
ar
X

iv
:1

20
6.

53
27

v2
 [

cs
.IT

]
18

 F
eb

 2
01

3

XACML 3.0 in Answer Set Programming –
Extended Version

Carroline Dewi Puspa Kencana Ramli, Hanne Riis Nielson, Flemming Nielson

Department of Informatics and Mathematical Modelling
Danmarks Tekniske Universitet

Lyngby, Denmark
{cdpu,riis,nielson}@imm.dtu.dk

Abstract We present a systematic technique for transforming XACML 3.0 pol-
icies in Answer Set Programming (ASP). We show that the resulting logic pro-
gram has a unique answer set that directly corresponds to ourformalisation of
the standard semantics of XACML 3.0 from [9]. We demonstratehow our results
make it possible to use off-the-shelf ASP solvers to formally verify properties of
access control policies represented in XACML, such as checking the complete-
ness of a set of access control policies and verifying policyproperties.

Keywords: XACML, access control, policy language, Answer Set Programming

1 Background

XACML (eXtensible Access Control Markup Language) is a prominent access control
language that is widely adopted both in industry and academia. XACML is an inter-
national standard in the field of information security and inFebruary 2005, XACML
version 3.0 was ratified by OASIS.1 XACML represents a shift from a more static se-
curity approach as exemplified by ACLs (Access Control Lists) towards a dynamic
approach, based on Attribute Based Access Control (ABAC) systems. These dynamic
security concepts are more difficult to understand, audit and interpret in real-world im-
plications. The use of XACML requires not only the right tools but also well-founded
concepts for policy creation and management.

The problem with XACML is that its specification is describedin natural language
(c.f. [11]) and manual analysis of the overall effect and consequences of a large XACML
policy set is a very daunting and time-consuming task. How can a policy developer
be certain that the represented policies capture all possible requests? Can they lead to
conflicting decisions for some request? Do the policies satisfy all required properties?
These complex problems cannot be solved easily without someautomatised support.

To address this problem we propose a logic-based XACML analysis framework us-
ing Answer Set Programming (ASP). With ASP we model an XACML Policy Decision
Point (PDP) that loads XACML policies and evaluates XACML requests against these
policies. The expressivity of ASP and the existence of efficient implementations of the
answer set semantics, such asclasp2 andDLV3, provide the means for declarative
specification and verification of properties of XACML policies.

1 The Organization for the Advancement of Structured Information Standards (OASIS) is a
global consortium that drives the development, convergence, and adoption of e-business and
web service standards.

2
http://www.cs.uni-potsdam.de/clasp/

3
http://www.dlvsystem.com/

http://arxiv.org/abs/1206.5327v2
http://www.cs.uni-potsdam.de/clasp/
http://www.dlvsystem.com/

Our work is depicted in Figure 1. There are two main modules, viz. the PDP simu-
lation module and the access control (AC) security propertyverification module. In the
first module, we transform an XACML query and XACML policies from the original
format in XML syntax into abstract syntax which is more compact than the original.
Subsequently we generate a query programΠQ and XACML policies programΠXACML

that correspond to the XACML query and the XACML policies, respectively. We show
that the corresponding answer set (AS) ofΠQ ∪ΠXACML is unique and it coincides with
the semantics of original XACML policy evaluation. In the second module, we demon-
strate how our results make it possible to use off-the-shelfASP solvers to formally
verify properties of AC policies represented in XACML. First we encode the AC secur-
ity property and a generator for each possible domain of XACML policies into logic
programsΠAC property andΠgenerator , respectively. The encoding of AC property is in
the negated formula in order to show at a later stage that eachanswer set corresponds
to a counter example that violates the AC property. Togetherwith the combination of
ΠXACML ∪ΠAC property ∪Πgenerator we show that the XACML policies satisfy the AC
property when there is no available answer set.

Figure 1. Translation Process from Original XACML to XACML-ASP

XACML Query
in original format

XACML Query
in abstract syntax

XACML Query
in a logic program

XACML Policies
in original format

XACML Policies
in abstract syntax

XACML Policies
in logic programs

XACML Response
Answer Set

Access Control Properties
in logic programs

Domain Generator
in logic programs

Result
Answer Set(s)

Outline.We consider the current version, XACML 3.0, Committee Specification 01, 10
August 2010. in Section 2 we explain the abstract syntax and semantics of XACML 3.0.
Then we describe the transformation of XACML 3.0 componentsinto logic programs
in Section 3. We show the relation between XACML 3.0 semantics and the answer sets
in Section 4. Next, in Section 5, we show how to verify AC properties, such as checking
the completeness of a set of policies. In Section 6 we discussthe related work. We end
the paper with conclusions and future work.

2 XACML 3.0

In order to avoid superfluous syntax of XACML 3.0, first we present the abstract syn-
tax of XACML 3.0 which only shows the important components ofXACML 3.0. We
continue the explanation by presenting the semantics of XACML 3.0 components’ eval-
uation based on Committee Specification [11]. We take the work of Ramli et. al work
[9] as our reference.

2.1 Abstract Syntax of XACML 3.0

Table 1 shows the abstract syntax of XACML 3.0. We use bold font for non-terminal
symbols, typewriter font for terminalsymbols andidentifiersandvaluesare written
in italic font. A symbol followed by the star symbol (∗) indicates that there are zero or
more occurrences of that symbol. Similarly, a symbol followed by the plus symbol (+)
indicates that there are one or more occurrences of that symbol. We consider that each
policy has a unique identifier (ID). We use initial capital letter for XACML components
such as PolicySet, Policy, Rule, etc., and small letters forEnglish terminology.

Table 1.Abstraction of XACML 3.0 Components

XACML Policy Components

PolicySetPS ::= PSid = [T , 〈(PSid | Pid)
∗〉,CombID]

Policy P ::= Pid = [T , 〈Rid
+〉,CombID]

Rule R ::= Rid = [Effect,T ,C]
ConditionC ::= true | fbool(a1, . . . , an)
Target T ::= null |

∧
E+

AnyOf E ::=
∨

A+

AllOf A ::=
∧

M+

Match M ::= Attr

CombID ::= po | do | fa | ooa
Effect ::= p | d

Attribute Attr ::= category(attribute value)

XACML Request Component

Request Q ::= (Attr | error(Attr))+

There are three levels of policies in XACML, namely PolicySet, Policy and Rule.
PolicySet or Policy can act as the root of a set of access control policies, while Rule is a
single entity that describes one particular access controlpolicy. Throughout this paper
we consider that PolicySet is the root of the set of access control policies.

Both PolicySet and Policy function as containers for a sequence of PolicySet, Policy
or Rule. A PolicySet contains either a sequence of PolicySetelements or a sequence of
Policy elements, while a Policy can only contain a sequence of Rule elements. Every
sequence of PolicySet, Policy or Rule elements has an associatedcombining algorithm.
There are four common combining algorithms defined in XACML 3.0, namelypermit-
overrides(po), deny-overrides(do), first-applicable(fa) andonly-one-applicable(ooa).

A Rule describes an individual access control policy. It regulates whether an access
should bepermitted(p) or denied(d). All PolicySet, Policy and Rule are applicable
whenever their Target matches with the Request. When the Rule’s Target matches the
Request, then the applicability of the Rule is refined by its Condition.

A Target element identifies the set of decision requests thatthe parent element is
intended to evaluate. The Target element must appear as a child of a PolicySet and
Policy element and may appear as a child of a Rule element. Theempty Target for
Rule element is indicated bynull attribute. The Target element contains a conjunctive
sequence of AnyOf elements. The AnyOf element contains a disjunctive sequence of
AllOf elements, while the AllOf element contains a conjunctive sequence of Match
elements. Each Match element specifies an attribute that a Request should match.

A Condition is a Boolean function over attributes or functions of attributes. In this
abstraction, the user is free to define the Condition as long as its expression returns a
Boolean value, i.e., either true or false. Empty Condition is always associated to true.

A Request contains a set of attribute values for a particularaccess request and the
error messages that occurred during the evaluation of attribute values.

2.2 XACML 3.0 Formal Semantics

The evaluation of XACML policies starts from the evaluationof Match elements and
continues bottom-up until the evaluation of the root of the XACML element, i.e., the
evaluation of PolicySet. For each XACML elementX we denote byJXK a semantic
function associated toX . To each Request element, this function assigns a value from
a set of values that depends on the particular type of the XACML elementX . For ex-
ample, the semantic functionJXK, whereX is a Match element, ranges over the set
{m, nm, idt }, while its range is the set{ t, f, idt} whenX is a Condition element.
A further explanation will be given below. An XACML component returns an inde-
terminate value whenever the decision cannot be made. This happens when there is an
error during the evaluation process. See [9] for further explanation of the semantics of
XACML 3.0.

Evaluation of Match, AllOf, AnyOf and Target Components. Let X be either a
Match, an AllOf, an AnyOf or a Target component and letQ be a set of all possible
Requests. AMatch semantic functionis a mappingJXK : Q → {m, nm, idt }, where
m, nm andidt denotematch, no-matchandindeterminate, respectively.

Our evaluation of Match element is based on equality function.4 We check whether
there are any attribute values in Request element that matchthe Match attribute value.

LetQ be a Request element and letM be a Match element. The evaluation of Match
M is as follows

JMK(Q) =

m if M ∈ Q anderror(M) /∈ Q

nm if M /∈ Q anderror(M) /∈ Q

idt if error(M) ∈ Q

(1)

The evaluation of AllOf is a conjunction of a sequence of Match elements. The value
of m, nm andidt corresponds to true, false and undefined in 3-valued logic, respectively.

Given a RequestQ, the evaluation of AllOf,A =
∧n

i=1
Mi, is as follows

JAK(Q) =

m if ∀i : JMiK(Q) = m

nm if ∃i : JMiK(Q) = nm

idt otherwise
(2)

where eachMi is a Match element.
The evaluation of AnyOf element is a disjunction of a sequence of AllOf elements.

Given a RequestQ, the evaluation of AnyOf,E =
∨n

i=1
Ai, is as follows

JEK(Q) =

m if ∃i : JAiK(Q) = m

nm if ∀i : JAiK(Q) = nm

idt otherwise
(3)

where eachAi is an AllOf element.

4 Our Match evaluation is a simplification compared with [11].

The evaluation of Target element is a conjunction of a sequence of AnyOf elements.
An empty Target, indicated bynull attribute, is always evaluated tom. Given a Re-
questQ, the evaluation of Target,T =

∧n

i=1
Ei, is as follows

JT K(Q) =

m if ∀i : JEiK(Q) = m or T = null

nm if ∃i : JEiK(Q) = nm

idt otherwise
(4)

where eachEi is an AnyOf element.

Evaluation of Condition. Let X be a Condition component and letQ be a set of all
possible Requests. ACondition semantic functionis a mappingJXK : Q→ { t, f, idt },
wheret, f andidt denotetrue, falseandindeterminate, respectively.

The evaluation of Condition element is based on the evaluation of its Boolean func-
tion as described in its element. To keep it abstract, we do not specify specific functions;
however, we use an unspecified function,eval, that returns{ t, f, idt }.

Given a RequestQ, the evaluation of ConditionC is as follows

JCK(Q) = eval(C,Q) (5)

Evaluation of Rule.LetX be a Rule component and letQ be a set of possible Requests.
A Rule semantic functionis a mappingJXK : Q → { p, d, ip, id, na }, wherep, d, ip, id
andna correspond topermit, deny, indeterminate permit, indeterminate denyandnot−
applicable, respectively.

Given a RequestQ, the evaluation of RuleRid = [E, T , C] is as follows

JRid K(Q) =

E if JT K(Q) = m andJCK(Q) = t

na if (JT K(Q) = m andJCK(Q) = f) or JT K(Q) = nm

iE otherwise
(6)

whereE is an effect,E ∈ { p, d }, T is a Target element andC is a Condition element.

Evaluation of Policy and PolicySet.LetX be either a Policy or a PolicySet component
and letQ be a set of all possible Requests. APolicy semantic functionis a mapping
JXK : Q → { p, d, ip, id, idp, na }, wherep, d, ip, id, idp andna correspond topermit,
deny, indeterminate permit, indeterminate deny, indeterminate deny permitandnot −
applicable, respectively.

Given a RequestQ, the evaluation of PolicyPid = [T, 〈R1, . . . ,Rn〉,CombID] is
as follows

JPidK(Q) =

id if JT K(Q) = idt and
⊕

CombID(R) = d

ip if JT K(Q) = idt and
⊕

CombID(R) = p

na if JT K(Q) = nm or ∀i : JRiK(Q) = na
⊕

CombID(R) otherwise

(7)

whereT is a Target element, and eachRi is a Rule element. We useR to denote
〈JR1K(Q), . . . , JRnK(Q)〉.
Note:The combining algorithm denoted by

⊕

CombID will be explained in Sect. 2.3.
The evaluation of PolicySet is exactly like the evaluation of Policy except that it

differs in terms of input parameter. While in Policy we use a sequence of Rule elements
as an input, in the evaluation of PolicySet we use a sequence of Policy or PolicySet
elements.

2.3 XACML Combining Algorithms

There are four common combining algorithms defined in XACML 3.0, namely permit-
overrides (po), deny-overrides (do), first-applicable (fa) and only-one-applicable (ooa).
In this paper, we do not consider the deny-overrides combining algorithm since it is the
mirror of the permit-overrides combining algorithm.

Permit-Overrides (po) Combining Algorithm. The permit-overrides combining algo-
rithm is intended for use if a permit decision should have priority over a deny decision.
This algorithm has the following behaviour [11].

1. If any decision is “permit”, the result is “permit”.
2. Otherwise, if any decision is “indeterminate deny permit”, the result is “indeterm-

inate deny permit”.
3. Otherwise, if any decision is “indeterminate permit” andanother decision is “inde-

terminate deny” or “deny”, the result is “indeterminate deny permit”.
4. Otherwise, if any decision is “indeterminate permit”, the result is “indeterminate

permit”.
5. Otherwise, if decision is “deny”, the result is “deny”.
6. Otherwise, if any decision is “indeterminate deny”, the result is “indeterminate

deny”.
7. Otherwise, the result is “not applicable”.

Let 〈s1, . . . , sn〉 be a sequence of element of{ p, d, ip, id, idp, na }. The permit-
overrides combining operatoris defined as follows

⊕

po

(〈s1, . . . , sn〉) =

p if ∃i : si = p

idp if ∀i : si 6= p and
(∃j : sj = idp

or (∃j, j′ : sj = ip and(sj′ = id or sj′ = d))

ip if ∃i : si = ip and∀j : sj 6= ip ⇒ sj = na

d if ∃i : si = d and∀j : sj 6= d⇒ (sj = id or sj = na)

id if ∃i : si = id and∀j : sj 6= id ⇒ sj = na

na otherwise
(8)

First-Applicable (fa) Combining Algorithm. Each Rule must be evaluated in the order
in which it is listed in the Policy. If a particular Rule is applicable, then the result of
first-applicable combining algorithm must be the result of evaluating the Rule. If the
Rule is “not applicable” then the next Rule in the order must be evaluated. If no further
Rule in the order exists, then the first-applicable combining algorithm must return “not
applicable”.

Let 〈s1, . . . , sn〉 be a sequence of element of{ p, d, ip, id, idp, na }. Thefirst-applicable
combining operatoris defined as follows:

⊕

fa

(〈s1, . . . , sn〉) =

{

si if ∃i : si 6= na and∀j : (j < i)⇒ (sj = na)

na otherwise
(9)

Only-One-Applicable (ooa) Combining Algorithm. If only one Policy is considered
applicable by evaluation of its Target, then the result of the only-one-applicable com-
bining algorithm must the result of evaluating the Policy. If in the entire sequence of

Policy elements in the PolicySet, there is no Policy that is applicable, then the result
of the only-one-applicable combining algorithm must be “not applicable”. If more than
one Policy is considered applicable, then the result of the only-one-applicable combin-
ing algorithm must be “indeterminate”.

Let 〈s1, . . . , sn〉 be a sequence of element of{ p, d, ip, id, idp, na }. Theonly-one-
applicable combining operatoris defined as follows:

⊕

ooa

(〈s1, . . . , sn〉) =

idp if (∃i : si = idp) or
(∃i, j : i 6= j andsi = (d or id) ∧ sj = (p or ip))

id if (∀i : si 6= (p or ip or idp)) and
((∃j : sj = id) or (∃j, k : j 6= k andsj = sk = d))

ip if (∀i : si 6= (d or id or idp)) and
((∃j : sj = ip) or (∃j, k : j 6= k andsj = sk = p))

si if ∃i : si 6= na and∀j : j 6= i⇒ sj = na

na otherwise
(10)

3 Transforming XACML Components into Logic Programs

In this section we show, step by step, how to transform XACML 3.0 components into
logic programs. We begin by introducing the syntax of logic programs (LPs). Then we
show the transformation of XACML component into LPs starting from Request element
to PolicySet element. We also present transformations for combining algorithms. The
transformation of each XACML element is based on its formal semantics explained in
Sect. 2.2 and Sect. 2.3.

3.1 Preliminaries

We recall basic notation and terminology that we use in the remainder of this paper.

First-Order Language. We consider analphabetconsisting of (finite or countably
infinite) disjoint sets of variables, constants, function symbols, predicate symbols, con-
nectives{ not,∧,← }, punctuation symbols{ “(”, “,”, “)”, “.” } and special symbols
{ ⊤,⊥ }. We use upper case letters to denote variables and lower caseletters to de-
note constants, function and predicate symbols. Terms, atoms, literals and formulae are
defined as usual. Thelanguagegiven by an alphabet consists of the set of all formulae
constructed from the symbols occurring in the alphabet.

Logic Programs.A rule is an expression of the form

A← B1 ∧ · · · ∧Bm ∧ not Bm+1 ∧ · · · ∧ not Bn. (11)

whereA is either an atom or⊥ and eachBi, 1 ≤ i ≤ n, is an atom or⊤. ⊤ is a
valid formula. We usually writeB1 ∧ · · · ∧Bm ∧not Bm+1 ∧ · · · ∧not Bn simply as
B1, . . . , Bm,not Bm+1, . . . ,not Bn. We call the rule as aconstraintwhenA = ⊥.
One should observe that the body of a rule must not be empty. Afact is a rule of the
formA← ⊤.

A logic programis a finite set of rules. We denoteground(Π) for the set of all
ground instances of rules in the programΠ .

3.2 XACML Components Transformation into Logic Programs

The transformation of XACML components is based on the semantics of each compo-
nent explained in Sect. 2.2.

3.2.1 Request Transformation.XACML Syntax: LetQ = { cat1(a1), . . . , catn(an) }
be a Request component. We transform all members of Request element into facts. The
transformation of Request,Q, into LPΠQ is as follows

cat i(ai) ← ⊤. 1 ≤ i ≤ n

3.2.2 XACML Policy Components Transformation. We use a two-place function
val to indicate the semantics of XACML components where the firstargument is the
name of XACML component and the second argument is its value.Please note that the
calligraphic font in each transformation indicates the XACML component’s name, that
is, it does not represent a variable in LP.

Transformation of Match, AnyOf, AllOf and Target Component s.Given a semantic
equation of the formJXKV (Q) = v if cond1 and . . . andcondn, we produce a rule
of the formval(X, v) ← cond1, . . . , condn. Given a semantic equation of the form
JXKV (Q) = v if cond1 or . . . or condn, we produce a rule of the formval(X, v) ←
cond i. 1 ≤ i ≤ n. For example, the Match evaluationJMK(Q) = m if cat(a) ∈
Q anderror(cat(a)) /∈ Q is transformed into a rule in the formval(M,m) ← M,
not error(M). The truth value ofM depends on whetherM ← ⊤ is in ΠQ and the
same is the case also for the truth value oferror(M).

LetM be a Match component. The transformation of MatchM into LPΠM is as
follows (see (1) for Match evaluation)

val(M,m) ←M,not error(M).
val(M, nm) ← not cat(a),not error(M).
val(M, idt) ← error(M).

LetA =
∧n

i=1
Mi be an AllOf component where eachMi is a Match component.

The transformation of AllOfA into LPΠA is as follows (see (2) for AllOf evaluation)

val(A,m) ← val(M1,m), . . . , val(Mn,m).
val(A, nm) ← val(Mi, nm). (1 ≤ i ≤ n)
val(A, idt) ← not val(A,m),not val(A, nm).

Let E =
∨n

i=1
Ai be an AnyOf component where eachAi is an AllOf component.

The transformation of AnyOfE into LPΠE is as follows (see (3) for AnyOf evaluation)

val(E ,m) ← val(Ai,m). (1 ≤ i ≤ n)
val(E ,nm) ← val(A1, nm), . . . , val(An, nm).
val(E , idt) ← not val(A,m),not val(E ,nm).

Let T =
∧n

i=1
Ti be a Target component where eachEi is an AnyOf component.

The transformation of TargetT into LPΠT is as follows (see (4) for Target evaluation)

val(null,m) ← ⊤.
val(T ,m) ← val(E1,m), . . . , val(En,m).
val(T , nm) ← val(Ei, nm). (1 ≤ i ≤ n)
val(T , idt) ← not val(T ,m),not val(T , nm).

Transformation of Condition Component. The transformation of ConditionC into
LP ΠC is as follows

val(C, V) ← eval(C, V).

Moreover, the transformation of Condition also depends on the transformation ofeval
function into LP. Since we do not describe specificeval functions, we leave this trans-
formation to the user.

Example 1.A possibleeval function for ”rule r1: patient only can see his or her patient
record” is

Πcond(r1) :
val(cond(r1), V) ← eval(cond(r1), V).
eval(cond(r1), t) ← patient id(X), patient record id(X),

not error(patient id(X)),not error(patient record id(X)).
eval(cond(r1), f) ← patient id(X), patient record id(Y), X 6= Y,

not error(patient id(X)),not error(patient record id(Y)).
eval(cond(r1), idt) ← not eval(cond(r1), t),not eval(cond(r1), f).

The error(patient id(X)) anderror(patient record id(X)) indicate possible errors
that might occur, e.g., the system could not connect to the database so that the system
does not know the ID of the patient. ✷

Transformation of Rule Component.The general step of the transformation of Rule
component is similar to the transformation of Match component.

LetR = [e, T , C] be a Rule component wheree ∈ { p, d }, T is a Target andC is
a Condition. The transformation of RuleR into LPΠR is as follows (see (6) for Rule
evaluation)

val(R, e) ← val(T ,m), val(C, t).
val(R, na) ← val(T ,m), val(C, f).
val(R, na) ← val(T , nm).
val(R, ie) ← not val(R, e),not val(R, na).

Transformation of Policy and PolicySet Components.Given a Policy component
Pid = [T , 〈R1, . . . ,Rn〉,CombID] whereT is a Target,〈R1, . . . ,Rn〉 is a sequence
of Rule elements andCombID is a combining algorithm identifier. In order to indicate
that the Policy contains RuleRi, for every RuleRi ∈ 〈R1, . . . ,Rn〉, ΠPid

contains:

decision of(Pid ,Ri, V) ← val(Ri, V). (1 ≤ i ≤ n)

The transformation for PolicyΠ into LP ΠPid
is as follows (see (7) for Policy

evaluation)

val(Pid , id) ← val(T , idt), algo(CombID,Pid , d).
val(Pid , ip) ← val(T , idt), algo(CombID,Pid , p).
val(Pid , na) ← val(T , nm).
val(Pid , na) ← val(R1, na), . . . , val(Rn, na).
val(Pid , V

′) ← val(T ,m), decision of(Pid ,R, V), V 6= na, algo(CombID,Pid , V
′).

val(Pid , V
′) ← val(T , idt), decision of(Pid ,R, V), V 6= na, algo(CombID,Pid , V

′), V ′ 6= p.

val(Pid , V
′) ← val(T , idt), decision of(Pid ,R, V), V 6= na, algo(CombID,Pid , V

′), V ′ 6= d.

We write a formuladecision of(Pid ,R, V), V 6= na to make sure that there is a Rule
in the Policy that is not evaluated tona. We do this to avoid a return value from a com-
bining algorithm that is notna, even tough all of the Rule elements are evaluated tona.
The transformation of PolicySet is similar to the transformation of Policy component.

3.3 Combining Algorithm Transformation

We define generic LPs for permit-overridescombining algorithm and only-one-applicable
combining algorithm. Therefore, we use a variableP to indicate a variable over Policy
identifier andR, R1 andR2 to indicate variables over Rule identifiers. In case the eval-
uation of PolicySet, the inputP is for PolicySet identifier,R,R1 andR2 are for Policy
(or PolicySet) identifiers.

Permit-Overrides Transformation. Let Πpo be a LP obtained by permit-overrides
combining algorithm transformation (see (8) for the permit-overrides combining algo-
rithm semantics).Πpo contains:

algo(po, P, p) ← decision of(P,R, p).
algo(po, P, idp) ← not algo(po, P, p), decision of(P,R, idp).
algo(po, P, idp) ← not algo(po, P, p), decision of(P,R1, ip), decision of(P,R2, d).
algo(po, P, idp) ← not algo(po, P, p), decision of(P,R1, ip), decision of(P,R2, id).
algo(po, P, ip) ← not algo(po, P, p),not algo(po, P, idp), decision of(P,R, ip).
algo(po, P, d) ← not algo(po, P, p),not algo(po, P, idp),not algo(po, P, ip),

decision of(P,R, d).
algo(po, P, id) ← not algo(po, P, p),not algo(po, P, idp),not algo(po, P, ip),

not algo(po, P, d), decision of(P,R, id).
algo(po, P, na) ← not algo(po, P, p),not algo(po, P, idp),not algo(po, P, ip),

not algo(po, P, d),not algo(po, P, id).

First-Applicable Transformation. LetΠfa be a logic program obtained by first-applicable
combining algorithm transformation (see (9) for the first-applicable combining algo-
rithm semantics). For each Policy (or PolicySet) which usesthis combining algorithm,
Pid = [T , 〈R1, . . . ,Rn〉, fa], ΠPid

contains:

algo(fa,Pid , E) ← decision of(Pid ,R1, V), V 6= na.

algo(fa,Pid , E) ← decision of(Pid ,R1, na), decision of(Pid ,R2, E), E 6= na.
...

algo(fa,Pid , E) ← decision of(Pid ,R1, na), . . . , decision of(Pid ,Rn−1, na), decision of(Pid , Rn, E).

Only-One-Applicable Transformation. LetΠooa be a logic program obtained by only-
one-applicable combining algorithm transformation (see (10) for the only-one-applicable

combining algorithm semantics).Πooa contains:

algo(ooa, P, idp) ← decision of(P,R, idp).
algo(ooa, P, idp) ← decision of(P,R1, id), decision of(P,R2, ip), R1 6= R2.

algo(ooa, P, idp) ← decision of(P,R1, id), decision of(P,R2, p), R1 6= R2.

algo(ooa, P, idp) ← decision of(P,R1, d), decision of(P,R2, ip), R1 6= R2.

algo(ooa, P, idp) ← decision of(P,R1, d), decision of(P,R2, p), R1 6= R2.

algo(ooa, P, ip) ← not algo(ooa, P, idp), decision of(P,R, ip).
algo(ooa, P, ip) ← not algo(ooa, P, idp), decision of(P,R1, p), decision of(P,R2, p), R1 6= R2.

algo(ooa, P, id) ← not algo(ooa, P, idp), decision of(P,R, id).
algo(ooa, P, id) ← not algo(ooa, P, idp), decision of(P,R1, d), decision of(P,R2, d), R1 6= R2.

algo(ooa, P, p) ← not algo(ooa, P, idp),not (ooa, P, id),not (ooa, P, ip), decision of(P,R, p).
algo(ooa, P, d) ← not algo(ooa, P, idp),not (ooa, P, id),not (ooa, P, ip), decision of(P,R, d).
algo(ooa, P, na) ← not algo(ooa, P, idp),not (ooa, P, id),not (ooa, P, ip),

not decision of(P,R, d),not decision of(P,R, p).

4 Relation between XACML-ASP and XACML 3.0 Semantics

In this section we discuss the relationship between the ASP semantics and XACML 3.0
semantics. First, we recall the semantics of logic programsbased on their answer sets.
Then, we show that the program obtained from transforming XACML components into
LPs (ΠXACML) merges with the query program (ΠQ) and has a unique answer set that the
answer set corresponds to the semantics of XACML 3.0.

4.1 ASP Semantics

The declarative semantics of a logic program is given by a model-theoretic semantics
of formulae in the underlying language. The formal definition of answer set semantics
can be found in much literature such as [3,6].

The answer set semantics of logic programΠ assigns toΠ a collection ofanswer
sets– interpretations ofground(Π). An interpretationI of ground(Π) is an answer set
for Π if I is minimal (w.r.t. set inclusion) among the interpretations satisfying the rules
of

ΠI = {A← B1, . . . , Bm| A← B1, . . . , Bm,not Bm+1, . . . ,not Bn ∈ Π and
I(not Bm+1, . . . ,not Bn) = true}

A logic program can have a single unique answer set, many or noanswer set(s). There-
fore, we show that programs with a particular characteristic are guaranteed to have a
unique answer set.

Acyclic Programs. We say that a program isacyclic when there is no cycle in the
program.The acyclicity in the program is guaranteed by the existence of a certain fixed
assignment of natural numbers to atoms that is called alevel mapping.

A level mappingfor a programΠ is a function

l : BΠ → N

whereN is the set of natural numbers andBΠ is the Herbrand base forΠ . We extend
the definition of level mapping to a mapping from ground literals to natural numbers by
settingl(not A) = l(A).

LetΠ be a logic program andl be a level mapping forΠ . Π is acyclic with respect
to l if for every clauseA ← B1, . . . , Bm,not Bm+1, . . . ,not Bn in ground(Π) we
find

l(A) > l(Bi) for all i with 1 ≤ i ≤ n

Π is acyclic if it is acyclic with respect to some degree of level mapping.Acyclic
programs are guaranteed to have a unique answer set [3].

4.2 XACML Semantics Based On ASP Semantics

We can see from Sect. 3 that all of the XACML 3.0 transformation programs are acyclic.
Thus, it is guaranteed thatΠXACML has a unique answer set.

Proposition 1. LetΠXACML be a program obtained from XACML 3.0 element transform-
ations and letΠQ be a program transformation of RequestQ. Let I be the answer set
ofΠXACML∪ΠQ. Then the following equation holds

JXK(Q) = V iff val(X,V) ∈ I

whereX is an XACML component.

Note: We can see that there is no cycle in all of the program transformations. Thus,
there is a guarantee that the answer set ofΠXACML ∪ΠQ is unique. The transformation of
each component into a logic program is based on exactly the definition of its XACML
evaluation. The proof of this proposition can be seen in the extended version in [10].

5 Analysis XACML Policies Using Answer Set Programming

In this section we show how to use ASP for analysing access control security properties
throughΠXACML . In most cases, ASP solver can solve combinatorial problemsefficiently.
There are several combinatorial problems in analysis access control policies, e.g., gap-
free property and conflict-free property [14,5]. In this section we look at gap-free ana-
lysis since in XACML 3.0 conflicts never occur.5 We also present a mechanism for the
verification of security properties against a set of access control policies.

5.1 Query Generator

In order to analyse access control property, sometimes we need to analyse all possible
queries that might occur. We usecardinality constraint(see [15,16]) to generate all
possible values restored in the database for each attribute. For example, we have the
following generator:

Pgenerator :
(1) 1{subject(X) : subject db(X)}1 ← ⊤.
(2) 1{action(X) : action db(X)}1 ← ⊤.
(3) 1{resource(X) : resource db(X)}1 ← ⊤.
(4) 1{environment(X) : environment db(X)}1← ⊤.

The first line of the encoding means that we only consider one and only onesubject
attribute value obtained from the subject database. The rest of the encoding means the
same as thesubject attribute.

5 A conflict decision never occurs when we strictly use the standard combining algorithm
defined in XACML 3.0, since every combining algorithm alwaysreturn one value.

5.2 Gap-Free Analysis

A set of policies isgap-freeif there is no access request for which there is an absence
of decision. XACML defines that there is one PolicySet as the root of a set of policies.
Hence, we say that there is a gap whenever we can find a request that makes the se-
mantics of thePSroot is assigned tona. We force ASP solver to find the gap by the
following encoding.

Πgap :
gap ← val(PSroot , na).
⊥ ← not gap.

In order to make sure that a set of policies is gap-free we should generate all possible
requests and test whether at least one request is not captured by the set of policies. Thus,
the answer sets of programP = ΠXACML ∪ Πgenerator ∪ Πgap are witnesses that the set
of policies encoded inΠXACML is incomplete. When there is no model that satisfies the
program then we are sure that the set of policies captures allof possible cases.

5.3 Property Analysis

The problem of verifying a security propertyΦ on XACML policies is not only to show
that the propertyΦ holds onΠXACML but also that we want to see the witnesses whenever
the propertyΦ does not hold in order to help the policy developer refine the policies.
Thus, we can see this problem as finding models forΠXACML ∪ Πgenerator ∪ Π¬Φ. The
founded model is the witness that the XACML policies cannot satisfy the propertyΦ.

Example 2.Suppose we have a security property:

Φ: An anonymous personcannot read any patient records.

Thus, the negation of propertyΦ is as follows

¬Φ: An anonymous personcan read any patient records.

We define that anonymous persons are those who are neither patients, nor guardians,
nor doctors, nor nurses. We encodeP¬Φ as follows

(1) anonymous ← not subject(patient),not subject(guardian),
not subject(doctor),not subject(nurse).

(2) ⊥ ← not anonymous.

(3) action(read) ← ⊤.
(4) resource(patient record) ← ⊤.
(5) ⊥ ← not val(PSroot, p).

We list all of the requirements (lines 1 – 4). We force the program to find an anonymous
person (line 2). Later we force that the returned decision should be to permit (line 5).
When the programΠXACML ∪ Πgenerator ∪ Π¬Φ returns models, we conclude that the
propertyΦ does not hold and the returned models are the flaws in the policies. On the
other hand, we conclude that the propertyΦ is satisfied if no model is found.

6 Related Work

There are some approaches to defining AC policies in LPs, suchas Barkeret al. in [4]
use constraint logic program to define role-based access control, Jajodiaet al. in [7]
using FAM / CAM program – a logical language that uses a fixed set of predicates. How-
ever, their approaches are based on their own access controlpolicy language whereas
our approach is to define a well-known access control policy language, XACML.

Our approach is inspired by the work of Ahnet al. [1,2]. There are three main
differences between our approach and the work of Ahnet al.

First, while they consider XACML version 2.0 [8], we addressthe newer version,
XACML 3.0. The main difference between XACML 3.0 and XACML 2.0 is the treat-
ment of indeterminate values. As a consequence, the combining algorithms in XACML
3.0 are more complex than the ones in XACML 2.0. XACML 2.0 onlyhas a single
indeterminate value while XACML 3.0 distinguishes betweenthe following three types
of indeterminate values:

i. Indeterminate permit(ip) – an indeterminate value arising from a policy which
could have been evaluated to permit but not deny;

ii. Indeterminate deny(id) – an indeterminate value arising from a policy which could
have been evaluated to deny but not permit;

iii. Indeterminate deny permit(idp) – an indeterminate value arising from a policy
which could have been evaluated as both deny and permit.

Second, Ahnet al.produce a monolithic logic program that can be used for the ana-
lysis of XACML policies while we take a more modular approachby first modelling an
XACML PDP as a logic program and then using this encoding within a larger program
for property analysis. While Ahn,et al. only emphasize the indeterminate value in the
combining algorithms, our concern is “indeterminate” value in all aspect of XACML
components, i.e., in Match, AnyOf, AllOf, Target, Condition, Rule, Policy and Poli-
cySet components. Hence, we show that our main concern is to simulate the PDP as in
XACML model.

Finally, Ahn et al. translate the XACML specification directly into logic program-
ming, so the ambiguities in the natural language specification of XACML are also re-
flected in their encodings. To avoid this, we base our encodings on our formalisation of
XACML from [9].

7 Conclusion and Future Work

We have modelled the XACML Policy Decision Point in a declarative way using the
ASP technique by transforming XACML 3.0 elements into logicprograms. Our trans-
formation of XACML 3.0 elements is directly based on XACML 3.0 semantics [11] and
we have shown that the answer set of each program transformation is unique and that
it agrees with the semantics of XACML 3.0. Moreover, we can help policy developers
analyse their access control policies such as checking policies’ completeness and verify-
ing policy properties by inspecting the answer set ofΠXACML ∪Πgenerator ∪Πconfiguration

– the program obtained by transforming XACML 3.0 elements into logic programs
joined with a query generator program and a configuration program.

For future work, we can extend our work to handle role-based access control in
XACML 3.0 [13] and to handle delegation in XACML 3.0 [12]. Also, we can extend
our work for checking reachability of policies. A policy is reachable if we can find a

request such that this policy is applicable. Thus, by removing unreachable policies we
will not change the behaviour of the whole set of policies.

References

1. G.-J. Ahn, H. Hu, J. Lee, and Y. Meng. Reasoning about XACMLpolicy descriptions in
answer set programming (preliminary report). InNMR’10, 2010.

2. G.-J. Ahn, H. Hu, J. Lee, and Y. Meng. Representing and reasoning about web access control
policies. InCOMPSAC. IEEE Computer Society, 2010.

3. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, 2003.

4. S. Barker and P. J. Stuckey. Flexible access control policy specification with constraint logic
programming.TISSEC, 6, 2003.

5. G. Bruns and M. Huth. Access-control via Belnap logic: Effective and efficient composition
and analysis. In21st IEEE Computer Security Foundations Symposium, 2008.

6. M. Gelfond. Handbook of knowledge representation. In B. Porter F. van Harmelen, V. Lif-
schitz, editor,Foundations of Artificial Intelligence, volume 3, chapter Answer Sets, pages
285–316. Elsevier, 2007.

7. S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Bertino. A unified framework for en-
forcing multiple access control policies. InIn Proceedings of ACM SIGMOD International
Conference on Management of Data, 1997.

8. T. Moses. eXtensible Access Control Markup Language (XACML) version 2.0. Tech-
nical report, OASIS, http://docs.oasis-open.org/xacml/2.0/accesscontrol-xacml-2.0-core-
spec-os.pdf, August 2010.

9. C. D. P. K. Ramli, H. R. Nielson, and F. Nielson. The logic ofXACML. In FACS’11, Lecture
Notes in Computer Science, 2011.

10. C. D. P. K. Ramli, H. R. Nielson, and F. Nielson. Xacml 3.0 in answer set programming –
extended version. Technical report, arXiv.org, February 2013.

11. E. Rissanen. eXtensible Access Control Markup Language(XACML) version 3.0 (committe
specification 01). Technical report, OASIS, http://docs.oasis-open.org/xacml/3.0/xacml-3.0-
core-spec-cs-01-en.pdf, August 2010.

12. E. Rissanen. XACML v3.0 administration and delegation profile version 1.0 (committe
specification 01). Technical report, OASIS, http://docs.oasis-open.org/xacml/3.0/xacml-3.0-
administration-v1-spec-cs-01-en.pdf, August 2010.

13. E. Rissanen. XACML v3.0 core and hierarchical role basedaccess control (rbac) pro-
file version 1.0 (committe specification 01). Technical report, OASIS, http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-rbac-v1-spec-cs-01-en.pdf, August 2010.

14. P. Samarati and Sabrina de Capitani di Vimercati. Accesscontrol: Policies, models, and
mechanisms. InFoundations of Security Analysis and Design, Tutorial Lectures, 2001.

15. P. Simons, I. Niemelá, and T. Soininen. Extending and implementing the stable model se-
mantics.Artificial Intelligence, 138:181–234, 2002.

16. T. Syrjänen.Lparse 1.0 User’s Manual.

A ASP Semantics

A.1 Interpretations and Models

The Herbrand UniverseUL for a languageL is the set of all ground terms that can
be formed from the constants and function symbols appearingin L. The Herbrand
baseBL for a languageL is the set of all ground atoms that can be formed by using

predicate symbols fromL and ground terms fromUL as arguments. ByBΠ we denote
the Herbrand base for language underlying the programΠ . When the context is clear,
we are safe to omitΠ .

An interpretationI of a programΠ is a mapping from the Herbrand baseBΠ to the
set of truth values: true and false ({ ⊤,⊥ }). All atoms belong to interpretationI are
mapped to⊤. All atoms which does not occur inI are mapped to⊥.

The truth value of arbitrary formulae under some interpretation can be determined
from a truth table as usual (see Table 2).

Table 2.Truth Values for Formulae

φ ψ not φ φ ∧ ψ φ← ψ

⊤ ⊤ ⊥ ⊤ ⊤
⊤ ⊥ ⊥ ⊥ ⊤
⊥ ⊤ ⊤ ⊥ ⊥
⊥ ⊥ ⊤ ⊥ ⊤

The logical value of ground formulae can be derived from Table 2 in the usual way.
A formulaφ is thentrue under interpretationI, denoted byI(φ) = ⊤, if all its ground
instances are true inI; it is false under interpretationI, denoted byI(φ) = ⊥, if there
is a ground instance ofφ that is false inI.

Let I be an interpretation.I satisfiesformulaφ if I(φ) = ⊤. For a programΠ , we
sayI satisfiesof Π if I satisfies for every rule inΠ . An interpretationI is amodelof
formulaφ if I satisfiesφ.

Let I be a collection of interpretations. Then an interpretationI is I is calledmin-
imal in I if and only if there is no interpretationJ in I such thatJ (I. An interpret-
ationI is calledleastin I if and only if I ⊆ J for any interpretationJ in I. A model
M of a programΠ is called minimal (respectively least) if it is minimal (respectively
least) among all models ofΠ .

A.2 Answer Set

An interpretationI of ground(Π) is an answer set forΠ if I is minimal (w.r.t. set
inclusion) among the interpretations satisfying the rulesof

ΠI = {A← B1, . . . , Bm| A← B1, . . . , Bm,not Bm+1, . . . ,not Bn ∈ Π and
I(not Bm+1, . . . ,not Bn) = ⊤}

B Proofs

Lemma 1. LetM be an answer set of programΠ and letH ← Body be a rule inΠ .
Then,H ∈M if M(Body) = ⊤.

Proof. Let Body = B1, . . . , Bm,not Bm+1, . . . ,not Bn. To show the lemma holds,
supposeM(Body) = ⊤. Then we find that{B1, . . . , Bm } ⊆M andM∩{Bm+1, . . . , Bn } =

∅. SinceM is a minimal model ofΠM then we find thatH ← B1, . . . , Bn is in ΠM .
Since{B1, . . . , Bm } ⊆M andM is a model thenM(H) = ⊤. ThusH ∈M . ⊓⊔

The Lemma 1 only ensures that if the body of a rule is true underan answer set
M then the head is also inM . However, in general, if the head of a rule is in a answer
setM then there is no guarantee that the body is always true underM . For example,
suppose we have a program{ p← ⊤., p← q. }. In this example the only answer set is
M = { p }. We can see thatp is inM . However,q is not inM , thus,M(q) is false.

Lemma 2. LetM be an answer set of programΠ and letH be inM . Then, there is a
rule inΠ whereH as the head.

Proof. Suppose thatM is an answer set of programΠ . Then we find thatM is a
minimal model ofΠM . SupposeH ∈ M and there is no rule inΠM such thatH as
the head. Then, we find thatM ′ = M/ {H } andM ′ is a model ofΠM . SinceM is a
minimal model ofΠM but we haveM ′ ⊂M . Therefore we find a contradiction. Thus,
there should be a rule inΠM such thatH as the head. Hence, there is a rule inΠ such
thatH as the head. ⊓⊔

Lemma 3. LetM be an answer set of programΠ and letH be inM . Then, there exists
a rule whereH as the head and the body is true underM .

Proof. Suppose thatM is an answer set of programΠ . SinceH is in M thus, by
Lemma 2, we find that there is a rule inΠ in a form H ← Body. Suppose that
M(Body) 6= ⊤. Therefore,H ← Body is not in ΠM . Moreover, we can find an-
other interpretationM ′ such thatM/ {H } andM ′ is also a model ofΠM . However,
we know thatM is a minimal model forΠM but we haveM ′ ⊂ M . Thus, there is a
contradiction. ⊓⊔

We define some notation:

XACML Components XACML Symbols LP Symbols
Match M ΠM = ΠM

AllOf A =
∧
Mi ΠA =

⋃
ΠMi ∪ΠA

AnyOf E =
∨
Ai ΠE =

⋃
ΠAi ∪ΠE

Target T =
∧
Ei ΠT =

⋃
ΠEi ∪ΠT

Condition C ΠC = ΠC

Rule R = [E, T , C] ΠR = ΠT ∪ΠC ∪ΠR

Policy P = [T , 〈R1, . . . ,Rn〉,CombID] ΠP =
⋃
ΠRi ∪ΠT ∪ΠCombID ∪ΠP

PolicySet PS = [T , 〈P1, . . . ,Pn〉,CombID] ΠP =
⋃
ΠPi ∪ΠT ∪ΠCombID ∪ΠPS

Combining Algorithm CombID is eitherpo or faor ooa ΠCombID =
⋃
ΠRi

∪ΠPj
ΠCombID

Match Evaluation.

Lemma 4. LetΠ = ΠQ ∪ΠM be a program andM be an answer set ofΠ . Then,

JMK(Q) = m if and only if val(M,m) ∈M .

Proof. (⇒) Suppose thatJMK = m holds. Then, as defined in (1),M ∈ Q and
error(M) 6∈ Q. Based on the transformation of Request element, we find out that
M ← ⊤ is in Π and there is no rule whereerror(M) as the head inΠ . SinceM
is the minimal model ofΠ , we get thatM ∈M anderror(M) 6∈M . Thus we get that

M (M∧ not error(M)) = ⊤. Therefore, by Lemma, 1val(M,m) ∈M .
(⇐) Suppose thatval(M,m) ∈ M . By Lemma 3 we get that there is a rule where
val(M,m) as the head and the body is true underM . Since there is only one rule where
val(M,m) as the head inΠ , i.e.,val(M,m) ←M,not error(M), then, we find that
M(M∧not error(M)) = ⊤. Therefore,M ∈M anderror(M) 6∈M . Since the only
possible to haveM true in this case is only through the Request transformation, we get
thatM ∈ Q anderror(M) 6∈ Q. Therefore, we obtainJMK(Q) = m. ⊓⊔

Lemma 5. LetΠ = ΠQ ∪ΠM be a program andM be an answer set ofΠ . Then,

JMK(Q) = nm if and only if val(M, nm) ∈M .

Proof. (⇒) Suppose thatJMK = nm. Then, as defined in (1) we have thatM 6∈ Q and
error(M) 6∈ Q. Based on the transformation of Request, we find out that there is no rule
whereM anderror(M) as the heads. SinceM is the minimal model ofΠ , we get that
M anderror(M) are not inM . Thus, we get thatM(notM∧ not error(M)) = ⊤.
Therefore, by Lemma 1,val(M, nm) ∈M .
(⇐) Suppose thatval(M, nm) ∈ M whereM = M. Based on Lemma 3 we get
that there is a rule whereval(M, nm) as the head and the body is true underM .
Since there is only one rule whereval(M, nm) as the head inΠ , i.e.,val(M, nm) ←
notM,not error(M), then, we find thatM(notM∧ not error(M)) = ⊤. There-
fore,M 6∈M anderror(M) 6∈M . Since the only possible of declaring facts in this case
is only through the Request transformation, we get thatM 6∈ Q anderror(M) 6∈ Q.
Therefore, we obtainJMK(Q) = nm. ⊓⊔

Lemma 6. LetΠ = ΠQ ∪ΠM be a program andM be an answer set ofΠ . Then,

JMK(Q) = idt if and only if val(M, idt) ∈M .

Proof. (⇒) Suppose thatJMK(Q) = idt holds whereM =M. Then, as defined in (1),
we have thaterror(M) ∈ Q. Based on the transformation of Request element, we find
out thaterror(M)← ⊤ is inΠ . SinceM is the minimal model ofΠ , then, we get that
error(M) ∈ M . Thus, we get thatM(error(M)) = ⊤. Therefore,val(M, idt) ∈ M
sinceM is the minimal model ofΠ .
(⇐) Suppose thatval(M, idt) ∈ M . Based on Lemma 3 we get that there is a rule
where val(M, idt) as the head and the body is true underM . Since there is only
one rule inΠ with val(M, idt) in the head, i.e.,val(M, idt) ← error(M), then we
find thatM(error(M)) = ⊤. Therefore,error(M) ∈ M . Since the only possible to
haveerror(M) true in this case is only through the Request transformation, we get that
error(M) ∈ Q. Therefore, we obtainJMK(Q) = idt. ⊓⊔

Proposition 2. LetΠ = ΠQ∪ΠM be a program andM be an answer set ofΠ . Then,

JMK(Q) = V if and only if val(M, V) ∈M .

Proof. It follows from Lemma 4, Lemma 5 and Lemma 6 since the value ofV only has
three possibilities, i.e.,{m, nm, idt }. ⊓⊔

AllOf Evaluation.

Lemma 7. LetΠ = ΠQ ∪ΠA be a program andM be an answer set ofΠ . Then,

JAK(Q) = m if and only if val(A,m) ∈M .

Proof. LetA =
∧n

i=1
Mi.

(⇒) Suppose thatJAK(Q) = m holds. Then, as defined in (2),∀i : JMiK(Q) =
m, 1 ≤ i ≤ n. Based on Prop. 2,∀i : val(Mi,m) ∈ M, 1 ≤ i ≤ n. Therefore,
M(val(M1,m) ∧ . . . ∧ val(Mn,m)) = ⊤. Hence, by Lemma 1,val(A,m) ∈M .
(⇐) Suppose thatval(A,m) ∈M . Based on Lemma 3, there is a rule whereval(A,m)
as the head and the body is true underM . Since there is only one rule inΠ with
val(A,m) in the head, i.e.,val(A,m) ← val(M1,m), . . . , val(Mn,m), we find that
M(val(M1,m) ∧ . . . ∧ val(Mn,m)) = ⊤. Therefore,val(Mi,m) ∈ M, 1 ≤ i ≤ n.
Based on Prop. 2,JMiK(Q) = m, 1 ≤ i ≤ n. Therefore, based on (2), we obtain
JAK(Q) = m. ⊓⊔

Lemma 8. LetΠ = ΠQ ∪ΠA be a program andM be an answer set ofΠ . Then,

JAK(Q) = nm if and only if val(A, nm) ∈M .

Proof. LetA =
∧n

i=1
Mi.

(⇒) Suppose thatJAK(Q) = nm holds. Then, as defined in (2) we have that∃i :
JMiK(Q) = nm. Based on Prop. 2 we get that∃i : val(Mi, nm) ∈ M . Thus, we get
that∃i : M(val(Mi), nm) = ⊤. Therefore, by Lemma 1,val(M, nm) ∈M .
(⇐) Suppose thatval(A, nm) ∈M . Based on Lemma 3 we get that there is a rule where
val(A, nm) as the head and the body is true underM . Based on AllOf transformation,
∃i : M(val(Mi), nm) = ⊤. Therefore,∃i : val(Mi, nm) ∈ M . Based on Prop. 2 we
get that∃i : JMiK(Q) = nm. Therefore, based on (2), we obtainJAK(Q) = nm. ⊓⊔

Lemma 9. LetΠ = ΠQ ∪ΠA be a program andM be an answer set ofΠ . Then,

JAK(Q) = idt if and only if val(A, idt) ∈M .

Proof. (⇒) Suppose thatJAK(Q) = idt. Then, as defined in (2),JAK(Q) 6= m and
JAK(Q) 6= nm. Thus, by Lemma 7 and Lemma 8,val(A,m) 6∈ M andval(A, nm) 6∈
M . Hence,M(not val(A,m) ∧ not val(A, nm)) = ⊤. Therefore, by Lemma 1,
val(A, idt) ∈M .
(⇐) Suppose thatval(A, idt) ∈M . Based on Lemma 3, there is a rule whereval(A, idt)
as the head and the body is true underM . There is only one rule whereval(A, idt) as the
head inΠ , i.e.,val(A, idt)← not val(A,m),not val(A, nm). Hence,val(A,m) 6∈M
andval(A, nm) 6∈ M . Based on Lemma 7 and Lemma 8 we get thatJAK(Q) 6= m and
JAK(Q) 6= nm. Therefore, based on (2), we obtainJAK(Q) = idt. ⊓⊔

Proposition 3. LetΠ = ΠQ ∪ΠA be a program obtained by merging Request trans-
formation programΠQ and AllOfA transformations program with all of its compon-
entsΠA. LetM be an answer set ofΠ . Then,

JAK(Q) = V if and only if val(A, V) ∈M .

Proof. It follows from Lemma 7, Lemma 8 and Lemma 9 since the value ofV only has
three possibilities, i.e.,{m, nm, idt }. ⊓⊔

AnyOf Evaluation.

Lemma 10. LetΠ = ΠQ ∪ΠE be a program andM be an answer set ofΠ . Then,

JEK(Q) = m if and only if val(E ,m) ∈M .

Proof. Let E =
∨n

i=1
Ai

(⇒) Suppose thatJEK(Q) = m holds. Then, as defined in (3),∃i : JAiK(Q) = m, 1 ≤
i ≤ n. Based on Prop. 3,∃i : val(Ai,m) ∈M, 1 ≤ i ≤ n. Thus,∃i : M(val(Ai,m)) =
⊤. Therefore, by Lemma 1,val(E ,m) ∈M .
(⇐) Suppose thatval(E ,m) ∈ M . Based on Lemma 3, here is a rule whereval(E ,m)
as the head and the body is true underM . Based on AnyOf transformation,∃i :
M(val(Ei),m) = ⊤. Therefore,∃i : val(Ei,m) ∈M . Based on Prop. 3,∃i : JEiK(Q) =
m. Therefore, based on (3), we obtainJEK(Q) = m. ⊓⊔

Lemma 11. LetΠ = ΠQ ∪ΠE be a program andM be an answer set ofΠ . Then,

JEK(Q) = nm if and only if val(E , nm) ∈M .

Proof. Let E =
∨n

i=1
Ai

(⇒) Suppose thatJEK(Q) = nm holds. Then, as defined in (3),∀i : JAiK(Q) = nm.
Based on Prop. 3,∀i : val(Ai, nm) ∈M . Thus,M(val(A1, nm)∧· · ·∧val(An, nm)) =
⊤. Therefore, by Lemma 1,val(E , nm) ∈M .
(⇐) Suppose thatval(E , nm) ∈ M . By Lemma 3, there is a rule whereval(E , nm) as
the head and the body is true underM . There is only one rule inΠ with val(E ,m) in the
head inΠ , i.e.,val(E , nm)← val(A1, nm), . . . , val(An, nm). Thus,M(val(A1, nm) ∧
. . . ∧ val(An, nm)) = ⊤. Therefore,val(Ai, nm) ∈ M, 1 ≤ i ≤ n. Based on Prop. 3,
JAiK(Q) = nm, 1 ≤ i ≤ n. Therefore, based on (3), we obtainJEK(Q) = nm. ⊓⊔

Lemma 12. LetΠ = ΠQ ∪ΠE be a program andM be an answer set ofΠ . Then,

JEK(Q) = idt if and only if val(E , idt) ∈M .

Proof. (⇒) Suppose thatJEK(Q) = idt. Then, as defined in (3),JEK(Q) 6= m and
JEK(Q) 6= nm. Thus, by Lemma 10 and Lemma 11,val(E ,m) 6∈ M andval(E , nm) 6∈
M . Hence,M(not val(E ,m) ∧ not val(E , nm)) = ⊤. By Lemma 1,val(E , idt) ∈M .
(⇐) Suppose thatval(E , idt) ∈M . Based on Lemma 3, there is a rule whereval(E , idt)
as the head and the body is true underM . There is only one rule inΠ with val(E , idt) in
the head, i.e.,val(E , idt)← not val(E ,m),not val(E , nm). Hence,val(E ,m) 6∈M and
val(E , nm) 6∈M . Based on Lemma 10 and Lemma 11,JEK(Q) 6= m andJEK(Q) 6= nm.
Therefore, based on (3), we obtainJEK(Q) = idt. ⊓⊔

Proposition 4. LetΠ = ΠQ ∪ΠE be a program obtained by merging Request trans-
formation programΠQ and AnyOfE transformations program with all of of its com-
ponentsΠE . LetM be an answer set ofΠ . Then,

JEK(Q) = V if and only if val(E , V) ∈M .

Proof. It follows from Lemma 10, Lemma 11 and Lemma 12 since the valueof V only
has three possibilities, i.e.,{m, nm, idt }. ⊓⊔

Target Evaluation.

Lemma 13. LetΠ = ΠQ ∪ΠT be a program andM be an answer set ofΠ . Then,

JT K(Q) = m if and only if val(T ,m) ∈M .

Proof. Let T =
∧n

i=1
E .

(⇒) Suppose thatJT K(Q) = m holds. Then, as defined in (4), we have that

1. ∀i : JEiK(Q) = m, 1 ≤ i ≤ n. Based on Prop. 4,∀i : val(Ei,m) ∈ M, 1 ≤ i ≤ n.
Thus,M(val(E1,m)∧ . . .∧val(En,m)) = ⊤. Therefore, by Lemma 1,val(T ,m) ∈
M .

2. T = null. Based on Target transformation we get thatval(null,m) ← ⊤. Thus,
val(T ,m) ∈M sinceM is the minimal model ofΠ .

(⇐) Suppose thatval(T ,m) ∈M . Based on Lemma 3, there is a clause whereval(T ,m)
as the head and the body is true underM .

1. T 6= null. There is a rule whereval(T ,m) as the head, i.e.,val(T ,m) ←
val(E1,m), . . . , val(En,m). Then, we find thatM(val(E1,m)∧ . . .∧val(En,m)) =
⊤. Therefore,val(Ei,m) ∈ M, 1 ≤ i ≤ n. Based on Prop. 4,JEiK(Q) = m, 1 ≤
i ≤ n. Therefore, based on (4), we obtainJT K(Q = m.

2. T = null. Then, there is a rule inΠ whereval(null,m) as the head, i.e.,val(null,m)←
⊤. Thus, based on the definition (4), we obtainJT K(Q) = m. ⊓⊔

Lemma 14. LetΠ = ΠQ ∪ΠT be a program andM be an answer set ofΠ . Then,

JT K(Q) = nm if and only if val(T , nm) ∈M .

Proof. (⇒) Suppose thatJT K(Q) = nm holds. Then, as defined in (4),∃i : JEiK(Q) =
nm. Therefore, based on Prop. 4,∃i : val(Ei, nm) ∈M . Hence,∃i : M(val(Ei), nm) =
⊤. Thus, by Lemma 1,val(E , nm) ∈M .
(⇐) Suppose thatval(T , nm) ∈ M . Based on Lemma 3, there is a clause where
val(T , nm) as the head and the body is true underM . Based on AllOf transforma-
tion, ∃i : M(val(Ei), nm) = ⊤. Therefore,∃i : val(Ei, nm) ∈ M . Based on Prop. 4,
∃i : JEiK(Q) = nm. Therefore, based on (4), we obtainJT K(Q) = nm. ⊓⊔

Lemma 15. LetΠ = ΠQ ∪ΠT be a program andM be an answer set ofΠ . Then,

JT K(Q) = idt if and only if val(T , idt) ∈M .

Proof. (⇒) Suppose thatJT K(Q) = idt. Then, as defined in (4),JT K(Q) 6= m and
JT K(Q) 6= nm. Thus, by Lemma 13 and Lemma 14,val(T ,m) 6∈M andval(T , nm) 6∈
M . Hence,M(not val(T ,m) ∧ not val(T , nm)) = ⊤. Therefore, by Lemma 1,
val(T , idt) ∈M .
(⇐) Suppose thatval(T , idt) ∈M . Based on Lemma 3, there is a clause whereval(T , idt)
as the head and the body is true underM . There is only one rule inΠ with val(T , idt)
in the head , i.e.,val(T , idt) ← not val(T ,m),not val(T , nm). Thus,val(T ,m) 6∈
M and val(T , nm) 6∈ M . Based on Lemma 13 and Lemma 14,JT K(Q) 6= m and
JT K(Q) 6= nm. Therefore, based on (4) we obtainJT K(Q) = idt. ⊓⊔

Proposition 5. LetΠ = ΠQ ∪ΠT be a program obtained by merging Request trans-
formation programΠQ and TargetT transformations program with all of of its com-
ponentsΠT . LetM be an answer set ofΠ . Then,

JT K(Q) = V if and only if val(T , V) ∈M .

Proof. It follows from Lemma 13, Lemma 14 and Lemma 15 since the valueof V only
has three possibilities, i.e.,{m, nm, idt }. ⊓⊔

Condition Evaluation.

Proposition 6. LetΠ = ΠQ∪ΠC be a program obtained from merging Request trans-
formation programΠQ and Condition transformation programΠC and letM be an
answer set ofΠ . Then,

JCK(Q) = V if and only if val(C, V) ∈M .

Proof. It follows from the equation (5) that the Condition evaluation based on the value
of eval function, the same case in the Condition program transformation. ⊓⊔

Rule Evaluation.

Lemma 16. LetΠ = ΠQ∪ΠR be a program obtained by merging Request transform-
ation programΠQ and RuleR transformations program with all of of its components
ΠR. LetM be an answer set ofΠ . Then,

JRK(Q) = E if and only if val(R, E) ∈M

whereE is Rule’s effect, eitherp or d.

Proof. (⇒) Suppose thatJRK(Q) = E holds. Then, as defined in (4),JT K(Q) = m

andJCK(Q = t). Based on Prop. 7 and Prop. 6,val(T ,m) ∈ M andval(C, t) ∈ M .
Thus,M(val(T ,m) ∧ val(C, t)) = ⊤. Therefore, by Lemma 1,val(R, E) ∈M .
(⇐)Suppose thatval(R, E) ∈M . Based on Lemma 3, there is a clause whereval(R, E)
as the head and the body is true underM . There is only one rule inΠ with val(R, E)
in the head, i.e.,val(R,m) ← val(T ,m), val(C, t). Then, we find thatM(val(T ,m) ∧
val(C, t)) = ⊤. Therefore,val(T ,m) ∈ M andval(C, t) ∈ M . Based on Prop. 5 and
Prop. 6,JT K(Q) = m andJCK(Q) = t. Therefore, based on (6) we obtainJRK(Q) = E.

⊓⊔

Lemma 17. LetΠ = ΠQ∪ΠR be a program obtained by merging Request transform-
ation programΠQ and RuleR transformations program with all of of its components
ΠR. LetM be an answer set ofΠ . Then,

JRK(Q) = na if and only if val(R, na) ∈M .

Proof. (⇒) Suppose thatJRK(Q) = na holds. Then, as defined in (6), we have that

1. JT K(Q) = m andJCK(Q) = f. Based on Prop. 5 and Prop. 6,val(T ,m) ∈ M
andval(C, f) ∈M . Thus,M(val(T ,m) ∧ val(C, f)) = ⊤. Therefore, by Lemma 1,
val(R, na) ∈M .

2. JT K(Q) = nm. Based on Prop. 5,val(T , nm) ∈ M . Thus,M(val(T , nm)) = ⊤.
Therefore, by Lemma 1,val(R, na) ∈M .

(⇐) Suppose thatval(R, na) ∈ M . Based on Lemma 3, there is a clause inΠ where
val(R, na) as the head and the body is true underM . There are rules inΠ where
val(R, na) as the head, i.e.,

1. val(R, na)← val(T ,m), val(C, f).
Then, we find thatM(val(T ,m) ∧ val(C, f)) = ⊤. Therefore,val(T ,m) ∈M and
val(C, f) ∈ M . Based on Prop. 5 and Prop. 6,JT K(Q) = m andJCK(Q) = f.
Therefore, based on (6), we obtainJRK(Q = na.

2. val(R, na)← val(T , nm).
Then, we find thatM(val(T , nm)) = ⊤. Therefore,val(T , nm) ∈ M . Based on
Prop. 5,JT K(Q) = nm. Therefore, based on (6), we obtainJRK(Q = na. ⊓⊔

Lemma 18. LetΠ = ΠQ ∪ΠR be a program andM be an answer set ofΠ . Then,

JRK(Q) = iE if and only if val(R,iE) ∈M

whereE is Rule’s effect, eitherp or d.

Proof. (⇒) Suppose thatJRK(Q) = iE . Then, as defined in (6),JRK(Q) 6= E and
JRK(Q) 6= na. By Lemma 16 and Lemma 17,val(R, E) 6∈ M andval(R, na) 6∈ M .
Hence,M(not val(R, E) ∧ not val(R, na)) = ⊤. Thus, by Lemma 1,val(R,iE) ∈
M .
(⇐) Suppose thatval(R, idt) ∈ M . Based on Lemma 3, there is a clause where
val(R,iE) as the head and the body is true underM . There is only one rule inΠ
with val(R,iE) in the head in, i.e.,val(R,iE) ← not val(R, E),not val(R, na).
Therefore,M(not val(R, E) ∧ not val(R, na)) = ⊤. Thus,val(R, E) 6∈ M and
val(R, na) 6∈M . Based on Lemma 16 and Lemma 17,JRK(Q) 6= E andJRK(Q) 6= na.
Hence, based on (6) we obtain,JRK(Q) = iE . ⊓⊔

Proposition 7. LetΠ = ΠQ ∪ΠR be a program obtained by merging Request trans-
formation programΠQ and RuleR transformations program with all of of its compon-
entsΠR. LetM be an answer set ofΠ . Then,

JRK(Q) = V if and only if val(R, V) ∈M .

Proof. It follows from Lemma 16, Lemma 17 and Lemma 18 since the valueof V only
has five possibilities, i.e.,{ p, d, id, ip, na }. ⊓⊔

Combining Algorithm: Permit-Overrides.

Lemma 19. Let Π = ΠQ ∪ Πpo ∪ ΠP be a program obtained by merging Request
transformation programΠQ, permit-overrides combining algorithm transformation pro-
gramΠpo and PolicyP transformation program with its componentsΠP . LetM be an
answer set ofΠ . Then,

⊕

po

(R) = p if and only if algo(po,P , p) ∈M

whereR = 〈JR1K(Q), . . . , JRnK(Q)〉 be a sequence of policy value where eachRi is
a Rule in the sequence inside PolicyP .

Proof. (⇒) Suppose that
⊕

po(R) = p holds. Then, as defined in (8),∃i : JRiK(Q) =
p whereRi is a Rule in the sequence inside PolicyP . Based on Prop. 7,val(Ri, p) ∈
M . Based on the Policy transformation, there is a rule inΠ decision of(P ,Ri, p) ←
val(Ri, p). Therefore, by Lemma 1,decision of(P ,Ri, p) ∈ M . Thus, by Lemma 1,

algo(po,P , p) ∈M .
(⇐) Suppose thatalgo(po,P , p) ∈ M . Based on Lemma 3, there is a rule where
algo(po,P , p) as the head and the body is true underM . There is only one rule in
Π with algo(po,P , p) as the head, i.e.,algo(po,P , p) ← decision of(P ,R, p). Then,
M(decision of(P ,R, p)) = ⊤. Therefore,decision of(P ,R, p) ∈M . Based on Lemma
3, there is a rule wheredecision of(P ,R, p) as the head and the body is true un-
der M . There is only one rule inΠ , i.e., decision of(P ,R, p) ← val(R, p). Then,
M(val(R, p)) = ⊤. Therefore,val(R, p) ∈ M . Based on Prop. 7,JRK(Q) = p

andR belongs to the sequence inside PolicyP . Therefore, based on (8), we obtain
⊕

po(R) = p ⊓⊔

Lemma 20. Let Π = ΠQ ∪ Πpo ∪ ΠP be a program obtained by merging Request
transformation programΠQ, permit-overrides combining algorithm transformation pro-
gramΠpo and PolicyP transformation program with its componentsΠP . LetM be an
answer set ofΠ . Then,

⊕

po

(R) = idp if and only if algo(po,P , idp) ∈M

whereR = 〈JR1K(Q), . . . , JRnK(Q)〉 be a sequence of policy value where eachRi is
a Rule in the sequence inside PolicyP .

Proof. (⇒) Suppose that
⊕

po(R) = idp holds. Then, as defined in (8) we have that

1. ∀i : JRiK(Q) 6= p and ∃j : JRjK(Q) = idp whereRi andRj are Rule in
the sequence inside PolicyP . Based on Prop. 7,∀i : val(Ri, p) 6∈ M and∃j :
val(Rj , idp) ∈ M . Based on Lemma 19,algo(po,P , p) 6∈ M since if it is inM ,
there exists a RuleR in the PolicyPsequence such thatJRK(Q) = p. Based on the
Policy transformation, there is a ruledecision of(P ,Rj , idp) ← val(Rj , idp). By
Lemma 1,decision of(P ,Rj , idp) ∈M . Thus, by Lemma 1,algo(po,P , idp) ∈M .

2. ∀i : JRiK(Q) 6= p and∃j : JRjK(Q) = ip and∃j′ : JR|′K(Q) = d where
Ri, Rj andRj′ are Rules in the sequence inside PolicyP . Based on Prop. 7,
∀i : val(Ri, p) 6∈ M and∃j : val(Rj , ip) ∈ M and∃j : val(Rj′ , d) ∈ M . Based
on Lemma 19,algo(po,P , p) 6∈ M since if it is in M , there exists a RuleR
in the PolicyPsequence such thatJRK(Q) = p. Based on the Policy transform-
ation, there are rules inΠ in the formdecision of(P ,Rj , idp) ← val(Rj , ip) and
decision of(P ,Rj , ip)← val(Rj′ , d). Thus, by Lemma 1,decision of(P ,Rj , ip) ∈
M anddecision of(P ,Rj′ , d) ∈M . Hence, by Lemma 1,algo(po,P , idp) ∈M .

3. ∀i : JRiK(Q) 6= p and∃j : JRjK(Q) = ip and∃j′ : JR|′K(Q) = id where
Ri, Rj andRj′ are Rule in the sequence inside PolicyP . Based on Prop. 7,
∀i : val(Ri, p) 6∈ M and∃j : val(Rj , ip) ∈ M and∃j : val(Rj′ , id) ∈ M .
Based on Lemma 19,algo(po,P , p) 6∈ M since if it is inM , there exists a Rule
R in the PolicyPsequence such thatJRK(Q) = p. Based on the Policy transform-
ation there are rules inΠ in the formdecision of(P ,Rj , idp) ← val(Rj , ip and
decision of(P ,Rj , ip)← val(Rj′ , id). Thus, by Lemma 1,decision of(P ,Rj , ip) ∈
M anddecision of(P ,Rj′ , id) ∈M . Hence, by Lemma 1,algo(po,P , idp) ∈M .

(⇐) Suppose thatalgo(po,P , idp) ∈ M . Based on Lemma 3 , there is a rule where
algo(po,P , idp) as the head and the body is true underM . There are rules inΠ where
algo(po,P , idp) as the head, i.e.,

1. algo(po,P , idp)← not algo(po,P , p), decision of(P ,R, idp).
Then,M(not algo(po,P , p)∧decision of(P ,R, idp)) = ⊤. Thus,algo(po,P , p) 6∈
M anddecision of(P ,R, idp) ∈ M . Based on Lemma 19,

⊕

po(R) 6= p. Based
on Lemma 3, there is a rule wheredecision of(P ,R, idp) as the head and the
body is true underM . There is only one rule inΠ , i.e.,decision of(P ,R, idp) ←
val(R, idp). Then,M(val(R, idp)) = ⊤. Therefore,val(R, ip) ∈ M . As defined in
(8), ∀i : JRiK(Q) 6= p since

⊕

po(R) 6= p . Based on Prop. 7,JRK(Q) = idp
andR belongs to the sequence inside PolicyP . Hence, based on (8), we obtain
⊕

po(R) = idp

2. algo(po,P , idp)← not algo(po,P , p), decision of(P ,R, ip), decision of(P ,R′, d).
Then,M(not algo(po,P , p) ∧ decision of(P ,R, ip) ∧ decision of(R′, d)) = ⊤.
Thus,algo(po,P , p) 6∈M , decision of(P ,R, ip) ∈M anddecision of(P ,R, d) ∈
M . Based on Lemma 19,

⊕

po(R) 6= p. Based on Lemma 3, there is a rule where
decision of(P ,R, ip) as the head and the body is true underM . There is only one
rule in Π , i.e., decision of(P ,R, ip) ← val(R, ip). Then,M(val(R, ip)) = ⊤.
Thus,val(R, ip) ∈M . Based on Lemma 3, there is a rule wheredecision of(P ,R, d)
as the head and the body is true underM . There is only one rule inΠ , i.e.,
decision of(P ,R, ip)← val(R′, d). Then,M(val(R′, d)) = ⊤. Thus,val(R′, d) ∈
M . Based on (8),∀i : JRiK(Q) 6= p since

⊕

po(R) 6= p . Based on Prop. 7,
JRK(Q) = ip andJR′K(Q) = d andR,R′ belongs to the sequence inside Policy
P . Therefore, based on (8) we obtain

⊕

po(R) = idp

3. algo(po,P , idp)← not algo(po,P , p), decision of(P ,R, ip), decision of(P ,R′, id).
Then,M(not algo(po,P , p) ∧ decision of(P ,R, ip) ∧ decision of(R′, id)) = ⊤.
Thus,algo(po,P , p) 6∈M , decision of(P ,R, ip) ∈M anddecision of(P ,R, id) ∈
M . Based on Lemma 19,

⊕

po(R) 6= p since if
⊕

po(R) = p. Based on Lemma
3, there is a rule wheredecision of(P ,R, ip) as the head and the body is true under
M . There is only one rule inΠ , i.e., decision of(P ,R, ip) ← val(R, ip). Then,
M(val(R, ip)) = ⊤. Therefore,val(R, ip) ∈M . Based on Lemma 3, there is a rule
wheredecision of(P ,R, id) as the head and the body is true underM . There is only
one rule inΠ , i.e.,decision of(P ,R, ip)← val(R′, id). Then,M(val(R′, d)) = ⊤.
Therefore,val(R′, id) ∈ M . Based on (8),∀i : JRiK(Q) 6= p since

⊕

po(R) 6= p

. Based on Prop. 7,JRK(Q) = ip andJR′K(Q) = id andR,R′ belongs to the se-
quence inside PolicyP . Therefore, based on (8), we obtain

⊕

po(R) = idp ⊓⊔

Lemma 21. Let Π = ΠQ ∪ Πpo ∪ ΠP be a program obtained by merging Request
transformation programΠQ, permit-overrides combining algorithm transformation pro-
gramΠpo and PolicyP transformation program with its componentsΠP . LetM be an
answer set ofΠ . Then,

⊕

po

(R) = ip if and only if algo(po,P , ip) ∈M

whereR = 〈JR1K(Q), . . . , JRnK(Q)〉 be a sequence of policy value where eachRi is
a Rule in the sequence inside PolicyP .

Proof. (⇒) Suppose that
⊕

po(R) = ip holds. Then, as defined in (8),∃i : JRiK(Q) =

ip and∀j : JRjK(Q) 6= ip ⇒ JRjK(Q) = na whereRi andRj are Rule in the
sequence inside PolicyP . Based on Prop. 7,∃i : val(Rj , ip) ∈M . Based on Lemma 19,

algo(po,P , p) 6∈ M since if it is inM , there exists a RuleR in the PolicyPsequence
such thatJRK(Q) = p. Based on Lemma 20,algo(po,P , idp) 6∈ M since if it is inM ,
there exists a RuleR in the PolicyPsequence such thatJRK(Q) = idp, andJRK(Q) =
d or id. Based on the Policy transformation, there is a ruledecision of(P ,Ri, ip) ←
val(Ri, ip). Therefore, by Lemma 1,decision of(P ,Ri, ip) ∈ M . Thus, by Lemma 1,
algo(po,P , ip) ∈M .
(⇐) Suppose thatalgo(po,P , ip) ∈ M . Based on Lemma 3, there is a rule where
algo(po,P , ip) as the head and the body is true underM . There is only a rule inΠ , i.e.,
algo(po,P , idp) ← not algo(po,P , p), not algo(po,P , idp), decision of(P ,R, idp).
Then,M(not algo(po,P , p) ∧ not algo(po,P , idp) ∧ decision of(P ,R, idp)) = ⊤.
Therefore,algo(po,P , p) 6∈M , algo(po,P , idp) 6∈M anddecision of(P ,R, idp) ∈M .
Based on Lemma 19 and Lemma 20,

⊕

po(R) 6= p and
⊕

po(R) 6= idp. Based on
Lemma 3, , there is a rule wheredecision of(P ,R, ip) as the head and the body is true
underM . There is only one rule inΠ , i.e.,decision of(P ,R, ip) ← val(R, ip). Then,
M(val(R, ip)) = ⊤. Therefore,val(R, ip) ∈M . Based on (8),∀i : JRiK(Q) 6= p since
⊕

po(R) 6= p and∀i : JRiK(Q) 6= (idp or d or id). Thus, the only possibilities of the
value ofJRiK is eitherip or na. Based on Prop. 7,JRK(Q) = ip andR belongs to the
sequence inside PolicyP . Therefore, based on (8) we obtain

⊕

po(R) = ip ⊓⊔

Lemma 22. Let Π = ΠQ ∪ Πpo ∪ ΠP be a program obtained by merging Request
transformation programΠQ, permit-overrides combining algorithm transformation pro-
gramΠpo and PolicyP transformation program with its componentsΠP . LetM be an
answer set ofΠ . Then,

⊕

po

(R) = d if and only if algo(po,P , d) ∈M

whereR = 〈JR1K(Q), . . . , JRnK(Q)〉 be a sequence of policy value where eachRi is
a Rule in the sequence inside PolicyP .

Proof. (⇒) Suppose that
⊕

po(R) = d holds. Then, as defined in (8),∃i : JRiK(Q) =
d and ∀j : JRjK(Q) 6= d ⇒ JRjK(Q) = (id or na) whereRi andRj are Rule
in the sequence inside PolicyP . Based on Prop. 7,∃i : val(Rj , d) ∈ M . Based on
Lemma 19,algo(po,P , p) 6∈M since if it is inM , there exists a RuleR in the Policy
Psequence such thatJRK(Q) = p. Based on Lemma 20,algo(po,P , idp) 6∈ M since
if it is in M , there exists a RuleR in the PolicyPsequence such thatJRK(Q) = idp.
Based on Lemma 21,algo(po,P , ip) 6∈ M since if it is in M , there exists a Rule
R in the PolicyPsequence such thatJRK(Q) = ip. Based on the Policy transform-
ation, there is a ruledecision of(P ,Ri, d) ← val(Ri, d). Therefore, by Lemma 1,
decision of(P ,Ri, d) ∈M . Thus, by Lemma 1,algo(po,P , id) ∈M .
(⇐) Suppose thatalgo(po,P , d) ∈ M . Based on Lemma 3, there is a rule where
algo(po,P , d) as the head and the body is true underM . There is only a rule inΠ ,
i.e.,algo(po,P , idp) ← not algo(po,P , p), not algo(po,P , idp),not algo(po,P , ip),
decision of(P ,R, d). Hence, we obtainM(not algo(po,P , p)∧not algo(po,P , idp)∧
not algo(po,P , ip) ∧ decision of(P ,R, d)) = ⊤. Therefore,algo(po,P , p) 6∈ M ,
algo(po,P , idp) 6∈ M , algo(po,P , ip) 6∈ M anddecision of(P ,R, d) ∈ M . Based on
Lemma 19,

⊕

po(R) 6= p since if
⊕

po(R) = p it will lead a contradiction. Based on
Lemma 20,

⊕

po(R) 6= idp since if
⊕

po(R) = idp it will lead a contradiction. Based
on Lemma 21,

⊕

po(R) 6= ip since if
⊕

po(R) = ip it will lead a contradiction. Based

on Lemma 3, there is a rule wheredecision of(P ,R, id) as the head and the body is true
underM . There is only one rule inΠ , i.e.,decision of(P ,R, d) ← val(R, d). Then,
M(val(R, d)) = ⊤. Therefore,val(R, d) ∈ M . Based on (8),∀i : JRiK(Q) 6= p since
⊕

po(R) 6= p . Based on (8),∀i : JRiK(Q) 6= idp. Based on (8),∀i : JRiK(Q) 6= ip.
Thus, the only possibilities of the value ofJRiK is eitherd, id or na. Based on Prop. 7 ,
JRK(Q) = d andR belongs to the sequence inside PolicyP . Therefore, based on (8),
⊕

po(R) = d ⊓⊔

Lemma 23. Let Π = ΠQ ∪ Πpo ∪ ΠP be a program obtained by merging Request
transformation programΠQ, permit-overrides combining algorithm transformation pro-
gramΠpo and PolicyP transformation program with its componentsΠP . LetM be an
answer set ofΠ . Then,

⊕

po

(R) = id if and only if algo(po,P , id) ∈M

whereR = 〈JR1K(Q), . . . , JRnK(Q)〉 be a sequence of policy value where eachRi is
a Rule in the sequence inside PolicyP .

Proof. (⇒) Suppose that
⊕

po(R) = id holds. Then, as defined in (8)∃i : JRiK(Q) =
id and∀j : JRjK(Q) 6= d ⇒ JRjK(Q) = na whereRi andRj are Rule in the se-
quence inside PolicyP . Based on Prop. 7 ,∃i : val(Rj , d) ∈M . Based on Lemma 19,
algo(po,P , p) 6∈ M since if it is inM , there exists a RuleR in the PolicyPsequence
such thatJRK(Q) = p. Based on Lemma 20,algo(po,P , idp) 6∈ M since if it is in
M , there exists a RuleR in the PolicyPsequence such thatJRK(Q) = idp. Based on
Lemma 21,algo(po,P , ip) 6∈M since if it is inM , there exists a RuleR in the Policy
Psequence such thatJRK(Q) = ip. Based on Lemma 22,algo(po,P , d) 6∈M since if it
is inM , there exists a RuleR in the PolicyPsequence such thatJRK(Q) = d. Based on
the Policy transformation, there is a ruledecision of(P ,Ri, id) ← val(Ri, id). Hence,
by Lemma 1,decision of(P ,Ri, id) ∈M . Thus, by Lemma 1,algo(po,P , id) ∈M .
(⇐) Suppose thatalgo(po,P , d) ∈ M . Based on Lemma 3, there is a rule where
algo(po,P , d) as the head and the body is true underM . There is only a rule inΠ ,
i.e., algo(po,P , d) ← not algo(po,P , p), not algo(po,P , idp),not algo(po,P , ip),
not algo(po,P , d), decision of(P ,R, id). Hence, we find thatM(not algo(po,P , p)∧
not algo(po,P , idp)∧not algo(po,P , ip)∧not algo(po,P , d)∧decision of(P ,R, id)) =
⊤. Thus,algo(po,P , p) 6∈M , algo(po,P , idp) 6∈M , algo(po,P , ip) 6∈M , algo(po,P , d)
6∈ M anddecision of(P ,R, id) ∈ M . Based on Lemma 19,

⊕

po(R) 6= p since if
⊕

po(R) = p it will lead a contradiction. Based on Lemma 20,
⊕

po(R) 6= idp since if
⊕

po(R) = idp it will lead a contradiction. Based on Lemma 21,
⊕

po(R) 6= ip since
if
⊕

po(R) = ip it will lead a contradiction. Based on Lemma 22,
⊕

po(R) 6= ip since
if
⊕

po(R) = d it will lead a contradiction. Based on Lemma 3, there is a rulewhere
decision of(P ,R, d) as the head and the body is true underM . There is only one rule
in Π , i.e.,decision of(P ,R, id) ← val(R, id). Then, we find thatM(val(R, id)) = ⊤.
Therefore,val(R, id) ∈ M . Based on (8),∀i : JRiK(Q) 6= p since

⊕

po(R) 6= p .
Based on eqrefeq:po,∀i : JRiK(Q) 6= idp. Based on (8) ,∀i : JRiK(Q) 6= ip and
∀i : JRiK(Q) 6= d. Thus, the only possibilities of the value ofJRiK is eitherid or na.
Based on Prop. 7,JRK(Q) = id andR belongs to the sequence inside PolicyP . There-
fore, based on (8),

⊕

po(R) = id ⊓⊔

Lemma 24. Let Π = ΠQ ∪ Πpo ∪ ΠP be a program obtained by merging Request
transformation programΠQ, permit-overrides combining algorithm transformation pro-
gramΠpo and PolicyP transformation program with its componentsΠP . LetM be an
answer set ofΠ . Then,

⊕

po

(R) = na if and only if algo(po,P , na) ∈M

whereR = 〈JR1K(Q), . . . , JRnK(Q)〉 be a sequence of policy value where eachRi is
a Rule in the sequence inside PolicyP .

Proof. (⇒) Suppose that
⊕

po(R) = na holds. Then, as defined in (8) we have that
⊕

po(R) 6= p,
⊕

po(R) 6= idp,
⊕

po(R) 6= ip,
⊕

po(R) 6= d, and
⊕

po(R) 6= id. Based
on Lemma 19,algo(po,P , p) 6∈M . Based on Lemma 20,algo(po,P , idp) 6∈M . Based
on Lemma 21 ,algo(po,P , ip) 6∈M . Based on Lemma 22 ,algo(po,P , d) 6∈M . Based
on Lemma 23 ,algo(po,P , id) 6∈M . Thus,M(not algo(po,P , p)∧not algo(po,P , idp)
∧not algo(po,P , ip) ∧ not algo(po,P , d) ∧ not algo(po,P , id)) = ⊤ Therefore, by
Lemma 1,algo(po,P , na) ∈M .
(⇐) Suppose thatalgo(po,P , na) ∈ M . Based on Lemma 3 , there is a rule where
algo(po,P , na) as the head and the body is true underM . There is only a rule in
Π wherealgo(po,P , na) as the head, i.e.,algo(po,P , na) ← not algo(po,P , p),
not algo(po,P , idp),not algo(po,P , ip),not algo(po,P , d),not algo(po,P , id). Then,
M(not algo(po,P , p)∧not algo(po,P , idp)∧not algo(po,P , ip)∧not algo(po,P , d)∧
not algo(po,P , id)) = ⊤. Therefore,algo(po,P , p) 6∈ M , algo(po,P , idp) 6∈ M ,
algo(po,P , ip) 6∈ M , algo(po,P , d) 6∈ M andalgo(po,P , id) 6∈ M . Based on Lemma
19,

⊕

po(R) 6= p. Based on Lemma 20,
⊕

po(R) 6= idp. Based on Lemma 21,
⊕

po(R) 6=

ip. Based on Lemma 22,
⊕

po(R) 6= ip. Based on Lemma 23,
⊕

po(R) 6= ip. Therefore,
based on (8),

⊕

po(R) = na. ⊓⊔

Proposition 8. Let Π = ΠQ ∪ Πpo ∪ ΠP be a program obtained by merging Re-
quest transformation programΠQ, permit-overrides combining algorithm transforma-
tion programΠpo and PolicyP transformation program with its componentsΠP . Let
M be an answer set ofΠ . Then,

⊕

po

(R) = V if and only if algo(po,P , V) ∈M

whereR = 〈R1(Q), . . . ,Rn(Q)〉 be a sequence of policy value where eachRi is a
Rule in the sequence inside PolicyP .

Proof. It follows from Lemma 19, Lemma 20, Lemma 21, Lemma 22, Lemma 23 and
Lemma 24 since the value ofV only has six possibilities, i.e.,{ p, d, ip, id, idp, na }. ⊓⊔

Combining Algorithm: First Applicable.

Proposition 9. LetΠ = ΠQ ∪Πfa ∪ΠP be a program obtained by merging Request
transformation programΠQ, first-applicable combining algorithm transformation pro-
gramΠfa and PolicyP transformation program with its componentsΠP . LetM be an
answer set ofΠ . Then,

⊕

fa

(R) = V if and only if algo(fa,P , V) ∈M

whereR = 〈JR1K(Q), . . . , JRnK(Q)〉 be a sequence of policy value where eachRi is
a Rule in the sequence inside PolicyP .

Proof. (⇒) Suppose that
⊕

fa(R) = V holds. Then, as defined in (9),∃i : JRiK(Q) =
V andV 6= na and∀j : j < i ⇒ JRjK(Q) = na. Based on Prop. 7,∃i : val(Ri, V) ∈
M whereV 6= na and∀j : j < i⇒ val(Rj , na) ∈M . Based on the Policy transforma-
tion there is a ruledecision of(P ,Ri, V)← val(Ri, V) in Π and∀j : j < i we get that
there are rules in the formdecision of(P ,Rj , na) ← val(Rj , na) in Π . Therefore, we
havedecision of(P ,Ri, V) ∈M and∀j : j < i we also havedecision of(P ,Rj , na) ∈
M sinceM is a minimal model forΠ . Thus, by Lemma 1,algo(fa,P , V) ∈M .
(⇐) Suppose thatalgo(fa,P , V) ∈ M . Based on Lemma 3, there is a clause inP
wherealgo(fa,P , V) as the head and the body is true underM . There are several
rules inP wherealgo(fa,P , V) as the head. We can see that in each rule the body
contains∃i : decision of(P ,Ri, V), V 6= na and ∀j : j < i the body also con-
tains decision of(P ,Rj , na). Therefore∃i : decision of(P ,Ri, V) ∈ M and ∀j :
j < i, decision of(P ,Rj , na) ∈ M . Based on Lemma 3, there is a clause where
decision of(P ,Ri, V) as the head and the body is true underM and∀j : j < i,
there isdecision of(P ,Rj , na) as the head and the body is true underM . There is only
one rule inP wheredecision of(P ,Ri, V) as the head, i.e.,decision of(P ,Ri, V) ←
val(Ri, V). The same case fordecision of(P ,Rj , na). Then.∃i : M(val(Ri, V)) = ⊤
and∀j < i : M(val(Rj , na)) = ⊤. Therefore,∃i : val(Ri, V) ∈M and∀j : j < i⇒
val(Rj , na) ∈M . Based on Prop. 7,∃i : JRiK(Q) = V and∀j : j < i⇒ JRjK(Q) =
na andRi andRj belong to the sequence inside PolicyP . Therefore, based on (8) we
obtain

⊕

fa(R) = V . ⊓⊔

Combining Algorithm: Only-One-Applicable.

Lemma 25. LetΠ = ΠQ ∪ Πooa ∪ ΠP be a program obtained by merging Request
transformation programΠQ, only-one-applicable combining algorithm transformation
programΠooa and PolicyP transformation program with its componentsΠP . LetM
be an answer set ofΠ . Then,

⊕

ooa

(R) = idp if and only if algo(ooa,P , idp) ∈M

whereR = 〈R1(Q), . . . ,Rn(Q)〉 be a sequence of policy value where eachRi is a
Rule in the sequence inside PolicyP .

Proof. (⇒) Suppose that
⊕

ooa(R) = idp holds. Then, as defined in (10), we have that

1. ∃i : JRiK(Q) = idp.
Based on Prop. 7,val(Ri, idp) ∈M . Based on the Policy transformation, there is a
rule decision of(P ,Ri, idp) ← val(Ri, idp). Therefore, by Lemma 1, we find that
decision of(P ,Ri, idp) ∈M . Thus, by Lemma 1,algo(ooa,P , idp) ∈M .

2. ∃i, j : JRiK(Q) = d andJRjK(Q) = p.
Based on Prop. 7,val(Ri, d) ∈M andval(Rj , p) ∈M . Based on the Policy trans-
formation, there are rules inΠ with the formdecision of(P ,Ri, d) ← val(Ri, d)
and decision of(P ,Rj , p) ← val(Ri, p). Therefore, by Lemma 1, we find that
decision of(P ,Ri, d) ∈ M anddecision of(P ,Ri, p) ∈ M . Thus, by Lemma 1,
algo(ooa,P , idp) ∈M .

3. ∃i, j : JRiK(Q) = id andJRjK(Q) = p.
Based on Prop. 7,val(Ri, id) ∈M andval(Rj , p) ∈M . Based on the Policy trans-
formation there are rules inΠ in the formdecision of(P ,Ri, d)← val(Ri, id). and
decision of(P ,Rj , p) ← val(Ri, p). Then, by Lemma 1,decision of(P ,Ri, id)
∈M anddecision of(P ,Ri, p) ∈M . Thus, by Lemma 1,algo(ooa,P , idp) ∈M .

4. ∃i, j : JRiK(Q) = d andJRjK(Q) = ip.
Based on Prop. 7,val(Ri, d) ∈M andval(Rj , ip) ∈M . Based on the Policy trans-
formation, there are rules inΠ in the formdecision of(P ,Ri, d)← val(Ri, d). and
decision of(P ,Rj , ip)← val(Ri, ip). Then, by Lemma 1,decision of(P ,Ri, d) ∈
M anddecision of(P ,Ri, ip) ∈M . Thus, by Lemma 1,algo(ooa,P , idp) ∈M .

5. ∃i, j : JRiK(Q) = id andJRjK(Q) = ip.
Based on Prop. 7,val(Ri, id) ∈M andval(Rj , ip) ∈M . Based on the Policy trans-
formation there are rules inΠ in the formdecision of(P ,Ri, id)← val(Ri, id). and
decision of(P ,Rj , ip)← val(Ri, ip). Then, by Lemma 1,decision of(P ,Ri, id) ∈
M anddecision of(P ,Ri, ip) ∈M . Thus by Lemma 1,algo(ooa,P , idp) ∈M .

(⇐) Suppose thatalgo(ooa,P , idp) ∈ M . Based on Lemma 3, there is a rule where
algo(ooa,P , idp) as the head and the body is true underM . There are five rules inΠ ,
i.e.,

1. algo(ooa,P , idp)← decision of(P ,R, idp).
Then,M(decision of(P ,R, idp)) = ⊤. Therefore,decision of(P ,R, idp) ∈ M .
Based on Lemma 3, there is a rule wheredecision of(P ,R, idp) ∈ M as the head
and the body is true underM . There is only one rule inΠ , i.e.,decision of(P ,R, idp)
← val(R, idp). Then,M(val(R, idp)) = ⊤. Therefore,val(R, idp) ∈ M . Based on
Prop. 7,JRK(Q) = idp andR belongs to the sequence inside PolicyP . Therefore,
based on (10),

⊕

ooa(R) = idp
2. algo(ooa,P , idp)← decision of(P ,R1, id), decision of(P ,R2, ip).

Then,M(decision of(P ,R1, id) ∧ decision of(P ,R2), ip) = ⊤. Hence, we find
thatdecision of(P ,R1, id) ∈M anddecision of(P ,R2, ip) ∈M . Based on Lemma
3, there is a rule wheredecision of(P ,R1, id) ∈ M as the head and the body
is true underM , i.e., decision of(P ,R1, id) ← val(R1, id), and there is a rule
wheredecision of(P ,R2, ip) ∈ M as the head and the body is true underM ,
i.e., decision of(P ,R2, ip) ← val(R2, ip). Therefore,M(val(R1, id)) = ⊤ and
M(val(R2, ip)) = ⊤ . Then,val(R1, id) ∈ M andval(R2, ip) ∈ M . Based on
Prop. 7,JR1K(Q) = id andJR2K(Q) = ip andR1 andR2 belong to the sequence
inside PolicyP . Therefore, based on (10),

⊕

ooa(R) = idp.
3. algo(ooa,P , idp)← decision of(P ,R1, id), decision of(P ,R2, p).

Then, we find thatM(decision of(P ,R1, id)∧decision of(P ,R2), p) = ⊤. There-
fore,decision of(P ,R1, id) ∈M anddecision of(P ,R2, p) ∈M . Based on Lemma
3, there is a rule wheredecision of(P ,R1, id) ∈ M as the head and the body
is true underM , i.e., decision of(P ,R1, id) ← val(R1, id) and there is a rule
wheredecision of(P ,R2, p) ∈ M as the head and the body is true underM , i.e.,
decision of(P ,R2, p) ← val(R2, p). Then, we find thatM(val(R1, id)) = ⊤ and
M(val(R2, p)) = ⊤ . Therefore,val(R1, id) ∈ M andval(R2, p) ∈ M . Based on
Prop. 7,JR1K(Q) = id andJR2K(Q) = p andR1 andR2 belong to the sequence
inside PolicyP . Therefore, based on (10),

⊕

ooa(R) = idp
4. algo(ooa,P , idp)← decision of(P ,R1, d), decision of(P ,R2, ip).

Then we find thatM(decision of(P ,R1, d)∧decision of(P ,R2), ip) = ⊤. There-
fore,decision of(P ,R1, d) ∈M anddecision of(P ,R2, ip) ∈M . Based on Lemma

3, there is a rule wheredecision of(P ,R1, d) ∈ M as the head and the body
is true underM , i.e., decision of(P ,R1, d) ← val(R1, d) and there is a rule
wheredecision of(P ,R2, ip) ∈ M as the head and the body is true underM , i.e.,
decision of(P ,R2, ip)← val(R2, ip). Then, we find thatM(val(R1, d)) = ⊤ and
M(val(R2, ip)) = ⊤. Therefore,val(R1, d) ∈ M andval(R2, ip) ∈ M . Based on
Prop. 7,JR1K(Q) = d andJR2K(Q) = ip andR1 andR2 belong to the sequence
inside PolicyP . Therefore, based on (10),

⊕

ooa(R) = idp
5. algo(ooa,P , idp)← decision of(P ,R1, d), decision of(P ,R2, p).

Then we find thatM(decision of(P ,R1, d)∧ decision of(P ,R2), p) = ⊤. There-
fore,decision of(P ,R1, d) ∈M anddecision of(P ,R2, p) ∈M . Based on Lemma
3, there is a rule wheredecision of(P ,R1, d) ∈ M as the head and the body
is true underM , i.e., decision of(P ,R1, d) ← val(R1, d) and there is a rule
wheredecision of(P ,R2, p) ∈ M as the head and the body is true underM , i.e.,
decision of(P ,R2, p)← val(R2, p). Then, we find thatM(val(R1, d)) = ⊤ and
M(val(R2, p)) = ⊤. Therefore,val(R1, d) ∈ M andval(R2, p) ∈ M . Based on
Prop. 7,JR1K(Q) = d andJR2K(Q) = p andR1 andR2 belong to the sequence
inside PolicyP . Therefore, based on (10),

⊕

ooa(R) = idp ⊓⊔

Lemma 26. LetΠ = ΠQ ∪ Πooa ∪ ΠP be a program obtained by merging Request
transformation programΠQ, only-one-applicable combining algorithm transformation
programΠooa and PolicyP transformation program with its componentsΠP . LetM
be an answer set ofΠ . Then,

⊕

ooa

(R) = id if and only if algo(ooa,P , id) ∈M

whereR = 〈R1(Q), . . . ,Rn(Q)〉 be a sequence of policy value where eachRi is a
Rule in the sequence inside PolicyP .

Proof. Suppose that
⊕

ooa(R) = id holds. Then, as defined in (10), we have that

1. ∀i : JRiK(Q) 6= (p or ip or idp) and∃j : sj = id
Based on Prop. 7,∀i : val(Ri, p) 6∈ M , val(Ri, ip) 6∈ M andval(Ri, idp) 6∈ M .
Based on Prop. 7,∃j : val(Rj , id) ∈ M . Based on Lemma 25,algo(ooa,P , idp) 6∈
M since if it is inM , there is a RuleR such thatJRK(Q) = (p or ip or idp) Based
on the Policy transformation there is a ruledecision of(P ,Rj , id) ← val(Rj , id).
Then, by Lemma 1,decision of(P ,Rj , id) ∈ M . Then, by Lemma 1, we obtain
algo(ooa,P , id) ∈M .

2. ∀i : JRiK(Q) 6= (p or ip or idp) and∃j, k : j 6= k andsj = sk = d Based on Prop.
7, ∀i : val(Ri, p) 6∈ M , val(Ri, ip) 6∈ M andval(Ri, idp) 6∈ M since if they are in
M it will lead a contradiction. Based on Prop. 7,∃j, k : j 6= k andval(Rj , d) ∈
M and val(Rjkd) ∈ M . Based on Lemma 25,algo(ooa,P , idp) 6∈ M since if
it is in M , there is a RuleR such thatJRK(Q) = (p or ip or idp) Based on the
Policy transformation there is a ruledecision of(P ,Rj , d)← val(Rj , d). and there
is a ruledecision of(P ,Rk, d) ← val(Rk, d). Thereforedecision of(P ,Rj , d) ∈
M anddecision of(P ,Rk, d) ∈ M sinceM is the minimal model ofΠ . Thus,
algo(ooa,P , id) ∈M sinceM is the minimal model ofΠ .

(⇐) Suppose thatalgo(ooa,P , id) ∈ M . Based on Lemma 3, there is a rule where
algo(ooa,P , id) as the head and the body is true underM . There are rules inΠ where
algo(ooa,P , id) as the head, i.e.,

1. algo(ooa,P , id)← not algo(ooa,P , idp), decision of(P ,R, id).
Then we find thatM(not algo(ooa,P , idp) ∧ decision of(P ,R, id)) = ⊤. There-
fore,algo(ooa,P , idp) 6∈ M anddecision of(P ,R, id) ∈ M . Based on Lemma 25,
⊕

ooa(R) 6= idp. Based on Lemma 3, there is a rule wheredecision of(P ,R, id) as
the head and the body is true underM , i.e., decision of(P ,R, id) ← val(R, id).
Then we find thatM(val(R, id)) = ⊤. Therefore,val(R, id) ∈ M . Based on
Prop. 7,JRK(Q) = id. Based on (10),∀i : JRiK(Q) 6= (p or ip or idp) since
⊕

ooa(R) 6= idp. Therefore, based on (10),
⊕

ooa(R) = id.
2. algo(ooa,P , id)← not algo(ooa,P , idp), decision of(P ,R1, d),

decision of(P ,R2, d),R1 6= R2.
Then,M(not algo(ooa,P , idp)∧decision of(P ,R1, d)∧decision of(P ,R2, d)) =
⊤, R1 6= R2. Therefore,algo(ooa,P , idp) 6∈ M anddecision of(P ,R1, d) ∈ M
anddecision of(P ,R2, d) ∈M ,R1 6= R2. Based on Lemma 25,

⊕

ooa(R) 6= idp.
Based on Lemma 3, there is a rule wheredecision of(P ,R1, d) as the head and the
body is true underM , i.e.,decision of(P ,R1, d)← val(R1, d). Then we find that
M(val(R1, d)) = ⊤. Therefore,val(R1, d) ∈ M . Based on Prop. 7,JR1K(Q) =
d. Based on Lemma 3, there is a rule wheredecision of(P ,R2, d) as the head
and the body is true underM , R1 6= R2. There is only one rule inΠ where
decision of(P ,R2, d) as the head, i.e.,decision of(P ,R2, d)← val(R2, d).,R1 6=
R2. Then we find thatM(val(R2, d)) = ⊤, R1 6= R2. Therefore,val(R2, d) ∈
M , R1 6= R2. Based on Prop. 7,JR2K(Q) = d. Based on (10),∀i : JRiK(Q) 6=
(p or ip or idp) since

⊕

ooa(R) 6= idp. Therefore, based on (10),
⊕

ooa(R) = id. ⊓⊔

Lemma 27. LetΠ = ΠQ ∪ Πooa ∪ ΠP be a program obtained by merging Request
transformation programΠQ, only-one-applicable combining algorithm transformation
programΠooa and PolicyP transformation program with its componentsΠP . LetM
be an answer set ofΠ . Then,

⊕

ooa

(R) = ip if and only if algo(ooa,P , ip) ∈M

whereR = 〈R1(Q), . . . ,Rn(Q)〉 be a sequence of policy value where eachRi is a
Rule in the sequence inside PolicyP .

Proof. Note:The proof is similar to the proof of Lemma 26.

Lemma 28. LetΠ = ΠQ ∪ Πooa ∪ ΠP be a program obtained by merging Request
transformation programΠQ, only-one-applicable combining algorithm transformation
programΠooa and PolicyP transformation program with its componentsΠP . LetM
be an answer set ofΠ . Then,

⊕

ooa

(R) = p if and only if algo(ooa,P , p) ∈M

whereR = 〈R1(Q), . . . ,Rn(Q)〉 be a sequence of policy value where eachRi is a
Rule in the sequence inside PolicyP .

Proof. (⇒) Suppose that
⊕

ooa(R) = p holds. Then, as defined in (10) we have
that ∃i : JRiK(Q) = d and∀j : j 6= i, JRjK(Q) = na. Based on Prop. 7,∃i :
val(Ri, p) ∈ M . Based on Lemma 25,algo(ooa, ooa, idp) 6∈ M since if it is inM ,
there exists a RuleR in PolicyPsequence such thatJRK(Q) = idp. Based on Lemma

26,algo(ooa, ooa, id) 6∈M since if it is inM , there exists a RuleR in PolicyPsequence
such thatJRK(Q) = id or there are at least two Rule elementsR1 andR2,R1 6= R2,
such thatJR1K(Q) = JR2K(Q) = d. Based on Lemma 27,algo(ooa, ooa, ip) 6∈ M
since if it is inM , there exists a RuleR in PolicyPsequence such thatJRK(Q) = ip
or there are at least two Rule elementsR1 andR2, R1 6= R2, such thatJR1K(Q) =
JR2K(Q) = p. Based on the Policy transformation there is a ruledecision of(P ,Ri, p)←
val(Ri, p). Thereforedecision of(P ,Ri, p) ∈ M anddecision of(P ,Rj , na) ∈ M
sinceM is the minimal model ofΠ . Thus,algo(ooa,P , p) ∈ M sinceM is the min-
imal model ofΠ .
(⇐) Suppose thatalgo(ooa,P , p) ∈ M . Based on Lemma 3, there is a rule where
algo(ooa,P , d) as the head and the body is true underM . There are rules inΠ where
algo(ooa,P , d) as the head, i.e.,algo(ooa,P , id)← not algo(ooa,P , idp),
not algo(ooa,P , id),not algo(ooa,P , ip), decision of(P ,R, p).
Then, we find thatM(not algo(ooa,P , idp)∧not algo(ooa,P , id)∧not algo(ooa,P , ip)
∧decision of(P ,R, id)) = ⊤. Therefore,algo(ooa,P , idp) 6∈ M , algo(ooa,P , id) 6∈
M , algo(ooa,P , ip) 6∈M anddecision of(P ,R, id) ∈M . By Lemma 25,

⊕

ooa(R) 6=
idp. By Lemma 26,

⊕

ooa(R) 6= id. By Lemma 27,
⊕

ooa(R) 6= ip. By Lemma 3, there
is a rule wheredecision of(P ,R, p) as the head and the body is true underM , i.e.,
decision of(P ,R, p) ← val(R, p). Then we find thatM(val(R, id)) = ⊤. Therefore,
val(R, p) ∈ M . Based on Prop. 7,JRK(Q) = p. Based on (10),∀i : JRiK(Q) 6=
(p or ip or idp) since

⊕

ooa(R) 6= idp. Based on (10),∀i : JRiK(Q) 6= id or there are
no two rules whichJR1K(Q) = JR2K(Q) = d since

⊕

ooa(R) 6= id. Based on (10),
∀i : JRiK(Q) 6= ip or p since

⊕

ooa(R) 6= ip. Therefore, based on (10),
⊕

ooa(R) = p.
⊓⊔

Lemma 29. LetΠ = ΠQ ∪ Πooa ∪ ΠP be a program obtained by merging Request
transformation programΠQ, only-one-applicable combining algorithm transformation
programΠooa and PolicyP transformation program with its componentsΠP . LetM
be an answer set ofΠ . Then,

⊕

ooa

(R) = d if and only if algo(ooa,P , d) ∈M

whereR = 〈R1(Q), . . . ,Rn(Q)〉 be a sequence of policy value where eachRi is a
Rule in the sequence inside PolicyP .

Proof. Note:The proof is similar to the proof of Lemma 28.

Lemma 30. LetΠ = ΠQ ∪ Πooa ∪ ΠP be a program obtained by merging Request
transformation programΠQ, only-one-applicable combining algorithm transformation
programΠooa and PolicyP transformation program with its componentsΠP . LetM
be an answer set ofΠ . Then,

⊕

ooa

(R) = na if and only if algo(ooa,P , na) ∈M

whereR = 〈R1(Q), . . . ,Rn(Q)〉 be a sequence of policy value where eachRi is a
Rule in the sequence inside PolicyP .

Proof. (⇒) Suppose that
⊕

ooa(R) = na holds. Then, as defined in (8) we have that
⊕

ooa(R) 6= idp,
⊕

ooa(R) 6= id,
⊕

ooa(R) 6= ip,
⊕

ooa(R) 6= d, and
⊕

ooa(R) 6= p.

By Lemma 25,algo(ooa,P , idp) 6∈ M . By Lemma 26,algo(ooa,P , id) 6∈ M . By
Lemma 27,algo(ooa,P , ip) 6∈ M . By Lemma 28,algo(ooa,P , p) 6∈ M . By Lemma
29, algo(ooa,P , d) 6∈ M . Thus,M(not algo(ooa,P , idp) ∧ not algo(ooa,P , id) ∧
not algo(ooa,P , ip) ∧ not algo(ooa,P , d) ∧ not algo(ooa,P , p)) = ⊤ Therefore,
algo(ooa,P , na) ∈M sinceM is the minimal model ofΠ .
(⇐) Suppose thatalgo(ooa,P , na) ∈ M . Based on Lemma 3, there is a rule where
algo(ooa,P , na) as the head and the body is true underM . There is only a rule inΠ
wherealgo(ooa,P , na) as the head, i.e.,algo(ooa,P , na) ← not algo(ooa,P , idp),
not algo(ooa,P , id),not algo(ooa,P , ip),not algo(ooa,P , d), not algo(ooa,P , p).
Then we find thatM(not algo(ooa,P , idp)∧not algo(ooa,P , id)∧not algo(ooa,P , ip)
∧not algo(ooa,P , d) ∧ not algo(ooa,P , p)) = ⊤. Therefore,algo(ooa,P , idp) 6∈M ,
algo(ooa,P , id) 6∈M , algo(ooa,P , ip) 6∈M , algo(ooa,P , d) 6∈M andalgo(ooa,P , p)
6∈ M . By Lemma 19,

⊕

ooa(R) 6= idp. By Lemma 20,
⊕

ooa(R) 6= idp. By Lemma 21,
⊕

ooa(R) 6= ip. By Lemma 22,
⊕

ooa(R) 6= ip. By Lemma 23,
⊕

ooa(R) 6= ip. There-
fore, based on (8),

⊕

ooa(R) = na ⊓⊔

Proposition 10. LetΠ = ΠQ∪Πooa∪Π
P be a program obtained by merging Request

transformation programΠQ, only-one-applicable combining algorithm transformation
programΠooa and PolicyP transformation program with its componentsΠP . LetM
be an answer set ofΠ . Then,

⊕

ooa

(R) = V if and only if algo(ooa,P , V) ∈M

whereR = 〈R1(Q), . . . ,Rn(Q)〉 be a sequence of policy value where eachRi is a
Rule in the sequence inside PolicyP .

Proof. It follows from Lemma 25, Lemma 26, Lemma 27, Lemma 28, Lemma 29 and
Lemma 30 since the value ofV only has six possibilities, i.e.,{ p, d, ip, id, idp, na }. ⊓⊔

Evaluation to Combining Algorithms.

Proposition 11. Let Π = ΠQ ∪ ΠCombID ∪ ΠP be a program obtained by merging
Request transformation programΠQ, combining algorithm transformation program
ΠCombID and PolicyP transformation program with its componentsΠP . LetM be an
answer set ofΠ . Then,

⊕

CombID

(R) = V if and only if algo(CombID,P , V) ∈M

whereR = 〈R1(Q), . . . ,Rn(Q)〉 be a sequence of policy value where eachRi is a
Rule in the sequence inside PolicyP .

Proof. It follows from Prop. 8, Prop. 9 and Prop. 10. ⊓⊔

Policy Evaluation.

Lemma 31. Let Π = ΠQ ∪ ΠP be a program obtained by merging Request trans-
formation programΠQ PolicyP transformation program and its componentsΠP . Let
M be an answer set ofΠ . Then,

JPK(Q) = id iff val(P , id) ∈M.

Proof. (⇒) Suppose thatJPK(Q) = id holds. Then, as defined in (7) we have that

1. JT K(Q) = idt and
⊕

CombID(R) = d. Based on Prop. 5 and Prop. 11,val(T , idt) ∈
M andalgo(CombID,P , d) ∈M . Thus,M(val(T , idt) ∧ algo(CombID,P , d)) =
⊤. Hence, by Lemma 1,val(P , id) ∈M .

2. JT K(Q) = idt and
⊕

CombID(R) = id and∀i : JRiK(Q) 6= na. Based on Prop. 5
and Prop. 11,val(T , idt) ∈ M andalgo(CombID,P , id) ∈ M . Based on Prop. 7,
∃i : val(Ri, V) ∈ M,V 6= na. Therefore, we havedecision of(P ,Ri, V) ∈ M
sinceM is the minimal model ofΠ Thus,M(val(T , idt)∧ algo(CombID,P , id) ∧
decision of(P ,Ri, V) ∧ (V 6= na)) = ⊤. Hence, by Lemma 1,val(P , id) ∈M .

3. JT K(Q) = m and
⊕

CombID(R) = id and∀i : JRiK(Q) 6= na. Based on Prop. 5
and Prop. 11,val(T ,m) ∈ M andalgo(CombID,P , id) ∈ M . Based on Prop. 7,
∃i : val(Ri, V) ∈ M,V 6= na. Therefore, we havedecision of(P ,Ri, V) ∈ M
sinceM is the minimal model ofΠ Thus,M(val(T ,m) ∧ algo(CombID,P , id) ∧
decision of(P ,Ri, V) ∧ (V 6= na)) = ⊤. Therefore,val(P , id) ∈ M sinceM is
the minimal model ofΠ .

(⇐) Suppose thatval(P , id) ∈M . Based on Lemma 3, there is a clause whereval(P , id)
as the head and the body is true underM . There are rules inΠ whereval(P , id) as the
head, i.e.,

1. val(P , id)← val(T , idt), algo(CombID,P , d).
Then,M(val(T , idt) ∧ algo(CombID,P , d)) = ⊤. Therefore,val(T , idt) ∈ M
andalgo(CombID,P , d) ∈ M . Based on Prop. 5 and Prop. 11,JT K(Q) = idt and
⊕

CombID(R) = d. Therefore, based on (7),JPK(Q) = id.
2. val(P , id)← val(T , idt), decision of(P ,R, V), V 6= na, algo(CombID,P , id), id 6=

d.
Then,M(val(T , idt)∧ decision of(P ,R, V)∧ (V 6= na)∧ algo(CombID,P , id)∧
(id 6= d)) = ⊤. Therefore,val(T , idt) ∈ M , decision of(P ,R, V) ∈ M , V 6= na

andalgo(CombID,P , id) ∈ M . Based on Prop. 5 and Prop. 11,JT K(Q) = idt and
⊕

CombID(R) = id. Based on Lemma 3, there is a clause wheredecision of(P ,R, V)
as the head and the body is true underM . There is a ruleΠ wheredecision of(P ,R, V)
as the head, i.e.,decision of(P ,R, V)← val(R, V). Then we find thatM(val(R, V)) =
⊤. Thus,val(R, V) ∈ M . Based on Prop. 7,JRK(Q) = V , V 6= na. Therefore,
based on (7),JPK(Q) = id.

3. val(P , id)← val(T ,m), decision of(P ,R, V), V 6= na, algo(CombID,P , id).
Then we find thatM(val(T ,m)∧decision of(P ,R, V)∧(V 6= na)∧algo(CombID,P , id)) =
⊤. Therefore,val(T ,m) ∈M , decision of(P ,R, V) ∈M ,V 6= na andalgo(CombID,P , id) ∈
M . Based on Prop. 5 and Prop. 11,JT K(Q) = m and

⊕

CombID(R) = id. Based on
Lemma 3, there is a clause wheredecision of(P ,R, V) as the head and the body
is true underM . There is a ruleΠ wheredecision of(P ,R, V) as the head, i.e.,
decision of(P ,R, V) ← val(R, V). Then we find thatM(val(R, V)) = ⊤. Thus,
val(R, V) ∈ M . Based on Prop. 7,JRK(Q) = V , V 6= na. Therefore, based on
(7), JPK(Q) = id. ⊓⊔

Lemma 32. Let Π = ΠQ ∪ ΠP be a program obtained by merging Request trans-
formation programΠQ PolicyP transformation program and its componentsΠP . Let
M be an answer set ofΠ . Then,

JPK(Q) = ip if and only if val(P , ip) ∈M .

Proof. Note:The proof is similar with the proof in Lemma 31.

Lemma 33. Let Π = ΠQ ∪ ΠP be a program obtained by merging Request trans-
formation programΠQ PolicyP transformation program and its componentsΠP . Let
M be an answer set ofΠ . Then,

JPK(Q) = na if and only if val(P , na) ∈M .

Proof. (⇒) Suppose thatJPK(Q) = na holds. Then, as defined in (7) we have that

1. JT K(Q) = nm. Based on Prop. 5,val(T , nm) ∈ M . Thus,M(val(T , nm)) = ⊤.
Therefore,val(P , na) ∈M sinceM is the minimal model ofΠ .

2. ∀i : JRiK(Q) = na. Based on Prop. 7,∀i : val(Ri, na) ∈M . Thus,M(val(R1, na)∧
. . .∧ val(Rn, na)) = ⊤. Therefore,val(P , na) ∈M sinceM is the minimal model
of Π .

(⇐) Suppose thatval(P , id) ∈M . Based on Lemma 3, there is a clause whereval(P , ip)
as the head and the body is true underM . There are rules inΠ whereval(P , ip) as the
head, i.e.,

1. val(P , na) ← val(T , nm). Then we find thatM(val(T , nm)) = ⊤. Therefore,
val(T , nm) ∈ M . Based on Prop. 5,JT K(Q) = na. Therefore, based on (7),
JPK(Q) = na.

2. val(P , na) ← val(R1, na), . . . , val(Rn, na). Then we find thatM(val(R1, na) ∧
. . . ∧ val(Rn, na)) = ⊤. Therefore,∀i : val(Ri, na) ∈ M . Based on Prop. 7,
∀i : JRiK(Q) = na. Therefore, based on (7),JPK(Q) = na. ⊓⊔

Lemma 34. Let Π = ΠQ ∪ ΠP be a program obtained by merging Request trans-
formation programΠQ PolicyP transformation program and its componentsΠP . Let
M be an answer set ofΠ . Then,

JPK(Q) = idp if and only if val(P , idp) ∈M .

Proof. (⇒) Suppose thatJPK(Q) = idp holds. Then, as defined in (7) we have that

1. JT K(Q) = idt and
⊕

CombID(R) = idp and∀i : JRiK(Q) 6= na. Based on Prop.
5 and Prop. 11,val(T , idt) ∈ M andalgo(CombID,P , idp) ∈ M . Based on Prop.
7, ∃i : val(Ri, V) ∈ M,V 6= na. Therefore, we havedecision of(P ,Ri, V) ∈ M
sinceM is the minimal model ofΠ Thus,M(val(T , idt)∧algo(CombID,P , idp)∧
decision of(P ,Ri, V) ∧ (V 6= na)) = ⊤. Therefore,val(P , idp) ∈ M sinceM is
the minimal model ofΠ .

2. JT K(Q) = m and
⊕

CombID(R) = idp and∀i : JRiK(Q) 6= na. Based on Prop. 5
and Prop. 11,val(T ,m) ∈ M andalgo(CombID,P , idp) ∈ M . Based on Prop. 7,
∃i : val(Ri, V) ∈ M,V 6= na. Therefore, we havedecision of(P ,Ri, V) ∈ M
sinceM is the minimal model ofΠ Thus,M(val(T ,m)∧ algo(CombID,P , idp)∧
decision of(P ,Ri, V) ∧ (V 6= na)) = ⊤. Therefore,val(P , idp) ∈ M sinceM is
the minimal model ofΠ .

(⇐) Suppose thatval(P , idp) ∈ M . Based on Lemma 3, there is a clause where
val(P , idp) as the head and the body is true underM . There are rules inΠ where
val(P , idp) as the head, i.e.,

1. val(P , idp)← val(T , idt), decision of(P ,R, V), V 6= na, algo(CombID,P , idp), idp 6=
d. Then we find thatM(val(T , idt)∧decision of(P ,R, V)∧(V 6= na)∧algo(CombID,P , idp)∧
(idp 6= d)) = ⊤. Therefore,val(T , idt) ∈ M , decision of(P ,R, V) ∈ M , V 6= na

andalgo(CombID,P , idp) ∈M . Based on Prop. 5 and Prop. 11,JT K(Q) = idt and
⊕

CombID(R) = idp. Based on Lemma 3, there is a clause wheredecision of(P ,R, V)
as the head and the body is true underM . There is a ruleΠ wheredecision of(P ,R, V)
as the head, i.e.,decision of(P ,R, V)← val(R, V). Then we find thatM(val(R, V)) =
⊤. Thus,val(R, V) ∈ M . Based on Prop. 7,JRK(Q) = V , V 6= na. Therefore,
based on (7),JPK(Q) = idp.

2. val(P , idp) ← val(T ,m), decision of(P ,R, V), V 6= na, algo(CombID,P , idp).
Then we find thatM(val(T ,m)∧decision of(P ,R, V)∧(V 6= na)∧algo(CombID,P , idp)) =
⊤. Therefore,val(T ,m) ∈M , decision of(P ,R, V) ∈M ,V 6= na andalgo(CombID,P , idp) ∈
M . Based on Prop. 5 and Prop. 11,JT K(Q) = m and

⊕

CombID(R) = idp. Based on
Lemma 3, there is a clause wheredecision of(P ,R, V) as the head and the body
is true underM . There is a ruleΠ wheredecision of(P ,R, V) as the head, i.e.,
decision of(P ,R, V) ← val(R, V). Then we find thatM(val(R, V)) = ⊤. Thus,
val(R, V) ∈ M . Based on Prop. 7,JRK(Q) = V , V 6= na. Therefore, based on
(7), JPK(Q) = idp. ⊓⊔

Lemma 35. Let Π = ΠQ ∪ ΠP be a program obtained by merging Request trans-
formation programΠQ PolicyP transformation program and its componentsΠP . Let
M be an answer set ofΠ . Then,

JPK(Q) = p if and only if val(P , p) ∈M .

Proof. (⇒) Suppose thatJPK(Q) = p holds. Then, as defined in (7) we have that
JT K(Q) = m and

⊕

CombID(R) = p and∀i : JRiK(Q) 6= na. Based on Prop. 5
and Prop. 11,val(T ,m) ∈ M and algo(CombID,P , p) ∈ M . Based on Prop. 7,
∃i : val(Ri, V) ∈ M,V 6= na. Therefore, we havedecision of(P ,Ri, V) ∈ M
sinceM is the minimal model ofΠ Thus,M(val(T ,m) ∧ algo(CombID,P , p) ∧
decision of(P ,Ri, V) ∧ (V 6= na)) = ⊤. Therefore,val(P , p) ∈ M sinceM is the
minimal model ofΠ .
(⇐) Suppose thatval(P , id) ∈M . Based on Lemma 3, there is a clause whereval(P , id)
as the head and the body is true underM . There are rules inΠ whereval(P , id) as the
head, i.e.,val(P , p)← val(T ,m), decision of(P ,R, V), V 6= na, algo(CombID,P , p).
Then we find thatM(val(T ,m)∧decision of(P ,R, V)∧(V 6= na)∧algo(CombID,P , p)) =
⊤. Therefore,val(T ,m) ∈M , decision of(P ,R, V) ∈M ,V 6= na andalgo(CombID,P , p) ∈
M . Based on Prop. 5 and Prop. 11,JT K(Q) = m and

⊕

CombID(R) = p. Based on
Lemma 3, there is a clause wheredecision of(P ,R, V) as the head and the body is true
underM . There is a ruleΠ wheredecision of(P ,R, V) as the head, i.e.,decision of(P ,R, V)←
val(R, V). Then we find thatM(val(R, V)) = ⊤. Thus,val(R, V) ∈ M . Based on
Prop. 7,JRK(Q) = V , V 6= na. Therefore, based on (7),JPK(Q) = p. ⊓⊔

Lemma 36. Let Π = ΠQ ∪ ΠP be a program obtained by merging Request trans-
formation programΠQ PolicyP transformation program and its componentsΠP . Let
M be an answer set ofΠ . Then,

JPK(Q) = d if and only if val(P , d) ∈M .

Proof. (⇒) Suppose thatJPK(Q) = d holds. Then, as defined in (7) we have that
JT K(Q) = m and

⊕

CombID(R) = d and∀i : JRiK(Q) 6= na. Based on Prop. 5

and Prop. 11,val(T ,m) ∈ M and algo(CombID,P , d) ∈ M . Based on Prop. 7,
∃i : val(Ri, V) ∈ M,V 6= na. Therefore, we havedecision of(P ,Ri, V) ∈ M
sinceM is the minimal model ofΠ Thus,M(val(T ,m) ∧ algo(CombID,P , d) ∧
decision of(P ,Ri, V) ∧ (V 6= na)) = ⊤. Therefore,val(P , d) ∈ M sinceM is the
minimal model ofΠ .
(⇐) Suppose thatval(P , id) ∈M . Based on Lemma 3, there is a clause whereval(P , id)
as the head and the body is true underM . There are rules inΠ whereval(P , id) as the
head, i.e.,val(P , d)← val(T ,m), decision of(P ,R, V), V 6= na, algo(CombID,P , d).
Then we find thatM(val(T ,m)∧decision of(P ,R, V)∧(V 6= na)∧algo(CombID,P , d)) =
⊤. Therefore,val(T ,m) ∈M , decision of(P ,R, V) ∈M ,V 6= na andalgo(CombID,P , d) ∈
M . Based on Prop. 5 and Prop. 11,JT K(Q) = m and

⊕

CombID(R) = d. Based on
Lemma 3, there is a clause wheredecision of(P ,R, V) as the head and the body is true
underM . There is a ruleΠ wheredecision of(P ,R, V) as the head, i.e.,decision of(P ,R, V)←
val(R, V). Then we find thatM(val(R, V)) = ⊤. Thus,val(R, V) ∈ M . Based on
Prop. 7,JRK(Q) = V , V 6= na. Therefore, based on (7),JPK(Q) = d. ⊓⊔

Proposition 12. LetΠ = ΠQ∪ΠP be a program obtained by merging Request trans-
formation programΠQ PolicyP transformation program and its componentsΠP . Let
M be an answer set ofΠ . Then,

JPK(Q) = V if and only if val(P , V) ∈M .

Proof. It follows from Lemma 31, Lemma 32, Lemma 33, Lemma 34, Lemma 35 and
Lemma 36 since the value ofV only has six possibilities, i.e.,{ p, d, ip, id, idp, na }. ⊓⊔

Evaluation to XACML Component.

Corollary 1. LetΠ = ΠQ ∪ΠXACML be a program obtained by merging Request trans-
formation programΠQ and all XACML components transformation programsΠXACML.
LetM be an answer set ofΠ . Then,

JXK(Q) = V if and only if val(X,V) ∈M

whereX is an XACML component.

Proof. It follows from Prop. 2, Prop. 3, Prop. 4, Prop. 5, Prop. 6, Prop. 7 and Prop.
12. ⊓⊔

	XACML 3.0 in Answer Set Programming – Extended Version

