Then the
considered variant of hyper binary resolution is definedamalyzed (Sedt] 4), followed
by an in-depth description of tree-based lookahead (Bptitaenables implementing
hyper binary resolution efficiently. Before conclusionsperimental results are pre-
sented (Secft]7) and related work is discussed (Sect. 8).

2 Prdiminaries

For a Boolean variable, there are twditerals, the positive literal: and the negative
literal —z. A clauseis a disjunction of literals and a CNF formula a conjunctidn o
clauses. A clause can be seen as a finite set of literals and-dd@Mula as a finite set
of clauses. A (partial) truth assignment for a CNF forméilés a functionr that maps
(a subset of) the literals i to {0, 1}. If 7(z) = v, thent(—z) = 1 — v. AclauseC'is
satisfied byr if 7(I) = 1 for some literal € C. A clauseC is falsified byr if 7(I) =0
for every literall € C. An assignment satisfiesF’ if it satisfies every clause iR'. We
denote byr(F) the reduced formula for which all satisfied clausestand all falsified
literals by are removed.

Two formulas ardogically equivalentf they are satisfied by exactly the same set
of assignments. A clause of length one iarat clause and a clause of length two is
abinary clause For a CNF formulaF’, F» denotes the set of binary clauses, dnid
denotes the set of clauses of length three and larger.

Binary Implication Graphs Given a CNF formulaF’, the uniquebinary implication
graphBIG(F) of F has for each variable occurring inF» two verticesy and—z, and
has the edge relatioft—{,1'), (=l’,1) | (I v1') € F»}. In other words, for each binary
clausg(lVv!’)in F, the two implications-l — I’ and—l’ — [, represented by the binary
clause, occur as edges®BiG(F’). A node inBIG(F") with no incoming arcs is &ot
of BIG(F) (or, simply, of F3). In other words, literal is a root inBIG(F') if there is no
clause of the forngl v I’) in F». The set of roots oBIG(F') is denoted byRT'S(F).

BCP, Failed Literal Elimination (FLE), and Lookahead For a CNF formularF’,
Boolean constraint propagatiqi CP) (or unit propagation propagates all unit clauses,
i.e., repeats the following until fixpoint: if there is a uslause(l) € F', remove from
F\ {()} all clauses that contain the literialand remove the literat/ from all clauses



in F', resulting in the formulBCP(F). A literal [ is afailed literal if BCP(F U {(1)})
contains the empty clause, implying ttais logically equivalent tBCP (FU{(—l)}).
FLE removes failed literals from a formula, or, equivalentigda the complements of
failed literals as unit clauses to the formula, until a fixggas reached. Failed literal
elimination is sometimes also referred tolaskaheag and is often applied in non-
CDCL DPLL solvers [pokahead solverg]).

Equivalent Literal Substitution (ELS) The strongly connected components (SCCs) of
BIG(F') represent equivalent classes of literals (or singgjyivalent literal} in F; [5].
Equivalent literal substitutiomefers to substituting i, for each SCQ~ of BIG(F'),

all occurrences of the literals occurring@hwith the representative literal ¢f. ELS is
confluent, i.e., has a unique fixpoint, modulo variable reingm

Transitive Reduction (TRD) A directed acyclic graplé’ is atransitive reductiorfg]
of the directed grapty¥ provided that (i)' has a directed path from nodeo nodev if
and only ifG has a directed path from noddo nodev, and (ii) there is no graph with
fewer edges tha6’ satisfying the condition (i). For a CNF formulg, a binary clause
C = (I v U')istransitivein F if I’ is reachable from-l (equivalently,l is reachable
from —I’) in BIG(F \ C). Applying TRD on BIG(F') amounts to removing fron¥’
all transitive binary clauses ifi. TRD is confluent for the class of CNF formulds
for which BIG(F) is acyclic. This is due to the fact that the transitive rethrcof any
directed acyclic graph is uniquel! [6]. For directed graphthwicles, TRD is unique
modulo node (literal) equivalence classes.

The main inference rule of interest in this work is theer binary resolution rule

Hyper Binary Resolution (HBR) The resolution rule states that, given two clauses
¢y = {l,a1,...,a,} @and Co = {=l,b1,...,b,}, the clauseC' = C; <1 Cy =
{a1,...,an,b1,...,by}, called theresolventC; <1 Cy of C; andCy, can be inferred
by resolvingon the literall. Many different simplification techniques are based on the
resolution rule. In this paper of interesthigper binary resolutioffi7]. Given a clause of
the form(l v Iy - - - v l) andk binary clauses of the forifi’ v —l;), wherel < i < k,

the hyper binary resolution rule allows to infer thygper binary resolvent v 1’) in one
step.HBR is confluent since it only adds clauses to CNF formulas.

3 Simulating Structural Hashing on CNF

In this section we show that hyper binary resolution is ssipgly powerful in that
it implicity—purely on the CNF-level—achievestructural hashingi.e., sharing of
equivalent subformula structures, over disjunctive anguactive subformulas. This is
surprising, as structural hashing is often considered dtleedbenefits of representing
propositional formulas on the higher level Bbolean circuitsrather than working on
the flat CNF form. This result implies that structural hagféan be achieved also during
the actual CNF-level solving process by applyliBR on the current CNF formula.

Boolean Circuitsare a natural representation form for propositional foasubffering
subformula sharingia structural hashing. A Boolean circuit over a finite Gedf gates
is a setC of equations of forny := f(¢1,...,9n), Whereg,q1,...,9, € Gandf :



{1,0}™ — {1, 0} is a Boolean function, with the additional requirements {Haeach
g € G appears at most once as the left hand side in the equatiahsand (ii) the
underlying directed graph

(G, EC)={(¢,9)€GxG |g:=f(..,4,...)€C}

is acyclic. Each gate represents a specific subformula iprheositional formula ex-
pressed by the set of Boolean equationsy = f(¢1,...,9») IS inC, theng is an
f-gate (or of typef), otherwise it is ainput gate The following Boolean functions are
some which often occur as gate typrsT(v) (1 if and only if v is 0), OR(v1, . .., v,)

(1 if and only if at least one ofy, ..., v, is 1), AND(vy,...,v,) (1 if and only if

all vy,...,v, arel), Xor(vy,v2) (1 if and only if exactly one ofv,, vs, is 1), and
ITE(v1, v2,v3) (1 if and only if (i) v1 andvy arel, or (i) v1 is 0 andws is 1). The
standard “Tseitin” encoding of a Boolean circditnto a CNF formuldl'ST(C) works
by introducing a Boolean variable for each gate€inand representing for each gate
g := f(g1,.-.9n) inC the logical equivalence « f(g1,...gn) With clauses.

3.1 Structural Hashing on the CNF-Level via HBR

Structural hashing is a well-known technique for factoug common sub-expression.
Itis an integral part of many algorithms for manipulatinffetient data structures rep-
resenting circuits [8]9,10,1.1,12].

Given a circuitC with g := f(g91,...,9n),9" = f(g1,...,9n) € C, structural
hashingremovesy’ := f(¢1,...,9,) fromC, i.e., detects thaj andg’ label the same
function f(¢1,...,¢gn) in C. A Boolean circuitC is structurally hashed i§ andg’ are
the same gate whenevet= f(g1,.-.,9n),9 = f(91,.--,9n) €C.

Proposition 1. LetC be an arbitrary Boolean circuit. Assume that there are twsiidct
gatesg := f(g1,...,9») andg’ := f(g1,...,9n) In C, wheref € {NOT, AND, OR}.
ThenHBR applied toTST(C) will produce the clause6-g V ¢') and(g vV —g’) repre-
senting the fact thag and ¢’ label the same functiofi(g1, ..., gn) In C.

Basically the binary clausesiST(C) associated with := f(g1, .. ., g, ) together
with a clause of arityn + 1) associated witly’ := f(¢1,...,9n) always produce
the binary clause equivalent to one of the directions of thienplication g + ¢'.
The binary clauses iTST(C) associated witty := f(g1,...,9n) together with a
clause associated wifi := f(g1,. .., g») Will produce the other direction of the bi-
implication.

Proof (Proof of Propositiofl1)Assume that we have:= AND (g1, ..., g,) andg’ :=
AND(g1, - .., gn). Onthe CNF-level we have the clauseg\Vg;), (gV—g1V---V—gy)
and(—¢’'Vg;), (¢’ Vg1 V---Vg,), wherei = 1..n. Now the hyper binary resolution
rule allows to derivé—g V ¢’) in one step from{—g V g1),..., (=g V g»), (¢’ V —g1 V

-+ V =gy), and similarly(—g’ Vv g) in one step from{—¢' V ¢1),..., (=g V gn), (g V
—g1 V- -V 1gy,). The caseg € {NOT, OR} are similar. O



Especially, by Propositionl 1 hyper binary resolution cahiexe the same effect
purely on the CNF-level as circuit-level structural haghom And-Inverter Graphs
(AIGs) [9] which are often used for representing circuitdeSAT instances. We say
thatHBR can hencesimulatestructural hashing of AIGs.

However HBR is not strong enough to simulate structural hashingfor andITE
gates on the standard CNF encoding, simply because the @GNBed produced by the
standard CNF encoding faioR andITE gates do not include any binary clauses.

Observation 1 Given a Boolean circuit with two gatesg := f(¢1,...,9») and
g = f(g1,...,9n)- Assumg and ¢’ label the same functiofi(g1,...,g,). If f €
{XOR,ITE} thenHBR cannot in general derivg « ¢’ (i.e., establish thay and ¢’
label the same function) fromST(C).

3.2 Other Approachesto Structural Hashing on the CNF-Level

Structural Hashing and CDCL Interestingly, CNF-levetonflict-driven clause learn-
ing (CDCL) SAT solvers caiin principle simulate structural hashing by learning the
bi-implicationg <> ¢’. By “in principle” we mean that this requires a CDCL solver to
assign the “right” values to the “right” variables in thedht” order, and to restart after
each conflict (and possibly to postpone unnecessary umggetions).

Observation 2 CDCL can in principle simulate structural hashing of any Bz cir-
cuitC on TST(C), assuming that the solver assigns variables optimallyarts after
every conflict, and can postpone unit propagation at will.

The intuition behind this observation is the following. &ivany Boolean circuit
C containing two gateg andg’, whereg := f(g1,...,9») @andg’ := f(g1,...,9n)-

For simplicity, let us assume := AND(g1, ..., g,) andg’ := AND(g1, .-, g, ). Now
apply CDCL as follows oI'ST(C). First, assigry = 0. Notice that unit propagation
does not assign values to agybased ory := AND(g1, ..., gn). Then assigy’ = 1.

Now unit propagation assigng = 1 for all i = 1..n, resulting in a conflict with

g = 0. The key observation is that the standard 1-UIP clauseilegstheme will now
learn the claus€g v —g’), since this is the only 1-UIP conflict clause derivable from
the conflict graph restricted to the clauses associated gith AND (g1, ..., g,) and

g’ := AND(g1,...,gn)- Then let the solver restart, and afterward assign singifadt

¢’ = 0 and thery = 1 in order to learn the claugg’ vV —g).

A similar argument goes through also fobr andITE but needs one more decision
to learn one auxiliary clause for each of the two implicasioGonsider for instance
g := XOR(g1,92) andg’ := XOR(g1, g2). Assigningg = 0, ¢’ = 1 and thengs = 0
allows learning the clausg Vv —¢’ V g2). After backtracking, unit propagation on this
clause assigng, = 1 which results in another conflict, from which one of the two
implications(g V —¢’) is learned. The other implication can be derived in a siniay.

From the practical point of view, however, it is unlikely tHaDCL solver imple-
mentations would behave in the way just described.

Structural Hashing using Ternary Resolution Further we claim that another way of
achieving structural hashing ®&bR andITE on the CNF-level is to appliernary reso-
lution, originally suggested i [13] and subsequently appliedeisi@rence technique



in the contexts of both complete [14] and local search metH{@8] for CNF SAT.
Ternary resolution refers to restricting the resolutiole foetween two ternary clauses
so that only a ternary or binary resolvent are inferred,(@dded to the CNF).

Proposition 2. Ternary resolution simulates structural hashingioE and XoR.
Proof. Consider the clauses for twoke gatesr := ITE(c, ¢, f) andy := ITE(c, ¢, f):

(mxV-eVE) A (mxVeV f)A(xV-eV—t) A(xVeVf)
(myV-eVE) A (myVeV f) A (yV—-eV—t) A(yVeV—f)

Using ternary resolution;—z Vy V —-¢) = (- V —c V t) < (y V —e V —t) and
(rzVyVe) = (-xzVeV f)x(yVeVaf)can be inferred. These resolvents can
be combined tq—x V y) = (- Vy V —¢) a1 (mz V y V ¢). In a similar fashion, the
other binary clause can be obtainéd:v -y vV —¢) = (z V —¢ V —it) 1 (—y V —e V t)
and(zV-yVe)=(xzVeVf)x(-yVeV f). Now using these resolvents, we get
(xV-y)=(zV-yV-c)x(xV-yVe). Asimilar argument applies tooR. O

4 Capturing Non-transitive HBR

For the following, given a CNF formul&' and two literalsl and!’ that occur inF’,
we say that’ dominated (or I’ is adominatorof [) in F if there is a claus&€' =
(IViLV---Vlig) € F>3suchthat(—ly),..., (=) € BCP(F> U {(I")}). In other
words,!’ dominated in I if there is such a claus@ for which each of the literalsi;
are reachable frorti in BIG(F). This implies that by assignirnig= 1, unit propagation
on F' will assign! = 1 based on only; and the clausé’.

Example 1.Consider the formuld@ = (-a Vb) A (maVe) A (=bV d) A (=bVe)A
(meVd)A(meVe)A(=dV—eV f). Apart of BIG(F) with a hyperedge on the right
showing the ternary clauge:d v —e V f) can be illustrated as:

b—d
7
“~ >< > 1
cC——>¢
By assigninga = 1, unit propagation o, and (—d V —e V f) € F>3 will assign

d = 1 ande = 1, and hence alsg = 1. Thusa dominatesf. The literal f has two
other dominatorsh andc, both of which are implied by. |

Given a CNF formulal’ and a literall in F, the set ofnon-transitive hyper binary
resolventsNHBR/(F,[) of F' w.r.t. [ is the setS of binary clauses arising from the
following fixpoint computation. Let := {I = 1} andS := {}. Apply the following
(non-deterministic) steps repeatedly until fixpoint:

1. While thereis a unitclauge) € 7(Fo U S), let7 := 7 U {z = 1}.
2. Ifthere is a unit clausgy) € 7(F>3) and literall’ with 7(I’) = 1 that dominateg
inFuUS, letS:=Su{(-l'vy)}.



Step 1 corresponds to applying unit propagation unden the current sek, U S
of binary clauses. In step 2, it is checked whether a domiraitg has been assigned
to true whergy is part of a non-binary clause ifi that is reduced to the uniy) under
7. Notice that there is always at least one dominator for €agke 7(F>3), namely;
however, this is not in general the only dominator. Stilllyoone clause is added per
execution of step 2.

ComputingNHBR/(F' 1) usingl as dominator was proposed in [16], while [2] dis-
cusses the use of alternative dominators. It should be nbétdhe above-defined con-
struction algorithm is very similar to the one proposed jn To our best understanding,
the main difference is that our definition restricts step @osider only unitin 7(F>3)
in contrast to considering any units inferred by applying/B@h7(F>3).

In essence, the construction SHBR(F, ) consists of applying lookahead on the
literal [ restricted toFy, and checking for dominators w.r.t. non-binary clauseg'in
whenever a BCP fixpoint in reached. Notice thanhay become conflicting (i.e., both
I’ = 1 and!’ = 0 would be assigned for some literd) during the computation of
NHBR(F, ). This implies that is a failed literal, which can in practice be detected
on-the-fly during the computation ®HBR/(F' [). For the following analysis, we will
always assume thais not a failed literal.

We call a binary claus€ a non-transitive hyper binary resolventr.t. a CNF for-
mula F' if C € NHBR(F,[) for some literall in F. Given a CNF formulal’, the
procedureNHBR applies the following until fixpoint: while there is a noratrsitive
hyper binary resolvent’ ¢ NHBR(F,[) w.r.t. F’ for somel, let F := F U {C}. A
formula resulting fronNHBR is denoted byNHBR/(F’). However, this fixpoint is not
unique in general, and hend&1BR is not confluent, as will be shown in the following.
Among other observations, we will also show that &hg NHBR(F, 1) for any F, [ is
indeednon-transitivein F', which implies thalNHBR canincrease reachabilityn the
binary implication graph.

4.1 Understanding NHBR
Proposition 3. Fora CNFF and literall, F'is logically equivalenttd”UNHBR(F' 1).

Proof. Any assignment that satisfigs U NHBR(F, ) also satisfied”. Now, assume
that F' is satisfiable, and fix an arbitrary truth assignmenhbat satisfies”. Take an
arbitrary clausé—i!’ v y) € NHBR(F,!) with I’ being a dominator of;. Notice that
I = y,s0—~y — —l’'. So eitherr(y) = 1 orr(y) = 7(I') = 0. Both satisfy(-l’ Vv y).
Thusr satisfieSNHBR/(F, [). O

Example2.Let F' = (aVb) A (aV —cVd)A(=bV -cVe)A (-bVc). We have
NHBR(F, —a) = {(a,d), (—b, e)}, which means that both of these non-transitive hyper
binary resolvents can be addedfavhile maintaining logical equivalence. |

The following proposition shows that all clauseSNHBR(F, l) for any literall are
indeed non-transitive iy’

Proposition 4. For any CNFF, literal [, and clauseC € NHBR(F, 1), we have that
C'is not transitive inF'.



Proof. Consider the firs€ = (-’ Vy) € NHBR(F,[) added taS during the computa-
tion of NHBR(F, (). By definition,l’ dominateg in F' (recall step 2 of the computation
of NHBR(F,1)), S being the empty set. Assume thatis transitive inF". It follows
that there is a path froti to y in BIG(F). However, by step 1 in the computation of
NHBR(F, 1), we would haver(y) = 1 after step 1, and hendg) ¢ 7(F>3), and thus
C would not be added t§.

The claim follows by induction using a similar argument foef + 1 clause added
to S assuming that théclauses added before tbare not transitive irf". ad

This implies that, in casNHBR can add clauses to a CNF formutaNHBR will
increase reachability in the implication graphfof

Corollary 1. If NHBR(F) \ F # 0, then it holds that there are two literals!’ such
that (i) there is a path inBBIG(INHBR(F')) from [ to I’, and (ii) there is no path in
BIG(F) fromito!'.

However, as an additional observation, we note by addingusel’ € NHBR(F' 1)
to F', some clauses ifi, may become transitive in the resultidgu {C'}.

Example 3.Consider the formuld := (a Vd) A (aVe) A(aV bV d) A (cV —d).
Notice that(a vV d) € NHBR(F, —a). After adding(a V d) to F, the clauséa V ¢) is
transitive in the resulting formul& U {(a V d)}. ]

The following clarifies the connection between hyper bin@golvents and non-
transitive hyper binary resolvents: in esser€&BR is a refinement ofiIBR that fo-
cuses on adding the most relevant hyper binary resolveatsriprove reachability in
the implication graph and hence can contribute to additioné propagations.

Proposition 5. Given a CNF formulaF’, and a hyper binary resolvert’ w.r.t. F', it
holds thatC' is transitive inF’, or thatC' € NHBR/(F, ) for some literall.

Proof. Take an arbitrary hyper binary resolvefit= (I vV ") w.r.t. a CNF formulaF’
andletD = (IVv1; V--- Vi) be the longest clause used in the hyper binary resolution
rule to inferC. Clearly, if D is binary, therC is transitive. Now assume that € F .
Becausel Vv —I’) is a hyper binary resolvent, unit propagation®nuU {(I')} assigns
all literals 4, ..., to false. Assume thaf’ is not transitive inF'. In this case unit
propagation orf, U {(I)} will not assigni to true. Hence, after unit propagation on
F,U (l"), D € F>3 becomes the unit claugg), and hencél v —I’) € NHBR(F, ).

O

As for the number of produced hyper binary resolveNidBR does not escape the
guadratic worst-case, which, as we show, holds for all kniowpiementations oHBR.

Proposition 6. For CNF formulas over variables, NHBR adds(2(n?) hyper binary
resolvents in the worst-case. This holds even for formulds@(n) clauses.

Proof. There are&n(n — 1) different non-tautological binary clauses ovevariables.

So clearlyNHBR adds onlyO(n?) resolvents. As a worst-case example, consider the
formulalF’ = (z; Vo) A(x; Vw)A(—vV-wVy;)withi,j € {1,...,k} having2k + 2
variables andk clauses. Since aflr; v y;) € NHBR(F, —z;), NHBR will add £2(k?)
resolvents. O



We will now address the question of confluencéNGiBR.
Proposition 7. NHBR is not confluent.

Proof. Consider the formul& := (aVbVe)A(=bVe)A(aV-d)A(cVdVe)A(dV—e).
Notice that(a V ¢) € NHBR(F,—¢) and (¢ V d) € NHBR(F,—d). Furthermore,
(¢vd) € NHBR(F U {(a V ¢)},~d), but(a vV ¢) ¢ NHBR(F U {(c V d)},—c).
Therefore, the resulting formula could only contginV c) if this resolvent is added
before(c Vv d), The reason for the non-confluence in this example is that c) is
transitive inF U {(c V d)}. O

Example 4.Recall step 2 of the computation NHBR(F, ). While [ is always guar-
anteed to be a dominator @f) € 7(F>3), there can be other dominators as well (recall
Examplel). In case there is a dominakot~ [, then it is preferable to ad@-l’ Vv y)

to S instead of(—! V y) in the sense that-l’ V y) is not transitive inf" U {(—l V y)},
while (=l V y) is transitive inF U {(—=l’ V y)}. Recall the formula” in Example[1.
The dominators of are—a, d, ande (recall Exampléll), antd andc are implied bya.
HenceNHBR(F,a) = {(—aV f), (bV f), (cV f)}. Hence, instead of addir(ga V f),
one canaddb Vv f) or(cV f). |

Although NHBR in itself is not confluent, interestingly, when combiniNgIBR
with ELS and TRD, a unique fixpoint is reached (modulo variable renaming iwith
literal equivalence classes). A similar observation hanlmreviously made in[1, The-
orem 1] for the combination diBR andELS alone withoufI'RD.

Proposition 8. For any CNF formulaZ’, NHBR followed by the combination &LS
andTRD until fixpoint is confluent (modulo variable renaming).

Proof. (sketch) Given any CNF formul&, the implication graph dELS(F') is acyclic,
and hence[RD(ELS(F)) is unique (modulo variable renaming). Now assume that
there are two literal$, !’ and clauses”, C’ such thatC € NHBR(F,l) andC’ €
NHBR(F,!"). Assume that’’ is transitive inF' U {C'} and thatC' is not transitive in

F u {C'}. If NHBR adds the clauses tB in the orderC’, C, TRD will afterwards
remove the transitiv€” from F' U {C’, C}, resulting inF U {C"} to which NHBR
would not add”.. Finally, sinceNHBR can only increase reachability in the implication
graph,NHBR will not re-introduce any previously added clauses that imaye been
afterwards removed byRD. O

Example 5.As a concrete example, recall that the reason for the nofiumte in the
proof of Propositiofil7 is thata V ¢) is transitive inF’ U {(c V d)}. However, a unique
result is obtained by applyingRD afterNHBR.

5 Realizing Non-transitive HBR

Apart from the classicaBCP that removes satisfied clauses and falsified literals, the
variantBCPyggr efficiently addsnon-transitivehyper binary resolvents by prioritiz-
ing binary clauses during propagation. The fact that hypeary resolution can be



achieved through unit propagation is dueltb [1] and has beemded in[[2]. Another

extension, called lazy hyper binary resolution (LHBR)/ [is/fliscussed in Se¢tl 8.
The pseudo-code & CPnugr is shown in FigllL. Besides a formufaand a literal

1, it takes a truth assignmenthere interpreted asstackof variable-value assignments)

as input. For wellformedness, it is required that all assignts inr are implied byl = 1

using only binary clauses. That is, all literalsritan be reached froinin BIG(F).

BCPxusr (formula F, truth assignment , literal [)
T.push(l = 1)
while 7(F') contains unit clauses do
while (I') € 7(F:) do T.push(l' = 1)
if (I") e 7(F>3)then F:= FU{(=lVvI)}
return (F,7)

o o~ W N R

Fig. 1. Pseudo-code of thBCPnupr procedure.

First, the input literal is set to true on the assignment stackline 1). As long
as unit clauses exist (line 2), propagation of binary clauseprioritized (line 3). If
there are only unit clauses left originating frdra 3, then a random one is selected and
converted into a non-transitive hyper binary resolvemte(l). In the end, the resulting
formula and extended assignment are returned (line 5).

In practice, implementin@3CPxugr can be expensive. To reduce the computa-
tional costs,[[2] proposes two optimizations. The firstngsalternative dominators is
discussed in Sedt] 4. The second is restricting computétich € NHBR/(F, ) with
I € RTS(F) (i.e., starting only from literals that are roots in the ifmsption graph).
This restriction reduces the costs significantly. F@rE, starting only from literals
[ € RTS(F), will not change the fixpoint[18,19]. Yet, this is not the eder NHBR.

Proposition 9. By restrictingNHBR to add onlyC' € NHBR(F,[) with[ € RTS(F),
some non-transitive hyper binary resolvents will not beextid

Proof. Consider formuld = (=aVb)A(—aVc)A(—eVd)A(bV—eV-d). Notice that
(bV —c) € NHBR(F, c), while for alll € RTS(F) holds thaNHBR/(F,l) = 0. O

In the following section, we will discuss an alternativeheirjue, namelyfree-
based lookaheadhat can be used to efficiently compNEIBR (F) till fixpoint.

6 Tree-Based Lookahead

Tree-based lookahead originates fram [3] but has not beepeply described in the
literature yet. It is a technique to reduce the computationst to find failed literals
and non-transitive hyper binary resolvents by reusing agagions. For some intuition
about how this technique works, consider a CNF formidlavhich contains a binary
clause(—a Vv b) and several other clauses. Due to the presenteo? b), we know that
when propagating = 1, b is forced tol as well as all variables that would have been
forced byb = 1. Itis possible to reuse the propagations ef 1 (i.e., without rerunning
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BCP), by assigning: = 1 afterwardswithoutunassigning the forced variables. If there
is another binary clause-c Vv b), then the effort of propagatirig= 1 can additionally
be shared with the effort of propagating= 1 after backtracking over = 1 and then
assigning: = 1 without backtracking the assignments impliediby 1.

This concept can be generalized by decomposiig(F') into in-trees: trees in
which edges are oriented so that the root is reachable fronodés (the root has out-
degree 0 and other nodes have out-degree 1). For each itigilica— y in the in-trees,
y is assigned before. Note that in-trees in the in-tree decomposition are almeser
induced subgraphs, e.g. they are missing some edges; tieceelges oBIG(F') that
are not part of any in-tree, and even might connect two difiein-trees.

The first step in tree-based lookahead is to create the @s;tvehich is realized by
the getQueue procedure, shown in Fi@] 2. First queQkis initialized and all cycles
in BIG(F') are removed usingLS. Note that applyindctLS once toF' might produce
new binary clauses by shrinking longer clauses, and evesdate new cycles. We thus
have to run this process until completion.

Afterwards a random depth-first search is applied startioigfthe leafs oBIG(F).
Notice that if—I € RT'S(F), [ is a leaf. In theenqueue procedure, first is added to
Q followed by a recursive call for all literals that implyand are not in the queue yet.
The procedure ends adding the special elerrettt ) that denotes that the algorithm
should backtrack if that element is dequeued. The resulficgntains each literdlin
F exactly once, and for each literal occurringinthe special element occurs once.

getQueue (F) enqueue (F, Q, 1)

1 Q:={} 1 Q.enqueue(l)

2 while ELS(F) # F do 2 foreach (Iv -l') € F» do

3 F :=ELS(F) 3 if I’ ¢ Qthen

4 foreach -l € RTS(F) do 4 Q := enqueue(F,Q,1")
5 Q = enqueue(F, Q,1) 5 Q.enqueue(V)

6 return Q 6 return Q

Fig.2. Left: thegetQueue procedure. Right: thenqueue sub-procedure.

The TreeLook algorithm (Fig[B) uses the quedgto compute failed literals and
non-transitive hyper binary resolvents efficiently. Afteitialization (line 1 and 2), it
dequeues elements frogh until it is empty (line 3 and 4). In case the current litefal
is notVv (line 5), the decision level is increased by pushingn the assignment stack
7 (line 6). If [ is assigned td or the current assignmentfalsifies ' then the failed
literal (—!) is found (line 7). Otherwise, ifis still unassigned (line 8), then it is assigned
to 1, followed by BCPnygr prioritizing binary clauses, under which unit clauses that
originate from non-binary clauses are transformed into tnansitive hyper binary
clause (line 9). IfBCP results in a conflict, then a failed literal is found (line 10)
Each time the element is dequeued, the algorithm backtracks one level, by popping
elements fromr until it removesx (line 11). Finally, the resulting”, simplified with
failed literals and strengthened by non-transitive hypeaty resolvents (which may
be trivially unsatisfiable (line 12)), is returned (line 13)

Example 6.ConsiderF’ = (—aV-b)A(bV—eVe)A(bVe)A(eVd)A(aV—dV—e). NHBR
can add two clauses #6: NHBR(F,b) = {(bVe)} andNHBR(F, ¢) = {(cV—e)}. The

11



TreeLook (formula F)
ri={}
Q = getQueue(F)
while @ is not empty do
1 := Q.dequeue()
if I # v then
T.push(x)
if (1) =00r @ € 7(F) then F := BCP(F U {~l})
elseif 7(1) # 1 then
(F, 7y := BCPNuBr(F, 7,1)
10 if 0 € 7(F) then F := BCP(F U {~l})
1 else while 7.pop() # =
12 if ) € F then break
13 return F

© ® N o o ~ W N P

Fig. 3. TheTreeLook algorithm.

TreeLook (F') algorithm can find them as follows. Assume that the resujetQueue
(F)isQ = {¢,~b,a,v,V,~d,V,V,d, ¢, V,V,-a,b,V, V}, visiting the leafs in the
orderc, d, —a. This @ partitionsBIG(F) (see Fig[¥) in three in-trees by removing
the dotted edge-.c -~ b. After initialization, 7 is extended by pushingandc = 1.
This does not result in any units. Now,is extended with« andb = 0. The clause
(b Vv —cVe) € F>3 becomes unit. Therefor@ V e) is added toF', which is unit ¢)

by construction under. Hencer is extended by = 1. Afterwards,x anda = 1 are
pushed tor. No new units exist in-(F') and the next element i is dequeued which
is V. This causes popping = 1 andx* from 7 as the first backtracking step. The next
element is also zero, which pops= 1, b = 0, andx from 7. Extending the shrunken
7 by pushing« andd = 0, does not result in any unit in(F’). The first in-tree is now
finished and the algorithm will pop all elements frandue to the double element
dequeued frond). TheNHBR (c Vv —e) is found in the second in-tree: aftér= 1 and

¢ =0, 7is extended by = 1 anda = 0. Now (a V —d V —e) € F>3 is unit(—e) under

7. The third in-tree does not add any clausétdNotice that after adding both binaries
to F, (b V ¢) becomes redundant (transitive) as wel(&s —c V e) (subsumed). H

7 Experiments

TheTreeLook algorithm (Fig[3) is implemented in the ARCHRW SAT solver [20].
The SAT Competition version of MRCHRW runsFLE until completion in each node
of the search-tree. We slightly modified the code such thangsNHBR until comple-

jb -d by:;6\<d jb -d b :{:l:\ d
Vo A

Fig. 4. BIG(F) in Example[6 before (left) and after (right) applyidfIBR on F. Both graphs
have three leafs:a, ¢, andd. The dotted edgec - b is not in the in-tree decomposition.
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tion. In other words, lookahead runs until no new non-tr@reshyper binary resolvent
is found, instead of no new failed literal. The resultingsien, called MARCHNH
(benchmarks, sources and loghat p: //f mv. | ku. at/ t r eel ook), also has the
ability to output the formula after preprocessing, so thalteis similar to existing im-
plementations oHHBR, HYPRE [1] and HYPERBINFAST [2]. The experiments were
done on a cluster of computing nodes with Intel Core 2 Duo @850 2.8-GHz pro-
cessors, 8-GB main memory, under Ubuntu Linux. Memory wagéid to 7 GB and a
timeout of 10 h was enforced for each run.

As benchmarks we used all 818 sequential circuits of the Warel Model Checking
Competition 201Mt t p: // f mv. | ku. at / hwntc10. A miter was constructed from
each circuit by connecting the inputs (and latches) of twoie® of the same circuit,
and by constraining outputs and next state functions to brevisa equivalent. We used
ai gmi t er for constructing the miters, and translated them to CNF witgt ocnf .
Both tools are available frofmt t p: // f mv. | Ku. at / ai ger. Note that these bench-
marks are trivial on the AIG level and can simply be solvedtbyctural hashing. Actu-
ally, a non-optimized implementation of structural haghmeeds less than 13 seconds
for all 818 benchmarks, and less than half a second for the diffisult one (intel048
with 469196 variables and 1300546 clauses).

Running times for the hardest benchmarks using logarittsoéde are shown in
Fig.[3: NHBR through tree-based lookahead ARcHNH with TreeLook) can solve
all of benchmarks on its own (i.e., without any additionadref). Switching off tree-

Benchmarks Sorted by Runtime

:MARCHNH no TreeLook ——+——

10000 HYPERBINFAST -
I LINGELING LHBR only ---g--

I MINISAT 2.2.0 - - &~
LINGELING 587f -

€]
MARCHNH - e
with TreeLook

1000 |

Runtime in Seconds

100 |

720 740 760 780 800 820
Fig. 5. Runtimes of CNF solving tools on 818 instances generated H@VMCC 2010. The plot

starts at 750 because many instances could be solved ééaiige that only LNGELING and
MINISAT perform search. The other tools rINHBR till unsatisfiability is detected.
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based lookahead (MRCHNH no TreeLook), i.e. always applyin@CPyugr (F, 7,1)
with 7 = ), the timeout is reached on eleven benchmarks and is twosoofieragnitude
slower. In between are the results of the previous impleatems of HBR, including
LHBR (see next Secfl8), which take much more time and menewsn though they
use ELS. HPRE hits the memory limit on 15 miters, YPERBINFAST runs out of
memory on eight, and INGELING (LHBR only) runs out of time on two. Surprisingly
state-of-the-art CDCL SAT solvers such asiGELING 587F and MINISAT 2.2.0 can
not solve some of the miters even within 10 hours of seareRGELING could not
solve two miters, NNISAT four).

Although not the main focus here, we also measured the effeqqiplying NHBR
as a preprocessing technique for SAT Competition 2011 egumin instances. For a
clean experiment, we compared plain Lingeling (no pre- aidcessing) with and
without NHBR. With NHBR, Lingeling solved 7 more instances.

8 Related Work and Existing  mplementations

A version of the SAT solver RECOSAT [17] submitted to the SAT Competition 2009
contained an algorithm for cheaply computing hyper binasotventoon-the-flydur-
ing BCP in a standard CDCL solver on all decision levels. Tithod was callethzy
hyper binary resolutioLHBR), and a preliminary version was implemented in P
COSAT [21] before. It has since then been ported to many othesmeSAT solvers,
including QRCUSs [22], LINGELING [23], and GRYPTOMINISAT [24]. Extensions of
LHBR including a detailed empirical analysis of its benefian be found in[22].

The basic idea of LHBR is to restrict the implication graptada of assigned liter-
als and their forcing antecedents resp. reason clausesaiylslauses. The implication
graph is in general a DAG and the restriction to binary clausens it into a forest of
trees, which we cabinary implication forestThis allows us to save for each assigned
variable the root of its binary implication tree. If a litéia implied by a non-binary
clause, and all its antecedent literals in this clause atiedrsame tree, or equivalently
they have the same root, a binary clause through LHBR isioddail his can be checked
by scanning the forcing non-binary clause, and checkinghéreall its variables, ex-
cept the implied one, have the same root. If this is the chsglbsest dominator of the
antecedents can be computed as least-common ancestotieghe

The binary clause derived through LHBR is used as reasoeddsif the originally
forcing non-binary clause, which extends the binary imgilan tree of the antecedents.
It adds an edge from the dominator to the newly forced litéfalavoid adding too
many transitive clauses, propagation over binary clawsasi until completion for all
assigned literals before non-binary clauses are consideregpropagation. This form
of LHBR adds a negligible overhead to BCP, because checking fcommon root
among antecedent literals is cheap and only has to be pertbifra non-binary clause
becomes forcing. Thus, from the point of view of effectivesieease of implementation,
and overhead, LHBR is comparable to on-thest¥f-subsumptior [25]. One difference
though is, that the former is implemented as part of BCP aadatter in the analysis
algorithm for learning clauses from conflicts.

In practice we observed that the vast majority of binary steuderived through
LHBR are obtained during failed literal probing resp. lob&ad at decision level 0
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anyhow. Thus a simpler implementation similar to the oneliiséookahead solveiia-
cluding tree-based lookaheatready gives the largest benefit without the need to store
roots of the binary implication forest. The additional adtegge of using LHBR even
during search is to cheaply learn binary clauses at all @eclsvels, which are valid
globally and can be added permanently. In lookahead sobiaesy clauses learned
through LHBR have to be removed during backtracking.

The competition version INGELING 587f used in Secf]7 uses LHBR during failed
literal probing. This time-limited lookahead is one of thamy implemented pre- resp. in-
processing techniques [26]. We patchedGELING to run LHBR until completion
(http://fmv.jKku. at/Tingeling/lingeling-587f-1hbrtc. patch)onthesein-
stances, but as shown in the experiments the run-times wech morse, even with
(full) ELS and (time-limited) TRD.

Recursive Learning [27] and Stalmarck’s methbd] [12] workaircuits resp. on
data structures (triplets) close to circuits and can edmly}combined with structural
hashing. This leads to an algorithm similar to congruenosurke algorithms used in
SMT solvers([28]. There are versions of both Stalmarck’thme and Recursive Learn-
ing working directly on CNF[[29,30]. In both cases only baleonstants are propa-
gated and not equivalences as in the original method ofa#@k. We conjecture that a
combination of these CNF techniques with equivalence r@agovould also simulate
structure hashing, but we are not aware of published resilalts) this line.

9 Conclusions

We focused on understanding how non-transitive hyper piresolvents can be effi-
ciently exploited on the CNF-level. We explained how hypieraby resolution can be
implemented through tree-based lookahead, which allovesntalate structural hash-
ing on the CNF-level also in practice much more efficientlgrttprevious CNF-level
solutions. As a side-result, we believe our explanationreé-based lookahead is of
independent interest, providing an efficient way of impletheg lookahead, which is
important for example in the recently proposeibe & conqueapproach[31].

The motivation for tree-based look-ahead was originallgfold. First, it provides
an efficient implementation technique for failed literabbing during pre- and inpro-
cessing([25]. This was the focus of this paper. Second,liesed look-ahead can also
be used to efficiently compute look-ahead heuristics, sa¢ch@number of clauses re-
duced to binary clauses after assuming and propagatingralliit is unclear at this
point whether the second motivation is really importantyether other cheaper-to-
compute metrics could also be used.

While our TreeLook implementation significantly improves over existing CNF-
level approaches, there is still a large gap between theesftig of circuit-level struc-
tural hashing and of using CNF reasoning alone for idemgy@quivalences. Future
work consists of closing this gap further. As a final remark,aiso pointed out by
anonymous reviewers, it should be possible to reformulate-tbased lookahead for
applying singleton arc consistency in CP and probing in MiRess.

AcknowledgementsWe thank Donald Knuth for detailed comments and suggestions
on a draft version of this paper.
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