arXiv:1206.5327v2 [cs.IT] 18 Feb 2013

XACML 3.0 in Answer Set Programming —
Extended Version

Carroline Dewi Puspa Kencana Ramli, Hanne Riis NielsormRing Nielson

Department of Informatics and Mathematical Modelling
Danmarks Tekniske Universitet
Lyngby, Denmark
{cdpu, riis, nielson}@imm.dtu.dk

Abstract We present a systematic technique for transforming XACML&l-
icies in Answer Set Programming (ASP). We show that the tiesulogic pro-
gram has a unigue answer set that directly corresponds téooualisation of
the standard semantics of XACML 3.0 from [9]. We demonsthate our results
make it possible to use off-the-shelf ASP solvers to forynedirify properties of
access control policies represented in XACML, such as éhgake complete-
ness of a set of access control policies and verifying pgioperties.

Keywords: XACML, access control, policy language, Answer Set Programg

1 Background

XACML (eXtensible Access Control Markup Language) is a pioent access control
language that is widely adopted both in industry and acaaleACML is an inter-
national standard in the field of information security and~gbruary 2005, XACML
version 3.0 was ratified by OASIEXACML represents a shift from a more static se-
curity approach as exemplified by ACLs (Access Control listsvards a dynamic
approach, based on Attribute Based Access Control (ABAG)esys. These dynamic
security concepts are more difficult to understand, auditiaterpret in real-world im-
plications. The use of XACML requires not only the right tedlut also well-founded
concepts for policy creation and management.

The problem with XACML is that its specification is descrikiadhatural language
(c.f. [11]) and manual analysis of the overall effect andsamuences of a large XACML
policy set is a very daunting and time-consuming task. How &golicy developer
be certain that the represented policies capture all pesiquests? Can they lead to
conflicting decisions for some request? Do the policiesBatll required properties?
These complex problems cannot be solved easily without sarmmatised support.

To address this problem we propose a logic-based XACML aisfyamework us-
ing Answer Set Programming (ASP). With ASP we model an XACMiiéy Decision
Point (PDP) that loads XACML policies and evaluates XACMQuests against these
policies. The expressivity of ASP and the existence of effitimplementations of the
answer set semantics, such@sasgq and DLW, provide the means for declarative
specification and verification of properties of XACML poksi.

! The Organization for the Advancement of Structured InfdiomaStandards (OASIS) is a

global consortium that drives the development, convergeand adoption of e-business and
web service standards.

2lhttp://www.cs.uni-potsdam.de/clasp/

Shttp://www.dlvsystem.com/

http://arxiv.org/abs/1206.5327v2
http://www.cs.uni-potsdam.de/clasp/
http://www.dlvsystem.com/

Our work is depicted in Figuig 1. There are two main modulis tihie PDP simu-
lation module and the access control (AC) security propegtification module. In the
first module, we transform an XACML query and XACML policia®ifn the original
format in XML syntax into abstract syntax which is more comipan the original.
Subsequently we generate a query progidgand XACML policies progran ey,
that correspond to the XACML query and the XACML policiesspectively. We show
that the corresponding answer set (ASYb$ U IL.cw IS Unique and it coincides with
the semantics of original XACML policy evaluation. In thecsed module, we demon-
strate how our results make it possible to use off-the-sh8FP solvers to formally
verify properties of AC policies represented in XACML. Fivge encode the AC secur-
ity property and a generator for each possible domain of XAQMlicies into logic
programslla ¢ _property @A enerator, respectively. The encoding of AC property is in
the negated formula in order to show at a later stage that@asler set corresponds
to a counter example that violates the AC property. Togethtr the combination of
Incwe U IIa ¢ property U Igenerator WE show that the XACML policies satisfy the AC
property when there is no available answer set.

Figure 1. Translation Process from Original XACML to XACML-ASP

XACML Query XACML Policies
in original format in original format
L J
'a Y
XACML Query XACML Policies
in abstract syntax in abstract syntax
L J
'a Y 'a
XACML Query XACML Policies XACML Response
in a logic program in logic programs Answer Set
L J
'a DY (A 'a
Access Control Properties Domain Generator Result
in logic programs in logic programs Answer Set(s)
L J L J

Outline.We consider the current version, XACML 3.0, Committee Sfeafion 01, 10
August 2010. in Sectidd 2 we explain the abstract syntax amdatics of XACML 3.0.
Then we describe the transformation of XACML 3.0 componaéntts logic programs
in SectiorB. We show the relation between XACML 3.0 semargind the answer sets
in Sectior 4. Next, in Sectidd 5, we show how to verify AC pndijes, such as checking
the completeness of a set of policies. In Sedilon 6 we distieseelated work. We end
the paper with conclusions and future work.

2 XACML 3.0

In order to avoid superfluous syntax of XACML 3.0, first we mneisthe abstract syn-
tax of XACML 3.0 which only shows the important componentsx@fCML 3.0. We
continue the explanation by presenting the semantics of MAG.0 components’ eval-
uation based on Committee Specification| [11]. We take th&kwbRamli et. alwork
[9] as our reference.

2.1 Abstract Syntax of XACML 3.0

Table[d shows the abstract syntax of XACML 3.0. We use bold fonnon-terminal
symbols typewriter font for terminakymbols andidentifiersandvaluesare written
in italic font. A symbol followed by the star symbdi)(indicates that there are zero or
more occurrences of that symbol. Similarly, a symbol fokaolby the plus symbol®)
indicates that there are one or more occurrences of thatayive consider that each
policy has a unique identifier (ID). We use initial capitatés for XACML components
such as PolicySet, Policy, Rule, etc., and small letter&faglish terminology.

Table 1. Abstraction of XACML 3.0 Components

XACML Policy Components
PolicySetPS = PSiq = [T, {(PSia | Pia)™), ComblID]
Policy |P =Py = [T,(Ria™), CombID]
Rule R 1= Riq = [Effect, T, C|
ConditionC n=true | 2 a1,...,an)
Target |7 m=null | AET
Anyof |E =\ A"
AlOf A = AM*
Match |M = Attr
CombID ::=po | do| fa | ooa
Effect :=p|d
Attribute |Attr = category(attribute_value)
XACML Request Component
Request |Q = (Attr | error(Attr))

There are three levels of policies in XACML, namely Policy;3#olicy and Rule.
PolicySet or Policy can act as the root of a set of accessaqgificies, while Rule is a
single entity that describes one particular access coptiidy. Throughout this paper
we consider that PolicySet is the root of the set of accessaglicies.

Both PolicySet and Policy function as containers for a saqga®f PolicySet, Policy
or Rule. A PolicySet contains either a sequence of Policgeetents or a sequence of
Policy elements, while a Policy can only contain a sequefi¢tute elements. Every
sequence of PolicySet, Policy or Rule elements has an assdcombining algorithm
There are four common combining algorithms defined in XACMQ, 3iamelypermit-
overrideqpo), deny-overridegdo), first-applicable(fa) andonly-one-applicabléooa).

A Rule describes an individual access control policy. lutates whether an access
should bepermitted(p) or denied(d). All PolicySet, Policy and Rule are applicable
whenever their Target matches with the Request. When the'RTdrget matches the
Request, then the applicability of the Rule is refined by isdition.

A Target element identifies the set of decision requeststtieaparent element is
intended to evaluate. The Target element must appear addaofha PolicySet and
Policy element and may appear as a child of a Rule elementefrpty Target for
Rule element is indicated byu11 attribute. The Target element contains a conjunctive
sequence of AnyOf elements. The AnyOf element containsjardive sequence of
AlIOf elements, while the AlIOf element contains a conjumetsequence of Match
elements. Each Match element specifies an attribute thatjagleshould match.

A Condition is a Boolean function over attributes or funosof attributes. In this
abstraction, the user is free to define the Condition as lsnitsaxpression returns a
Boolean value, i.e., either true or false. Empty Condit®alivays associated to true.

A Request contains a set of attribute values for a parti@adaess request and the
error messages that occurred during the evaluation obatérivalues.

2.2 XACML 3.0 Formal Semantics

The evaluation of XACML policies starts from the evaluat@hMatch elements and
continues bottom-up until the evaluation of the root of thdOML element, i.e., the
evaluation of PolicySet. For each XACML elemekitwe denote by X] a semantic
function associated t& . To each Request element, this function assigns a value from
a set of values that depends on the particular type of the XA@MmentX. For ex-
ample, the semantic functidiX], whereX is a Match element, ranges over the set
{m,nm,idt }, while its range is the seft,f,idt} when X is a Condition element.
A further explanation will be given below. An XACML componereturns an inde-
terminate value whenever the decision cannot be made. &pigdns when there is an
error during the evaluation process. See [9] for furthedamgtion of the semantics of
XACML 3.0.

Evaluation of Match, AllOf, AnyOf and Target Components. Let X be either a
Match, an AllOf, an AnyOf or a Target component and @the a set of all possible
Requests. AMatch semantic functiois a mappingd X] : Q — { m,nm,idt }, where
m, nm andidt denotematch no-matchandindeterminaterespectively.
Our evaluation of Match element is based on equality funéid/e check whether
there are any attribute values in Request element that nfaediatch attribute value.
Let Q be a Request element and.Jet be a Match element. The evaluation of Match
M is as follows
m if M € Q anderror(M) ¢ Q
[M]J(Q) =< nm if M ¢ Qanderror(M) ¢ Q 1)
idt if error(M) € Q
The evaluation of AllOf is a conjunction of a sequence of Matements. The value
of m, nm andidt corresponds to true, false and undefined in 3-valued loggpactively.
Given a Requed®, the evaluation of AllOf,A = A”"_, M,, is as follows

m if Vi: [M;](Q) =m
[AL(Q) = nmif 3i: [M;](Q) = nm ®)
idt otherwise

where each\; is a Match element.
The evaluation of AnyOf element is a disjunction of a seqeaesfcAllOf elements.
Given a Requed®, the evaluation of AnyOf¢ = \/|__, A;, is as follows

m if 3i: [A4](Q) =m
[ENQ) =< nm if Vi: [A](Q) =nm 3)
idt otherwise
where eaclhy; is an AllOf element.

4 Our Match evaluation is a simplification compared withl [11].

The evaluation of Target element is a conjunction of a secgiehAnyOf elements.
An empty Target, indicated byul1 attribute, is always evaluated to. Given a Re-
questQ, the evaluation of Targe®, = A", &, is as follows

m ifVi:[£](Q)=morT =null
[T1(Q) = { nm if Ji: [£:}(Q) = nm (4)

idt otherwise
where eaclf; is an AnyOf element.

Evaluation of Condition. Let X be a Condition component and & be a set of all
possible Requests. Bondition semantic functiois a mappind X] : Q — {t,f,idt },
wheret, f andidt denotetrue, falseandindeterminaterespectively.

The evaluation of Condition element is based on the evalnati its Boolean func-
tion as described in its element. To keep it abstract, we tispexify specific functions;
however, we use an unspecified functiews|, that returng t, f, idt }.

Given a Requed, the evaluation of Conditiod is as follows

[C1(Q) = eval(C, Q) ()

Evaluation of Rule. Let X be a Rule componentand Btbe a set of possible Requests.
A Rule semantic functiois a mappingX] : @ — { p,d,ip, id, na }, wherep,d, i, iq
andna correspond t@ermit deny indeterminate permiindeterminate dengndnot —
applicable, respectively.

Given a Requedd, the evaluation of Rul®,; = [E, T, (] is as follows

E i [T](Q) = mand[C](Q) =t
[Ria](Q) = { na if ([T](Q) = mand[C](Q) =f) or [T](Q) =nm (6)

ip otherwise
whereFE is an effectE € { p,d }, T is a Target element ar@lis a Condition element.

Evaluation of Policy and PolicySetLet X be either a Policy or a PolicySet component
and letQ be a set of all possible RequestsPalicy semantic functiors a mapping
[X] : @ = {p,d,ip,id,idp, na }, Wherep,d, iy, iq, idp @ndna correspond tgermit,
deny indeterminate permiindeterminate denyndeterminate deny perméndnot —
applicable, respectively.

Given a Requesp, the evaluation of Policp,; = [T, (R1,...,Rn), ComblID] is
as follows

t it [T1(Q) = idt and Do (R) = d
_) if [7](Q) = idt and Dcompip(R) = p
[Pab(Q) =1 1 i [71(Q) = nmorvi: [R](Q) —na

®CombID(R) otherwise
whereT is a Target element, and ea@®) is a Rule element. We usR to denote

(IRJ(Q). ..., [RAI(Q)).

Note: The combining algorithm denoted) ,,..,,o Will be explained in Seck. 213.
The evaluation of PolicySet is exactly like the evaluatidrPolicy except that it

differs in terms of input parameter. While in Policy we usequeence of Rule elements

as an input, in the evaluation of PolicySet we use a sequehnkely or PolicySet

elements.

2.3 XACML Combining Algorithms

There are four common combining algorithms defined in XACMQ, 3amely permit-
overrides po), deny-overridesdo), first-applicablefa) and only-one-applicableéa).
In this paper, we do not consider the deny-overrides combiaigorithm since it is the
mirror of the permit-overrides combining algorithm.

Permit-Overrides (po) Combining Algorithm. The permit-overrides combining algo-
rithm is intended for use if a permit decision should haverity over a deny decision.
This algorithm has the following behaviour [11].

1. If any decision is “permit”, the result is “permit”.

2. Otherwise, if any decision is “indeterminate deny petntlite result is “indeterm-
inate deny permit”.

3. Otherwise, if any decision is “indeterminate permit” @rther decision is “inde-
terminate deny” or “deny”, the result is “indeterminate gg@ermit”.

4. Otherwise, if any decision is “indeterminate permit’e ttesult is “indeterminate
permit”.

5. Otherwise, if decision is “deny”, the result is “deny”.

6. Otherwise, if any decision is “indeterminate deny”, tlesult is “indeterminate
deny”.

7. Otherwise, the result is “not applicable”.

Let (s1,...,s,) be a sequence of element §b,d, iy, i4, idp, na }. The permit-
overrides combining operatas defined as follows
p ifdi:s;=p
igp If Vi:s; #pand

(Fj:sj =ldp
or(3j,5' : s; =i, and(s; =ig orsj =d))
Dlsr,. sy =4 TGI8 = jpandlsy =g ors
if 3i:s; =i,andVj:s; #i, = s; =na

Ip
po
d ifdi:s;=dandvj:s; #d= (s; =iq Ors; = na)
g If3:s; =igandVj:s; #iqg = s; =na
na otherwise

(8

First-Applicable (fa) Combining Algorithm. Each Rule must be evaluated in the order
in which it is listed in the Policy. If a particular Rule is dpable, then the result of
first-applicable combining algorithm must be the result wdleating the Rule. If the
Rule is “not applicable” then the next Rule in the order mwesebaluated. If no further
Rule in the order exists, then the first-applicable comlgjr@ilgorithm must return “not
applicable”.

Let(si,...,s,) beasequence of elementas, d, iy, i4, iap, na }. Thefirst-applicable
combining operators defined as follows:

EB«SI’_._’SM:{&- if 3i:s; #naandVj: (j <i) = (s; =na) ©

= na otherwise

Only-One-Applicable (coa) Combining Algorithm. If only one Policy is considered
applicable by evaluation of its Target, then the result ef ¢dinly-one-applicable com-
bining algorithm must the result of evaluating the Polidyinlthe entire sequence of

Policy elements in the PolicySet, there is no Policy thatpigliaable, then the result
of the only-one-applicable combining algorithm must bet“applicable”. If more than
one Policy is considered applicable, then the result of tiig-one-applicable combin-
ing algorithm must be “indeterminate”.
Let (s1,..., s,) be a sequence of element pp, d, iy, id, iap, na }. Theonly-one-
applicable combining operatds defined as follows:
idp if (Hi 1S = idp) or
(Fi,j:i# jands; = (dorig) As; = (porip))
i if (Vi:s; % (poripOrig,)) and
®(<81 s ((3j :sj =ig)or(3j,k: j # kands; = s =d))
R ip if (Vi:s;# (dorigorig)) and
((Fj:sj=1ip)or(3j,k:j+#kands; = s, =p))
si ifJi:s; #naandVj:j#i=s; =na
na otherwise

|
ooa P

(10)

3 Transforming XACML Components into Logic Programs

In this section we show, step by step, how to transform XACML &mponents into
logic programs. We begin by introducing the syntax of logiegrams (LPs). Then we
show the transformation of XACML componentinto LPs stagtirom Request element
to PolicySet element. We also present transformationsdortining algorithms. The
transformation of each XACML element is based on its forneahantics explained in
Sect[2.P and Se¢i. 2.3.

3.1 Preliminaries
We recall basic notation and terminology that we use in theaiader of this paper.

First-Order Language. We consider aralphabetconsisting of (finite or countably
infinite) disjoint sets of variables, constants, functigmbols, predicate symbols, con-
nectives{ not, A, + }, punctuation symbol$ “(", “,", “)", “.” } and special symbols
{T,L}. We use upper case letters to denote variables and lowelettses to de-
note constants, function and predicate symbols. Termsystiterals and formulae are
defined as usual. THanguagegiven by an alphabet consists of the set of all formulae
constructed from the symbols occurring in the alphabet.

Logic Programs.A rule is an expression of the form
A+ By A---A By Anot By41 A+ Anot B,,. (12)

where A is either an atom od. and eachB;, 1 < ¢ < n, is an atom orT. T is a
valid formula. We usually writé3; A - - - A By, Anot B,,,+1 A -+ - Anot B, simply as
Bi,...,Bmn,not By,11,...,not B,. We call the rule as aonstraintwhenA = 1.
One should observe that the body of a rule must not be empfgctis a rule of the
formA «+ T.

A logic programis a finite set of rules. We denotgound(II) for the set of all
ground instances of rules in the progrdm

3.2 XACML Components Transformation into Logic Programs

The transformation of XACML components is based on the séicgaf each compo-
nent explained in Sedi. 2.2.

3.2.1 Request Transformation. XACML SyntaxLet Q = { cati(a1), ..., caty(ay) }
be a Request component. We transform all members of Redeestiet into facts. The
transformation of Reques, into LP I1, is as follows

cati(a;) < T.1<i<n

3.2.2 XACML Policy Components Transformation. We use a two-place function
val to indicate the semantics of XACML components where the firgument is the

name of XACML component and the second argument is its véllease note that the
calligraphic font in each transformation indicates the XCcomponent’s name, that
is, it does not represent a variable in LP.

Transformation of Match, AnyOf, AllOf and Target Component s. Given a semantic
equation of the form{ X (Q) = v if cond; and... andcond,,, we produce a rule
of the formval(X,v) < condy,..., cond,. Given a semantic equation of the form
[X]v(Q) = vif condy or ... or cond,,, we produce a rule of the forwel(X,v) +
cond;. 1 < i < n. For example, the Match evaluatigM](Q) = mif cat(a) €
Q anderror(cat(a)) ¢ Q is transformed into a rule in the formal(M, m) « M,
not error(M). The truth value ofM depends on whethe¥t « T is in Il and the
same is the case also for the truth valuer@ér(M).

Let M be a Match component. The transformation of Matehinto LP 7, is as
follows (see[(ll) for Match evaluation)

val(M, m) < M, not error(M).
val(M, nm) < not cat(a), not error(M).
val(M,idt) < error(M).

Let A = A._, M, be an AllOf component where eagl; is a Match component.
The transformation of AllOf4 into LP I1 4 is as follows (sed{2) for AllOf evaluation)

val(A,m) < val(My,m),...,val(My,m).
val(A, nm) < val(M;,nm). (1 <i<mn)
val(A,idt) < not val(A, m), not val(A, nm).

Let& = \/._, A; be an AnyOf component where eadh is an AllOf component.
The transformation of AnyQf into LP I1¢ is as follows (sed{3) for AnyOf evaluation)

val(€,m) <« val(A4;,m). (1 <i<n)
val(&,nm) « val(A1,nm), ..., val(A,, nm).
val(€,idt) < not val(4, m), not val(€,nm).

Let 7 = A]_, 7; be a Target component where eaGhis an AnyOf component.
The transformation of Targéf into LP I7+ is as follows (sed {4) for Target evaluation)

val(null,m) « T.

val(T,m) <« val(&1,m),...,val(E,, m).
val(T,nm) <« val(&,nm). (1 <i<n)
val(7,idt) < not val(7,m),not val(7,nm).

Transformation of Condition Component. The transformation of Conditiod into
LP II; is as follows

val(C, V) < eval(C,V).

Moreover, the transformation of Condition also dependshenttansformation oéval
function into LP. Since we do not describe speaifigl functions, we leave this trans-
formation to the user.

Example 1.A possibleeval function for "rule r1: patient only can see his or her patient
record” is

Hcond(rl) :
val(cond(rl),V) < eval(cond(rl),V).
eval(cond(rl),t) <« patient_id(X),patient_record-id(X),

not error(patient_id(X)), not error(patient_record-id(X)).
eval(cond(rl),f) <« patient_id(X), patient_recordsid(Y),X #Y,

not error(patient_id(X)), not error(patient_record-id(Y)).
eval(cond(rl),idt) < not eval(cond(rl),t), not eval(cond(rl), f).

The error(patient_id(X)) anderror(patient_record_id(X)) indicate possible errors
that might occur, e.g., the system could not connect to tiebdae so that the system
does not know the ID of the patient. |

Transformation of Rule Component. The general step of the transformation of Rule
component is similar to the transformation of Match compane

Let R = [e, T,C] be a Rule component wheeec { p,d }, T is a Target and is
a Condition. The transformation of Rule into LP [Ty is as follows (se€{6) for Rule
evaluation)

val(R,e) < val(T,m),val(C,t).
val(R, na) < val(7,m),val(C,f).
val(R, na) < val(7,nm).

(R

,ie) <+ notval(R,e),not val(R, na).

Transformation of Policy and PolicySet ComponentsGiven a Policy component
Pa = [T,{R1,...,Rns), ComblD] whereT is a Target{R1,...,R,) is a sequence
of Rule elements anG@omblD is a combining algorithm identifier. In order to indicate
that the Policy contains Rul;, for every RuleR,; € (R, ..., R,), IIp, contains:

decision_of (Pg, Ri, V) < val(R;, V). (1 < i < n)

The transformation for PolicyT into LP I1p, is as follows (see[{7) for Policy
evaluation)

val(Pa,id) <+ val(T.

,ip) <+ val(T

(P (T,idt), algo(ComblID, Py, d).
val(Pq (T,idt), algo(ComblID, P4, p).
val(Pq, na) <—va|('T nm).

val(Zd,na) +val(R1,na),...,val(Rn,,na).
val(Pa, V') < val(T, m), deC|sion_of(7%d7R V),V # na,algo(CombID, Pq, V).
val(Pa, V') < val(T,idt), decision_of (P4, R, V),V # na, algo(CombID, P4, V'), V' #£ p
val(Pyg, V') < val(T,idt), decision_of (P4, R, V),V # na, algo(CombID, P4, V'), V' #d

I

We write a formuladecision_of (P,4, R, V),V # na to make sure that there is a Rule
in the Policy that is not evaluated ta. We do this to avoid a return value from a com-
bining algorithm that is nota, even tough all of the Rule elements are evaluatedto
The transformation of PolicySet is similar to the transfation of Policy component.

3.3 Combining Algorithm Transformation

We define generic LPs for permit-overrides combining alfponiand only-one-applicable
combining algorithm. Therefore, we use a variaBl#o indicate a variable over Policy
identifier andR, R; and R, to indicate variables over Rule identifiers. In case the-eval
uation of PolicySet, the inpu® is for PolicySet identifierR, R, and Ry are for Policy
(or PolicySet) identifiers.

Permit-Overrides Transformation. Let I/,, be a LP obtained by permit-overrides
combining algorithm transformation (séé (8) for the peravierrides combining algo-
rithm semantics)l1,, contains:

algo
algo
algo
algo
algo
algo

po, P,p) < decision_of (P, R, p).
po, P,i4p) < not algo(po, P, p), decision_of (P, R, igp).

po, P,i4p) < not algo(po, P, p), decision_of (P, R1, i), decision_of (P, R2,d).
po, P,i4p) < not algo(po, P, p), decision_of (P, R1, i), decision_of (P, Rz, i4).
po, P,i) < not algo(po, P, p), not algo(po, P, idp), decision_of (P, R, ip).
po, P,d) < not algo(po, P, p), not algo(po, P, i4,), not algo(po, P, i),
decision_of (P, R, d).
)7
)7
)7
)7

NN N N N

algo(po, P,ig) < not algo(po, P, p), not algo(po, P, i4p), not algo(po, P, ip),
not algo(po, P, d), decision_of (P, R, ig).

algo(po, P, na) < not algo(po, P, p), not algo(po, P, idp), not algo(po, P, iy),
not algo(po, P, d), not algo(po, P, iq).

First-Applicable Transformation. Let I, be alogic program obtained by first-applicable
combining algorithm transformation (sd€ (9) for the firgplicable combining algo-
rithm semantics). For each Policy (or PolicySet) which ubescombining algorithm,

P =[T,(Ra,...,Rn),fal], IIp, contains:

algo(fa, Pa, E) < decision_of (Pa, R1,V),V # na.
algo(fa, P4, E) < decision_of (P,q, R1, na), decision_of (P4, R2, E), E # na.

algo(fa, Pa, E) < decision_of (P,q, R1, na), ..., decision_of (Pa, Rn—1, na), decision_of (Pq, Rn, E).

Only-One-Applicable Transformation. Let I7,,, be alogic program obtained by only-
one-applicable combining algorithm transformation (B&h for the only-one-applicable

combining algorithm semantics)l,,, contains:

algo(ooa, P, igp) < decision_of (P, R, idp

).
algo(oo0a, P, igp) < decision_of (P, R1,iq), decision_of (P, Rz, ip), R1 # Ra.
algo(ooa, P, igp) < decision_of (P, R1,iq), decision_of (P, Rz, p), R1 # R2.
algo(ooa, P, igp) < decision_of (P, R1,d), decision_of (P, R2,ip), R1 # R2.
algo(ooa, P, i4p) < decision_of (P, R1,d), decision_of (P, R2,p), R1 # Ra.
algo(ooa, P,i,) < not algo(ooa, P, igp), decision_of (P, R, iy).
) < not algo(ooa, P, iqp), decision_of (P, R1, p), decision_of (P, Rz, p), R1 # R2.
(

(
) (:
algo(ooa, P,ig) < not algo(ooa, P, i4p), decision_of (P, R1,d), decision_of (P, R2,d), R1 # Ra.
algo(ooa, P,p) < not algo(ooa, P, i4), not (ooa, P, i4), not (ooa, P, i,), decision_of (P, R, p).
algo(ooa, P,d) < not algo(ooa, P, i), not (ooa, P, i4), not (ooa, P, i,), decision_of (P, R, d).
algo(oo0a, P, na) < not algo(ooa, P, i4p), not (ooa, P, i4), not (ooa, P, iy),
not decision_of (P, R, d), not decision_of (P, R, p).

(
(
(
(
(
algo(ooa, P, ip
(
(
(
(
(

)
)
)
)
algo(ooa, P,ig) < not algo(ooa, P, igp), decision_of (P, R, i4).
)
)
)
)

4 Relation between XACML-ASP and XACML 3.0 Semantics

In this section we discuss the relationship between the AfRaatics and XACML 3.0
semantics. First, we recall the semantics of logic prograased on their answer sets.
Then, we show that the program obtained from transformin@Xl components into
LPs ([L.cw.) Mmerges with the query prograny) and has a unique answer set that the
answer set corresponds to the semantics of XACML 3.0.

4.1 ASP Semantics

The declarative semantics of a logic program is given by aehtiteoretic semantics
of formulae in the underlying language. The formal defimtaf answer set semantics
can be found in much literature such &% [3,6].

The answer set semantics of logic prograirassigns td7 a collection ofanswer
sets— interpretations ofround(II). An interpretationf of ground(II) is an answer set
for IT if I is minimal (w.r.t. set inclusion) among the interpretat@atisfying the rules
of

' ={A«+ By,...,By| A+ By,...,Bp,not B, .1,...,not B, € IT and
I(not By,41,...,n0t By,) = true}

A logic program can have a single unique answer set, many angeer set(s). There-
fore, we show that programs with a particular characteresté guaranteed to have a
unique answer set.

Acyclic Programs. We say that a program igcyclic when there is no cycle in the
program.The acyclicity in the program is guaranteed by #titence of a certain fixed
assignment of natural numbers to atoms that is callegtel mapping

A level mappindor a prograny// is a function

l:Bgp - N

whereN is the set of natural numbers afg; is the Herbrand base fdi. We extend
the definition of level mapping to a mapping from ground &derto natural numbers by
settingl(not A) = [(A).

Let IT be a logic program ankbe a level mapping foff. IT is acyclic with respect
to | if for every clauseA < By, ..., B,,,not By, t1,...,not B, in ground(IT) we
find

I(A) > 1(B;) foralliwithl <i<mn
II is acyclicif it is acyclic with respect to some degree of level mappiAgyclic
programs are guaranteed to have a unique answer set [3].

4.2 XACML Semantics Based On ASP Semantics

We can see from Se€l. 3 that all of the XACML 3.0 transformagimmgrams are acyclic.
Thus, it is guaranteed that,,.,, has a unique answer set.

Proposition 1. Let Iy, be a program obtained from XACML 3.0 element transform-
ations and letllo be a program transformation of Requé&3t Let I be the answer set
of ITiew U Il o. Then the following equation holds

[X](Q)=Viffval(X,V) eI
whereX is an XACML component.

Note: We can see that there is no cycle in all of the program transditions. Thus,
there is a guarantee that the answer séi@f,, U I1o is unique. The transformation of
each component into a logic program is based on exactly tfigititen of its XACML
evaluation. The proof of this proposition can be seen in #tereled version iri [10].

5 Analysis XACML Policies Using Answer Set Programming

In this section we show how to use ASP for analysing accessal@ecurity properties
throughlZ,.,. . In most cases, ASP solver can solve combinatorial probédficgently.
There are several combinatorial problems in analysis aaoastrol policies, e.g., gap-
free property and conflict-free property [14,5]. In thistt@t we look at gap-free ana-
lysis since in XACML 3.0 conflicts never ocdtiiWe also present a mechanism for the
verification of security properties against a set of accesgrol policies.

5.1 Query Generator

In order to analyse access control property, sometimes @ teeanalyse all possible
gueries that might occur. We usardinality constraint(see [15,16]) to generate all
possible values restored in the database for each attribateexample, we have the
following generator:

Pgene'r‘at()'r‘ :

(1) 1{subject(X) : subject_db(X)}1 +~T.
(2) Haction(X) : action_db(X)}1 «— T.
(3) 1{resource(X) : resource_db(X)}1 «— T.

(4) 1{environment(X) : environment_db(X)}1 < T.

The first line of the encoding means that we only consider awkaamly onesubject
attribute value obtained from the subject database. Theféise encoding means the
same as theubject attribute.

5 A conflict decision never occurs when we strictly use the ddash combining algorithm
defined in XACML 3.0, since every combining algorithm alwagturn one value.

5.2 Gap-Free Analysis

A set of policies isgap-freeif there is no access request for which there is an absence
of decision. XACML defines that there is one PolicySet as ot of a set of policies.
Hence, we say that there is a gap whenever we can find a retya¢shakes the se-
mantics of thePsS,,,; is assigned tma. We force ASP solver to find the gap by the
following encoding.

Hgap :

gap < val(PSrot,na).

1 < not gap.

In order to make sure that a set of policies is gap-free weldhgenerate all possible
requests and test whether at least one request is not captutiee set of policies. Thus,
the answer sets of prograf = Ilacw U Hgenerator U Il;qp are witnesses that the set
of policies encoded ik, is incomplete. When there is no model that satisfies the
program then we are sure that the set of policies capture$ pdissible cases.

5.3 Property Analysis

The problem of verifying a security propedyon XACML policies is not only to show
that the property holds onlL,., but also that we want to see the withesses whenever
the property® does not hold in order to help the policy developer refine thicies.
Thus, we can see this problem as finding models/fagw. U Il enerator U II-6. The
founded model is the witness that the XACML policies canmisfy the propertyb.

Example 2.Suppose we have a security property:
&: An anonymous persatannotread any patient records.
Thus, the negation of properyis as follows
—&: An anonymous persocan read any patient records.

We define that anonymous persons are those who are neitlentgahor guardians,
nor doctors, nor nurses. We encddes as follows

(1) anonymous < not subject(patient), not subject(guardian),
not subject(doctor), not subject(nurse).

(2) L + not anonymous.

(3) action(read) «— T.

(4) resource(patient_record) < T.

(5) L < not val(PSroot, p)-

We list all of the requirements (lines 1 — 4). We force the pangto find an anonymous
person (line 2). Later we force that the returned decisimukhbe to permit (line 5).
When the programiZucw U yenerator U 114 returns models, we conclude that the
property® does not hold and the returned models are the flaws in theigmli©n the
other hand, we conclude that the propebtis satisfied if no model is found.

6 Related Work

There are some approaches to defining AC policies in LPs, asi@arkeret al. in [4]
use constraint logic program to define role-based accegsotodajodiaet al. in [[7]
using FAM / CAM program — a logical language that uses a fixédfgeredicates. How-
ever, their approaches are based on their own access cpati@} language whereas
our approach is to define a well-known access control potingliage, XACML.

Our approach is inspired by the work of Akt al. [1)2]. There are three main
differences between our approach and the work of éthal.

First, while they consider XACML version 2.0][8], we addréke newer version,
XACML 3.0. The main difference between XACML 3.0 and XACMLOZs the treat-
ment of indeterminate values. As a consequence, the conglatgorithms in XACML
3.0 are more complex than the ones in XACML 2.0. XACML 2.0 ohbs a single
indeterminate value while XACML 3.0 distinguishes betwésnfollowing three types
of indeterminate values:

i. Indeterminate permi(i;) — an indeterminate value arising from a policy which
could have been evaluated to permit but not deny;
ii. Indeterminate dengiq) — an indeterminate value arising from a policy which could
have been evaluated to deny but not permit;
iii. Indeterminate deny perm{isz,) — an indeterminate value arising from a policy
which could have been evaluated as both deny and permit.

Second, Ahret al. produce a monolithic logic program that can be used for tlae an
lysis of XACML policies while we take a more modular appro#gtfirst modelling an
XACML PDP as a logic program and then using this encodingiwighlarger program
for property analysis. While Ahret al. only emphasize the indeterminate value in the
combining algorithms, our concern is “indeterminate” \aln all aspect of XACML
components, i.e., in Match, AnyOf, AllOf, Target, ConditioRule, Policy and Poli-
cySet components. Hence, we show that our main concernimtdate the PDP as in
XACML model.

Finally, Ahn et al.translate the XACML specification directly into logic pragn-
ming, so the ambiguities in the natural language specifinaif XACML are also re-
flected in their encodings. To avoid this, we base our engsdim our formalisation of
XACML from [9].

7 Conclusion and Future Work

We have modelled the XACML Policy Decision Point in a dediamway using the
ASP technique by transforming XACML 3.0 elements into logiograms. Our trans-
formation of XACML 3.0 elements is directly based on XACMI0Zemantics [11] and
we have shown that the answer set of each program transiomistunique and that
it agrees with the semantics of XACML 3.0. Moreover, we calp ipolicy developers
analyse their access control policies such as checkingigslcompleteness and verify-
ing policy properties by inspecting the answer sellgf. U enerator U configuration
— the program obtained by transforming XACML 3.0 elements ilogic programs
joined with a query generator program and a configuratiogam.

For future work, we can extend our work to handle role-basemtss control in
XACML 3.0 [13] and to handle delegation in XACML 3.0 [12]. Adlswe can extend
our work for checking reachability of policies. A policy isachable if we can find a

request such that this policy is applicable. Thus, by remgpuinreachable policies we
will not change the behaviour of the whole set of policies.

References

1. G.-J. Ahn, H. Hu, J. Lee, and Y. Meng. Reasoning about XAQhdlicy descriptions in
answer set programming (preliminary report).NMR’10, 2010.

2. G.-J. Ahn, H. Hu, J. Lee, and Y. Meng. Representing ancreag about web access control
policies. INCOMPSACIEEE Computer Society, 2010.

3. C. Baral. Knowledge Representation, Reasoning and Declarativel®molsolving Cam-
bridge University Press, 2003.

4. S. Barker and P. J. Stuckey. Flexible access controlysfiecification with constraint logic
programming.TISSEC6, 2003.

5. G. Bruns and M. Huth. Access-control via Belnap logicegffve and efficient composition
and analysis. I”21st IEEE Computer Security Foundations SymposR008.

6. M. Gelfond. Handbook of knowledge representation. In &tér F. van Harmelen, V. Lif-
schitz, editorFoundations of Artificial Intelligencevolume 3, chapter Answer Sets, pages
285-316. Elsevier, 2007.

7. S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Berhunified framework for en-
forcing multiple access control policies. In Proceedings of ACM SIGMOD International
Conference on Management of Da1®97.

8. T. Moses. eXtensible Access Control Markup Language (MALversion 2.0. Tech-
nical report, OASIS, http://docs.oasis-open.org/xagr@laccessontrol-xacml-2.0-core-
spec-os.pdf, August 2010.

9. C.D.P.K.Ramli, H. R. Nielson, and F. Nielson. The logi&CML. In FACS’11 Lecture
Notes in Computer Science, 2011.

10. C. D. P. K. Ramli, H. R. Nielson, and F. Nielson. Xacml :ikahswer set programming —
extended version. Technical report, arXiv.org, Febru®i/

11. E.Rissanen. eXtensible Access Control Markup Lang(i¢84€ML) version 3.0 (committe
specification 01). Technical report, OASIS, http://doasis-open.org/xacml/3.0/xacml-3.0-
core-spec-cs-01-en.pdf, August 2010.

12. E. Rissanen. XACML v3.0 administration and delegatioofife version 1.0 (committe
specification 01). Technical report, OASIS, http://doasis-open.org/xacml/3.0/xacml-3.0-
administration-v1-spec-cs-01-en.pdf, August 2010.

13. E. Rissanen. XACML v3.0 core and hierarchical role baseckss control (rbac) pro-
file version 1.0 (committe specification 01). Technical mp@®ASIS, http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-rbac-v1-spec-cs-0pafi August 2010.

14. P. Samarati and Sabrina de Capitani di Vimercati. Accessrol: Policies, models, and
mechanisms. liFoundations of Security Analysis and Design, Tutorial beeg 2001.

15. P. Simons, |. Niemela, and T. Soininen. Extending arglémenting the stable model se-
mantics.Artificial Intelligence 138:181-234, 2002.

16. T. SyrjanenLparse 1.0 User's Manual

A ASP Semantics

A.1 Interpretations and Models

The Herbrand Universd/{, for a languageC is the set of all ground terms that can
be formed from the constants and function symbols appeaning The Herbrand
baseB, for a languageC is the set of all ground atoms that can be formed by using

predicate symbols fromd and ground terms fro@X; as arguments. Bjg;; we denote
the Herbrand base for language underlying the progfarivhen the context is clear,
we are safe to omii/.

An interpretation/ of a program/! is a mapping from the Herbrand baSg to the
set of truth values: true and fals€ T, L }). All atoms belong to interpretatioh are
mapped toT . All atoms which does not occur ihare mapped td_.

The truth value of arbitrary formulae under some intergir@tecan be determined
from a truth table as usual (see Table 2).

Table 2. Truth Values for Formulae

¢|¢|not ¢ Ap|p < ¢
TIT T

T|L
LT
1L

—
e
—~

The logical value of ground formulae can be derived from &&bin the usual way.
A formula ¢ is thentrue under interpretatiod, denoted byl (¢) = T, if all its ground
instances are true ify it is false under interpretatiod, denoted byl (¢) = L, if there
is a ground instance af that is false inl.

Let I be an interpretation. satisfieformula¢ if I(¢) = T. For a progranil, we
say ! satisfiesof I7 if I satisfies for every rule ii/. An interpretation/ is amodelof
formulag if I satisfiesp.

LetZ be a collection of interpretations. Then an interpretafiasZ is calledmin-
imal in Z if and only if there is no interpretatiosi in Z such that/ C I. An interpret-
ation[is calledleastin Z if and only if I C J for any interpretation/ in Z. A model
M of a program/T is called minimal (respectively least) if it is minimal (pEctively
least) among all models df .

A.2 Answer Set

An interpretation! of ground(IT) is an answer set foff if I is minimal (w.r.t. set
inclusion) among the interpretations satisfying the rates

" ={A« By,...,By| A+ By,...,Bp,not B, .1,...,not B, € IT and
I(not B,41,...,n0t B,) =T}

B Proofs

Lemma 1. Let M be an answer set of prografi and letH < Body be a rule inIl.
Then,H € M if M(Body) = T.

Proof. Let Body = By, ..., By,not B,,11,...,not B,. To show the lemma holds,

supposé (Body) = T.Thenwefindthaf By,...,B,, } € M andMN{ By,41,...,Bn } =

(). SinceM is a minimal model of7™ then we find thatd < B, ..., B, isin [T,
Since{ B1,...,Bm, } € M andM is a model then/(H) = T. ThusH € M. O

The LemmdlL only ensures that if the body of a rule is true uadeanswer set
M then the head is also . However, in general, if the head of a rule is in a answer
set M then there is no guarantee that the body is always true unddfor example,
suppose we have a progrdm < T.,p « q. }. In this example the only answer set is
M = {p}. We can see thatis in M. Howeverg is not in M, thus,M (q) is false.

Lemma 2. Let M be an answer set of prografid and letH be in M. Then, there is a
rule in IT whereH as the head.

Proof. Suppose thaf\/ is an answer set of prografi. Then we find that\/ is a
minimal model of 7™ . Supposed € M and there is no rule id™ such that/ as
the head. Then, we find that’ = M/ { H } andM’ is a model off/. SinceM is a
minimal model ofI7™ but we haveM’ c M. Therefore we find a contradiction. Thus,
there should be a rule if ™ such that as the head. Hence, there is a ruldirsuch
that H as the head. a

Lemma 3. Let M be an answer set of prograffi and letH be inM . Then, there exists
arule whereH as the head and the body is true undét

Proof. Suppose thaf\/ is an answer set of prografd. Since H is in M thus, by
Lemmal2, we find that there is a rule if in a form H + Body. Suppose that
M (Body) # T. Therefore,H «+ Body is not in IT*. Moreover, we can find an-
other interpretatio/’ such thatV// { H } and M’ is also a model of7" . However,
we know that)/ is a minimal model fod7™ but we haveM’ c M. Thus, there is a
contradiction. O

We define some notation:

XACML Components|XACML Symbols LP Symbols

Match M ™ = I

AllOf A=AM; o4 =JnoMi ulla

AnyOf E=VA e = ulle

Target T=NAE& n”=ymsuilyr

Condition C ¢ = I1l¢

Rule R=[E,T,C o =n0"umc‘ulx

Policy P=[T,(Ri,...,Rn),CombID] |II" = JII% uI” uI®"*P U IIp
PolicySet PS =[T,(P1,...,Pn),CombID]|II” = | JIT" U ITT U TP U [Ips
Combining Algorithm |ComblD is eitherpo or faorooa |I1<°™'° = | J ITr, U ITp, I combin

Match Evaluation.

Lemma 4. LetIT = IIg U I’ be a program and\/ be an answer set df. Then,
[M](Q) =m if and only if val(M,m) € M .

Proof. (=) Suppose thafM] = m holds. Then, as defined ibl(\f € Q and
error(M) ¢ Q. Based on the transformation of Request element, we findhat t
M <« T isin IT and there is no rule wheraror(M) as the head idI. Since M
is the minimal model of, we get thatM € M anderror(M) ¢ M. Thus we get that

M (M A not error(M)) = T. Therefore, by Lemma]dal(M, m) € M.

(<) Suppose thatal(M, m) € M. By Lemma[8 we get that there is a rule where
val(M, m) as the head and the body is true ungterSince there is only one rule where
val(M, m) as the head i/, i.e.,val(M, m) < M, not error(M), then, we find that
M (M Anot error(M)) = T. Therefore M € M anderror(M) ¢ M. Since the only
possible to haveM true in this case is only through the Request transformatverget

that M € Q anderror(M) ¢ Q. Therefore, we obtaif\](Q) = m. O
Lemma 5. LetIT = IIg U I’ be a program and\/ be an answer set dfl. Then,
[M](Q) = nm if and only if val(M,nm) € M .

Proof. (=-) Suppose thaiM] = nm. Then, as defined ifl{1) we have thet ¢ Q and
error(M) ¢ Q. Based on the transformation of Request, we find out tha¢ flseto rule
whereM anderror(M) as the heads. Sindd is the minimal model of7, we get that
M anderror(M) are not inM. Thus, we get thal/ (not M A not error(M)) = T.
Therefore, by Lemmia bal(M,nm) € M.

(<) Suppose thatal(M,nm) € M where M = M. Based on Lemma]3 we get
that there is a rule whereal(M,nm) as the head and the body is true undér
Since there is only one rule whevel(M, nm) as the head idl, i.e.,val(M, nm) «+
not M, not error(M), then, we find thaf\/ (not M A not error(M)) = T. There-
fore, M ¢ M anderror(M) ¢ M. Since the only possible of declaring facts in this case
is only through the Request transformation, we get btz O anderror(M) ¢ Q.
Therefore, we obtaiiM](Q) = nm. O

Lemma 6. LetIT = IIg U I’ be a program and\/ be an answer set df. Then,
[M](Q) = idt if and only if val(M,idt) € M .

Proof. (=) Suppose thdiM](Q) = idt holds whereM = M. Then, as defined inl(1),
we have thatrror(M) € Q. Based on the transformation of Request element, we find
out thaterror(M) < T isin II. SinceM is the minimal model ofI, then, we get that
error(M) € M. Thus, we get thad/ (error(M)) = T. Thereforeyal(M,idt) € M
sinceM is the minimal model of 1.

(<) Suppose thatal(M,idt) € M. Based on Lemmil 3 we get that there is a rule
whereval(M, idt) as the head and the body is true undér Since there is only
one rule inIT with val(M,idt) in the head, i.e.yal(M,idt) «+ error(M), then we
find that M (error(M)) = T. Thereforeerror(M) € M. Since the only possible to
haveerror(M) true in this case is only through the Request transformatierget that
error(M) € Q. Therefore, we obtaift\](Q) = idt. 0

Proposition 2. LetIl = IToUII™ be a program and/ be an answer set df. Then,
M](Q) =V if and only if valM,V)e M .

Proof. It follows from Lemmd#, Lemm@l5 and Lemink 6 since the valug ahly has
three possibilities, i.e{ m, nm, idt }. O

AllOf Evaluation.
Lemma 7. LetIT = ITg U IT* be a program and// be an answer set df. Then,

[A](Q) = m if and only if val(A,m) € M .

Proof. Let A = A7 ; M;.

(=) Suppose thafAJ(Q) = m holds. Then, as defined inl(2); : [M;](Q) =
m,1 < i < n. Based on Prod]2%/; : val(M;,m) € M,1 < ¢ < n. Therefore,
M(val(Mq,m) A...Aval(M,,m)) = T.Hence, by Lemm@a Mal(A, m) € M.

(<) Suppose thatal(A, m) € M. Based on Lemmnid 3, there is a rule whesd.A, m)

as the head and the body is true undér Since there is only one rule iff with
val(A, m) in the head, i.eyal(A, m) < val(Mj,m),...,val(M,,m), we find that
M(val(Mq,m) A ... Aval(M,,,m)) = T. Thereforeyal(M;,m) € M,1 <i < n.
Based on Prog] M;](Q) = m,1 < i < n. Therefore, based ofl(2), we obtain
[A](Q) = m. O

Lemma 8. LetIT = ITg U IT* be a program and// be an answer set df. Then,
[A](Q) = nm if and only if val(A,nm) € M .

Proof. Let A = A, M,.

(=) Suppose thafA](Q) = nm holds. Then, as defined if](2) we have tHat:
[M;](Q) = nm. Based on Proji]2 we get that : val(M,;,nm) € M. Thus, we get
that3i : M (val(M;),nm) = T. Therefore, by Lemmid 3al(M, nm) € M.

(<) Suppose thatal(A, nm) € M. Based on Lemnid 3 we get that there is a rule where
val(A, nm) as the head and the body is true undérBased on AlIOf transformation,

3 : M(val(M;),nm) = T. Thereforedi : val(M;,nm) € M. Based on Prof.]2 we
getthatdi : [M;](Q) = nm. Therefore, based ohl(2), we obtdid](Q) = nm. O

Lemma 9. LetIT = ITg U IT* be a program and// be an answer set df. Then,
[A](Q) = idt if and only if val(A,idt) € M .

Proof. (=) Suppose thaf.A](Q) = idt. Then, as defined in2[,4](Q) # m and
[A](Q) # nm. Thus, by Lemm&l7 and Lemrha &!(A, m) ¢ M andval(A,nm) ¢
M. Hence,M (not val(A,m) A not val(4,nm)) = T. Therefore, by Lemmal1,
val(A,idt) € M.

(<) Suppose thatal(A, idt) € M. Based on Lemnid 3, there is a rule whesg.A, idt)
as the head and the body is true untierThere is only one rule whekeal(A, idt) as the
headinlI, i.e.,val(A, idt) < not val(.A, m), not val(.A, nm). Henceyal(A, m) ¢ M
andval(A,nm) ¢ M. Based on Lemmid 7 and Leminja 8 we get fhé}(Q) # m and
[A](Q) # nm. Therefore, based ohl(2), we obtdid](Q) = idt. O

Proposition 3. Let IT = ITo U IT* be a program obtained by merging Request trans-
formation programiiy and AllOf A transformations program with all of its compon-
entsIT4. Let M be an answer set df. Then,

[A(Q) =V if and only if val(A, V) e M .

Proof. It follows from LemmdY, Lemm@l8 and Lemifnla 9 since the valug ahly has
three possibilities, i.e{, m, nm, idt }. O

AnyOf Evaluation.
Lemma 10. LetIT = 1o U IT¢ be a program and// be an answer set dff. Then,

[E]1(Q) =m if and only if val(€,m) e M .

Proof. Let& = \/I_, A,

(=) Suppose tha€](Q) = m holds. Then, as defined 0] (3); : [A;](Q) = m,1

i < n.Based onPropl3; : val(A4;,m) € M,1 <i < n.Thus3i : M(val(A;, m))
T. Therefore, by Lemmia 3al(£,m) € M.

(<) Suppose thatal(£,m) € M. Based on Lemmid 3, here is a rule whesg§&, m)
as the head and the body is true undér Based on AnyOf transformatiori :
M (val(&;), m) = T. Thereforei : val(&;,m) € M. Based on Propl 3 : [£;](Q) =
m. Therefore, based ohl(3), we obtdff](Q) = m. 0

Lemma 11. LetIT = IIo U IT¢ be a program and// be an answer set df. Then,

<

[E](Q) = nm if and only if val(€,nm) e M .

Proof. Let& = \/I_, A;

(=) Suppose thaf€](Q) = nm holds. Then, as defined il (3} : [A;](Q) = nm.
Based on Propl 37 : val(A;,nm) € M. Thus,M (val(A;,nm)A---Aval(A,,nm)) =
T. Therefore, by Lemmla 3al(€,nm) € M.

(<) Suppose thatal(£,nm) € M. By Lemmd3, there is a rule wheval (€, nm) as
the head and the body is true undér There is only one rule ifif with val(£, m) in the
headinll, i.e.,val(€, nm) < val(A1, nm), ..., val(A,,nm). Thus,M (val(A;, nm) A
... Aval(A4,,nm)) = T. Thereforeyal(A4;,nm) € M,1 < i < n. Based on Prof] 3,
[A:](Q) = nm,1 < i < n. Therefore, based ohl(3), we obtd#(Q) = nm. O

Lemma 12. LetIT = IIg U IT¢ be a program and/ be an answer set df. Then,
[£](Q) = idt if and only if val(&,idt) e M .

Proof. (=) Suppose thaf€](Q) = idt. Then, as defined if{3JE](Q) # m and
[E](Q) # nm. Thus, by Lemm&a70 and Lemrnal bJ(£, m) ¢ M andval(&,nm) ¢
M. Hence M (not val(£, m) A not val(€,nm)) = T. By Lemmdlyal(,idt) € M.
(<) Suppose thatal(€,idt) € M. Based on Lemmnid 3, there is a rule whesE¢, idt)
as the head and the body is true undlerThere is only one rule ifil with val(€, idt) in
the head, i.eval(€,idt) < not val(£, m), not val(£, nm). Henceyal(€,m) ¢ M and
val(€,nm) ¢ M.Based on Lemnal0 and Lemma J4](Q) # m and[£](Q) # nm.
Therefore, based ohl(3), we obtdif](Q) = idt. O

Proposition 4. Let IT = IIg U IT¢ be a program obtained by merging Request trans-
formation program//o and AnyOf€ transformations program with all of of its com-
ponentsl7€. Let M be an answer set di. Then,

[E](Q) =V if and only if val(E, V) e M .

Proof. It follows from Lemmd1D, Lemmial1 and Lemfd 12 since the vafué only
has three possibilities, i.€{,m, nm idt }. O

Target Evaluation.

Lemma 13. LetII = IIo U II7 be a program and\/ be an answer set di. Then,

[THQ) =m if and only if val(T,m) € M .

Proof. Let 7 = A, €.
(=) Suppose thdﬂ”ﬂ(= m holds. Then, as defined inl(4), we have that

1. Vi: [&](Q) = m,1 < i< n.Based on Propl4; : val(&;,m) € M,1 <i <n.
Thus,M (val(&,m)A...Aval(E,,m)) = T. Therefore, by Lemmid ¥al(7,m) €
M.

2. T = null. Based on Target transformation we get tha{null, m) < T. Thus,
val(7T,m) € M sinceM is the minimal model of!.

(<) Suppose thatal(7,m) € M.Based onLemnid 3, there is a clause whel€, m)
as the head and the body is true ungér

val(&1,m), ..., val(€,, m). Then, we find thaf/ (val(&1, m) A ... Aval(E,, m))
T. Thereforeyal(&;,m) € M,1 < i < n. Based on Prof.]4£;](Q) = m,1
1 < n. Therefore, based ohl(4), we obtdifh](Q =

2. T = null. Then, there is arule ifYf whereval(null, m) as the head, i.eval(null, m) «
T. Thus, based on the definitidnl (4), we obt§if](Q) = m.

1. 7 # null. There is a rule whereal(7,m) as the head, i.eyal(7,m) <«
<

O

Lemma 14. LetIT = IIg U IT” be a program and\/ be an answer set df. Then,
[T1(Q) = nm if and only if val(T,nm) € M .

Proof. (=) Suppose thdt7](Q) = nm holds. Then, as defined il (4); : [£:](Q)
nm. Therefore, based on Prép.#,: val(&;,nm) € M. Hencedi : M (val(&;), nm)
T. Thus, by Lemmallyal(€,nm) € M.

(<) Suppose thatal(7,nm) € M. Based on LemmaAl3, there is a clause where
val(T,nm) as the head and the body is true undér Based on AllOf transforma-
tion, 3i : M (val(&;),nm) = T. Thereforedi : val(§;,nm) € M. Based on Pro;’o:]4

3i : [£:](Q) = nm. Therefore, based ohl(4), we obt§if](Q) = nm.

Lemma 15. LetIT = IIg U IT” be a program and\/ be an answer set df. Then,
[TT(Q) =idt if and only if val(T,idt) e M

Proof. (=) Suppose thaf7](Q) = idt. Then, as defined i 4]7](Q) # m and
[T1(Q) # nm. Thus, by Lemm&13 and Lemimal 34) (7, m) ¢ M andval(7T,nm) ¢
M. Hence,M (not val(7,m) A not val(7,nm)) = T. Therefore, by Lemmal1,
val(T,idt) € M.

(<) Suppose thatal (7, idt) € M.Based on Lemn{d 3, thereis a clause whet€T, idt)
as the head and the body is true undlérThere is only one rule il with val(7, idt)
in the head , i.ewal(7,idt) < not val(7, m),not val(7,nm). Thus,val(7,m) ¢
M andval(7,nm) ¢ M. Based on Lemma13 and Lemmad J4,](Q) # m and
[TT1(Q) # nm. Therefore, based ohl(4) we obtdin](Q) = idt. O

Proposition 5. LetIT = ITo U IT”7 be a program obtained by merging Request trans-
formation programiio and Target7 transformations program with all of of its com-
ponentslI”. Let M be an answer set df. Then,

[71(Q) =V if and only if val(T, V) e M

Proof. It follows from Lemmd 1B, Lemmial14 and Lemind 15 since the vafué only
has three possibilities, i.€/,m, nm, idt }. O

Condition Evaluation.

Proposition 6. LetI] = 1o U1l be a program obtained from merging Request trans-
formation programiio and Condition transformation programfic and letM be an
answer set of/. Then,

[Cl(Q)=V if and only if val(C,V) e M .

Proof. It follows from the equatior[{5) that the Condition evaleatbased on the value
of eval function, the same case in the Condition program transfooma a

Rule Evaluation.

Lemma 16. LetIT = IToUII® be a program obtained by merging Request transform-
ation programiig and RuleR transformations program with all of of its components
IT®. Let M be an answer set dfl. Then,

[R](Q) = E if and only if val(R,E) e M

whereF is Rule’s effect, eithes or d.

Proof. (=) Suppose thafR](Q) = E holds. Then, as defined inl(4)7](Q) = m
and[C](Q = t). Based on Prof] 7 and Prdg.\&/(7,m) € M andval(C,t) € M.
Thus,M (val(T,m) Aval(C,t)) = T. Therefore, by Lemmd Yal(R, E) € M .
(<) Suppose thatal(R, E') € M.Based on Lemnid 3, there is a clause whel&R, E)
as the head and the body is true undérThere is only one rule itif with val(R, E)
in the head, i.eval(R, m) < val(7T,m),val(C,t). Then, we find thaf/ (val(7, m) A
val(C,t)) = T. Thereforeyal(7,m) € M andval(C,t) € M. Based on Profh]5 and
Prop[6,[7](Q) = mand[C](Q) = t. Therefore, based onl(6) we obtdiR](Q) = F.

O

Lemma 17. LetIT = IToUII® be a program obtained by merging Request transform-
ation programiig and RuleR transformations program with all of of its components
IT*. Let M be an answer set dff. Then,

[R](Q) = na if and only if val(R,na) e M .
Proof. (=) Suppose thdtR](Q) = na holds. Then, as defined inl(6), we have that

1. [T](Q) = mand[C](Q) = f. Based on Prof.]5 and Prdg.\&|(7,m) € M
andval(C,f) € M. Thus,M (val(T,m) Aval(C,f)) = T. Therefore, by Lemmid 1,
val(R,na) € M.

2. [T](Q) = nm. Based on Prop] 5al(7,nm) € M. Thus,M (val(7,nm)) = T.
Therefore, by Lemmid 3al(R, na) € M.

(<) Suppose thatal(R,na) € M. Based on Lemmid 3, there is a clausdirnwhere
val(R,na) as the head and the body is true undér There are rules idl where
val(R, na) as the head, i.e.,

1. val(R,na) < val(T,m),val(C,f).
Then, we find thal/ (val(T, m) A val(C,f)) = T. Thereforeyal(7,m) € M and
val(C,f) € M . Based on Profl.]5 and Prdp. [](Q) = m and[C](Q) = f.
Therefore, based ohl(6), we obtdiR](Q = na.

2. val(R, na) < val(T,nm).
Then, we find that\/ (val(7,nm)) = T. Thereforeyal(7,nm) € M. Based on
Prop[5,[T](Q) = nm. Therefore, based ohl(6), we obtdiR](Q = na. O

Lemma 18. LetIT = IIo U IT® be a program and// be an answer set dfi. Then,
[RI(Q) = ip if and only if val(R,ig) € M

whereF is Rule’s effect, eithes or d.

Proof. (=) Suppose thafR](Q) = ig. Then, as defined in(6JR](Q) # E and
[R](Q) # na. By Lemmd6 and Lemniallval(R, E) ¢ M andval(R,na) ¢ M.
Hence,M (not val(R, E) A not val(R,na)) = T. Thus, by Lemma&llyal(R,ig) €

M.

(<) Suppose thatal(R,idt) € M. Based on Lemmal 3, there is a clause where
val(R,ig) as the head and the body is true undér There is only one rule idl
with val(R, ig) in the head in, i.e.yal(R,ig) < not val(R, E),not val(R, na).
Therefore,M (not val(R, E) A not val(R,na)) = T. Thusyal(R,E) ¢ M and
val(R,na) ¢ M.Based on Lemnial6 and Lemma [[R](Q) # E and[R](Q) # na.
Hence, based ofl(6) we obtafR](Q) = ig. 0

Proposition 7. LetIT = I1o U IT® be a program obtained by merging Request trans-
formation programilo and RuleR transformations program with all of of its compon-
entsII®. Let M be an answer set df. Then,

[R](Q) =V if and only if val(R,V) e M .

Proof. It follows from Lemmd 16, Lemmial7 and Lemind 18 since the vafué only
has five possibilities, i.e{ p, d, ig, ip, na }. O

Combining Algorithm: Permit-Overrides.

Lemma 19. Let IT = IIg U Il,, U II” be a program obtained by merging Request
transformation progranil o, permit-overrides combining algorithm transformatiopr
gramI1,, and PolicyP transformation program with its componer#s’. Let M be an
answer set of. Then,

@(R) =p if and only if algo(po, P,p) € M

po

whereR = ([R1](Q), ..., [R.](Q)) be a sequence of policy value where e@ths
a Rule in the sequence inside Poliey

Proof. (=) Suppose tha®,,,(R) = p holds. Then, as defined il (&)i : [R:](Q) =
p whereR; is a Rule in the sequence inside PolieyBased on Prof)] %al(R;,p) €
M. Based on the Policy transformation, there is a rulélimecision_of (P, R;,p) +
val(R;, p). Therefore, by Lemmal Wecision_of (P, R;,p) € M. Thus, by Lemméll,

algo(po,P,p) € M.

(<) Suppose thatlgo(po, P,p) € M. Based on Lemmhl3, there is a rule where
algo(po, P, p) as the head and the body is true undér There is only one rule in
IT with algo(po, P, p) as the head, i.ealgo(po, P, p) < decision_of (P, R, p). Then,

M (decision_of (P, R,p)) = T. Thereforedecision_of (P, R, p) € M.Based onLemma
[3, there is a rule wherdecision_of (P, R,p) as the head and the body is true un-
der M. There is only one rule idl, i.e., decision_of (P, R,p) <+ val(R,p). Then,
M(val(R,p)) = T. Thereforeyal(R,p) € M. Based on Prodl7JR](Q) = p
and R belongs to the sequence inside Poliey Therefore, based ofl(8), we obtain

EBPO(R) =P O

Lemma 20. Let IT = IIg U Il,, U II” be a program obtained by merging Request
transformation progranil o, permit-overrides combining algorithm transformatiompr
gram1I,, and PolicyP transformation program with its componer#s’. Let M be an
answer set of. Then,

PR) =i if and only if algo(po, P, igp) € M

po

whereR = ([R1](Q),...,[R,](Q)) be a sequence of policy value where e&hs
a Rule in the sequence inside Poliey

Proof. (=) Suppose thap,,,(R) = i4p holds. Then, as defined inl(8) we have that

1.Vi: [RiJ(Q) # pand3dj : [R;](Q) = isp WhereR; and R; are Rule in
the sequence inside Poli@y. Based on Prof] #: : val(R;,p) ¢ M and3j :
val(R;,i4p) € M. Based on Lemmal@lgo(po,P,p) ¢ M since if itisinM ,
there exists a Rul® in the PolicyPsequence such thfR](Q) = p. Based on the
Policy transformation, there is a rudecision_of (P, R;,igp) < val(R;,idp). BY
Lemmd 1 decision_of (P, R;,idp) € M. Thus, by LemmA&llalgo(po, P, igp) € M.

2. Vi : [Ri](Q) # pand3j : [R;](Q) = i, and3j’ : [R;](Q) = d where
Ri, R; andR;, are Rules in the sequence inside Polfey Based on Prof.]7,
Vi :val(R,,p) ¢ M and3j : val(R;,i,) € M and3j : val(R;/,d) € M. Based
on LemmdIPalgo(po,P,p) & M since if it is in M , there exists a Rul®
in the PolicyPsequence such thfiR](Q) = p. Based on the Policy transform-
ation, there are rules iff in the formdecision_of (P, R, igp) < val(R;,i,) and
decision_of (P, R;,ip) < val(R;,d). Thus, by Lemm@lldecision_of (P, R, ip) €
M anddecision_of (P, R;/,d) € M. Hence, by Lemm@ &lgo(po, P, idp) € M.

3. Vi : [Ri](Q) # pand3j : [R;](Q) = i, and3j’ : [R;](Q) = iy where
Ri, R; andR; are Rule in the sequence inside Poliey Based on Profd.]7,
Vi : val(R;,p) ¢ M and3j : val(R;,ip,) € M and3j : val(Rj,iq) € M.
Based on Lemma1%/go(po, P,p) € M since ifitis in M , there exists a Rule
R in the PolicyPsequence such thfiR](Q) = p. Based on the Policy transform-
ation there are rules ifif in the formdecision_of (P, R;,i4p) < val(R;,i, and
decision_of (P, R;,ip) < val(R;:,i4). Thus, by LemmBlldecision_of (P, R;,i,) €
M anddecision_of (P, R, i4) € M.Hence, by Lemmi Blgo(po, P, i4p) € M.

(<) Suppose thadlgo(po, P,iq,) € M. Based on Lemmi 3 , there is a rule where
algo(po, P, i4p) as the head and the body is true undér There are rules idl where
algo(po, P, iq4p) as the head, i.e.,

1. algo(po, P, i4p) < not algo(po, P, p), decision_of (P, R, idp)-
Then,M (not algo(po, P, p) Adecision_of (P, R, i4p)) = T. Thus,algo(po, P, p) &
M anddecision_of (P, R,igp) € M. Based on Lemmal¥p ,(R) # p. Based
on Lemmal8, there is a rule whetecision_of (P, R,i4p) as the head and the
body is true undef/. There is only one rule idZ, i.e., decision_of (P, R, i4p) <
val(R,i4p). Then,M (val(R,i4p)) = T. Thereforeyal(R,i,) € M. As defined in
@), Vi : [Ri](Q) # psince®,,(R) # p . Based on Propl [R](Q) = iup
andR belongs to the sequence inside PolfeyHence, based of](8), we obtain
@po(R) = idp

2. algo(po, P, igp) < not algo(po, P, p), decision_of (P, R, i,), decision_of (P, R/, d).
Then, M (not algo(po, P, p) A decision_of (P, R, i,) A decision_of (R’,d)) = T.
Thus,algo(po, P, p) ¢ M, decision_of (P, R,i,) € M anddecision_of (P, R,d) €
M. Based on Lemmal19p (R) # p. Based on Lemmid 3, there is a rule where
decision_of (P, R, i) as the head and the body is true undér There is only one
rule in II, i.e., decision_of (P, R,i,) < val(R,i,). Then, M(val(R,i,)) = T.
Thusyval(R,i,) € M.Based on Lemnid 3, there is a rule whégeision_of (P, R, d)
as the head and the body is true undér There is only one rule i1, i.e.,
decision_of (P, R,i,) +— val(R’,d). Then,M (val(R',d)) = T. Thusyal(R’,d) €
M. Based on[(®B)¥i : [Ri](Q) # p since,,(R) # p . Based on Prof]7,
[RI(Q) =i, and[R'](Q) = d andR, R’ belongs to the sequence inside Policy
P. Therefore, based ohl(8) we obt&®,,(R) = idp

3. algo(po, P, idp) < not algo(po, P, p), decision_of (P, R, i,), decision_of (P, R/, ig).
Then, M (not algo(po, P, p) A decision_of (P, R,i,) A decision_of (R’,iq)) = T.
Thus,algo(po, P, p) ¢ M, decision_of (P, R,i,) € M anddecision_of (P, R,iq) €
M. Based on Lemma 19p ,(R) # p since ifP,,(R) = p. Based on Lemma
[3, there is a rule wherdecision_of (P, R, i,) as the head and the body is true under
M. There is only one rule idI, i.e., decision_of (P, R,i,) + val(R,i,). Then,
M (val(R,i,)) = T. Thereforeval(R,i,) € M. Based on Lemn{d 3, there is arule
wheredecision_of (P, R, iq) as the head and the body is true undierThere is only
oneruleinl, i.e.,decision_of (P, R, i,) < val(R’,iq). Then,M (val(R’,d)) = T.
Thereforeyal(R',iq) € M. Based on[(B)Yi : [R;[(Q) # p since,,(R) # p
. Based on Profl] TR](Q) = i, and[R'](Q) = ig andR, R’ belongs to the se-
guence inside Polic. Therefore, based ohl(8), we obt@po(R) = idp a

Lemma 21. Let IT = IIg U Il,, U II” be a program obtained by merging Request
transformation progranii o, permit-overrides combining algorithm transformatiopr
gramIl,, and PolicyP transformation program with its componed#s’. Let M be an
answer set of. Then,

Pm) =i, if and only if algo(po, P, ip) € M

po

whereR = ([R1](Q),...,[R,](Q)) be a sequence of policy value where e@ths
a Rule in the sequence inside Poliey

Proof. (=) Suppose tha ,,(R) = i, holds. Then, as defined inl (8 : [R:](Q) =
ip andVy : [R;](Q) # ip = [R;](Q) = na whereR; andR; are Rule in the
sequence inside Polidy. Based on Propl &; : val(R;,i,) € M.Based on Lemnfal9,

algo(po, P, p) ¢ M since if itis in M , there exists a Rul® in the PolicyPsequence
such thafR](Q) = p. Based on Lemma2@lgo(po, P, i4p) ¢ M since ifitisin ,
there exists a Rul& in the PolicyPsequence such thfR](Q) = i4p, and[R](Q) =

d orig. Based on the Policy transformation, there is a wdeision_of (P, R;,ip) <
val(R;,ip). Therefore, by Lemmil Mecision_of (P, R;,i,) € M. Thus, by Lemmali,
algo(po, P, i) € M.

(<) Suppose thatlgo(po, P,i,) € M. Based on LemmBl3, there is a rule where
algo(po, P, ip) as the head and the body is true undterThere is only a rule idZ, i.e.,
algo(po, P, igp) < mnot algo(po, P, p), not algo(po, P, idp), decision_of (P, R, idp)-
Then, M (not algo(po, P, p) A not algo(po, P, idp) A decision_of (P, R,igp)) = T.
Thereforealgo(po, P, p) ¢ M, algo(po, P, i4p) ¢ M anddecision_of (P, R, i4p) € M.
Based on LemmBa 19 and Lemind 2B),,(R) # p and®,,(R) # i4p- Based on
Lemmd3, , there is a rule whedecision_of (P, R, i,) as the head and the body is true
under)M. There is only one rule iti/, i.e., decision_of (P, R,i,) < val(R,i,). Then,

M (val(R,i,)) = T. Thereforeyal(R,i,) € M. Based on[(8)Y: : [R;](Q) # p since
@D,.(R) # pandV¥i : [R;](Q) # (iap Ord orig). Thus, the only possibilities of the
value of[R,] is eitheri, or na. Based on Profpl TR](Q) = i, andR belongs to the
sequence inside Polidy. Therefore, based ohl(8) we obt@po(R) =ip a

Lemma 22. LetIT = Ilg U I,, U II” be a program obtained by merging Request
transformation progranil o, permit-overrides combining algorithm transformatiompr
gram1I,, and PolicyP transformation program with its componer#s’. Let M be an
answer set of/. Then,

PR)=d if and only if algo(po, P,d) € M

po

whereR = ([R1](Q), ..., [R,](Q)) be a sequence of policy value where e@ths
a Rule in the sequence inside Poliey

Proof. (=) Suppose tha®,,,(R) = d holds. Then, as defined il (&)i : [R:](Q) =
dandVj : [R;](Q) # d = [R;](Q) = (igorna) whereR, and R; are Rule
in the sequence inside Polidy. Based on Prof.] A: : val(R;,d) € M. Based on
LemmdI9algo(po,P,p) ¢ M since ifitis inM , there exists a Rul& in the Policy
Psequence such thfiR](Q) = p. Based on Lemma2@)go(po, P, idp) ¢ M since
ifitisin M , there exists a Rul® in the PolicyPsequence such thfiR](Q) = idp.
Based on LemmR 2Xlgo(po, P,i,) ¢ M since if it is in M , there exists a Rule
R in the PolicyPsequence such thdR](Q) = i,. Based on the Policy transform-
ation, there is a rulelecision_of (P,R;,d) « val(R;,d). Therefore, by Lemmal1,
decision_of (P, R;,d) € M. Thus, by Lemma&llalgo(po, P,iq) € M.

(<) Suppose thablgo(po, P,d) € M. Based on LemmBl3, there is a rule where
algo(po, P,d) as the head and the body is true undér There is only a rule in1,
i.e.,algo(po,P,i4p) < not algo(po, P, p), not algo(po, P, idp), not algo(po, P, i),
decision_of (P, R, d). Hence, we obtai/ (not algo(po, P, p) Anot algo(po, P, idp)A
not algo(po, P, i) A decision_of (P, R,d)) = T. Thereforealgo(po,P,p) ¢ M,
algo(po, P, idp) & M, algo(po,P,i,) ¢ M anddecision_of (P, R,d) € M. Based on
Lemma 1P (R) # p since if P, (R) = p it will lead a contradiction. Based on
Lemma20D ,(R) # igp since ifP,,(R) = iqp it will lead a contradiction. Based
on Lemmd2L(P (R) # i, since if P, (R) = i, it will lead a contradiction. Based

on LemmaB, there is a rule whedecision_of (P, R, i4) as the head and the body is true
underM. There is only one rule idI, i.e., decision_of (P, R,d) + val(R,d). Then,
M(val(R,d)) = T. Thereforeyal(R,d) € M. Based on[(8)Y: : [R;](Q) # p since
@D,.(R) # p . Based on[(B)Yi : [R;](Q) # isp. Based onl(B)Yi : [Ri[(Q) # ip.
Thus, the only possibilities of the value fR;] is eitherd, iy or na. Based on Propl7,
[R](Q) = d andR belongs to the sequence inside PolRyTherefore, based ohl(8),

Do (R) =d o

Lemma 23. Let II = IIg U Il,, U II” be a program obtained by merging Request
transformation progranil o, permit-overrides combining algorithm transformatiompr
gram1I,, and PolicyP transformation program with its componer#s’. Let M be an
answer set of. Then,

PR) =i if and only if algo(po, P, ig) € M

po

whereR = ([R1](Q),...,[R.](Q)) be a sequence of policy value where e&ths
a Rule in the sequence inside Poliey

Proof. (=) Suppose thagp,,,(R) = is holds. Then, as defined inl (8] : [R;](Q) =
i« andVy : [R;](Q) # d = [R;](Q) = na whereR; andR; are Rule in the se-
quence inside Polic. Based on Profp] 73i : val(R;,d) € M. Based on Lemmia19,
algo(po, P, p) ¢ M since ifitis inM , there exists a Rul® in the PolicyPsequence
such that]R](Q) = p. Based on LemmBa 2Qgo(po, P,isp) ¢ M since if it is in
M , there exists a Rul® in the PolicyPsequence such thfR](Q) = i4p. Based on
Lemmd 21 algo(po, P,i,) & M since ifitis inM , there exists a Rul® in the Policy
Psequence such thiR](Q) = i,. Based on Lemma22|go(po, P,d) ¢ M since if it
isin M , there exists a Rul® in the PolicyPsequence such thfR](Q) = d. Based on
the Policy transformation, there is a rulecision_of (P, R, i4) + val(R;,i4). Hence,
by Lemmd decision_of (P, R;,i4) € M. Thus, by Lemma&llzlgo(po, P, i4) € M.
(<) Suppose thatlgo(po,P,d) € M. Based on Lemmé&l3, there is a rule where
algo(po, P, d) as the head and the body is true undér There is only a rule in7,
i.e., algo(po, P,d) < not algo(po, P, p), not algo(po, P, iqp), not algo(po, P, i),
not algo(po, P, d), decision_of (P, R, iq). Hence, we find that/ (not algo(po, P, p) A
not algo(po, P, igp)Anot algo(po, P, i) Anot algo(po, P, d) Adecision_of (P, R, iq)) =
T.Thusalgo(po, P, p) & M, algo(po, P, idp) & M,algo(po,P,ip) & M, algo(po, P, d)
¢ M anddecisionof (P, R,iq) € M. Based on Lemma19p,,(R) # p since if
®,.(R) = pitwill lead a contradiction. Based on Lemind ZB) ,(R) # iqp since if
@D,.(R) = igp it will lead a contradiction. Based on Lemma ZB,,(R) # i, since
if @,,(R) = i, it will lead a contradiction. Based on Lemind ZB, ,(R) # i, since
if @,,(R) = d it will lead a contradiction. Based on Lemih 3, there is a witere
decision_of (P, R, d) as the head and the body is true undér There is only one rule
in 11, i.e.,decision_of (P, R,i4) + val(R,i4). Then, we find thal/ (val(R,iq)) = T.
Thereforeyval(R,iq) € M. Based on[([8)¥i : [R;](Q) # p since®,,(R) # p .
Based on eqrefeq:pdi : [R;](Q) # i4p. Based on[(8) Vi : [R;](Q) # i, and
Vi : [R:](Q) # d. Thus, the only possibilities of the value fR;] is eitherigq or na.
Based on Profp] TR](Q) = iq andR belongs to the sequence inside PolRyThere-
fore, based orL{8XP,,,(R) = i 0

Lemma 24. Let II = IIg U Il,, U II” be a program obtained by merging Request
transformation progranil o, permit-overrides combining algorithm transformatiompr
gram1I,, and PolicyP transformation program with its componer#s’. Let M be an
answer set of. Then,

P®R) =na if and only if algo(po, P, na) € M

po

whereR = ([R1](Q),...,[R,](Q)) be a sequence of policy value where e&hs

a Rule in the sequence inside Poliey

Proof. (=) Suppose thagp,,,(R) = na holds. Then, as defined ihl(8) we have that
DooR) # p, Do (R) # i, Do (R) # ip, B0 (R) # d, andP,,(R) # iq. Based
on Lemmd IBalgo(po, P, p) ¢ M. Based on Lemmia 2@lgo(po, P, idp) ¢ M. Based
on Lemmd 21l algo(po, P, i,) ¢ M. Based on Lemma22lgo(po, P,d) ¢ M. Based
on Lemma&2Balgo(po, P,i4) ¢ M. Thus,M (not algo(po, P, p)Anot algo(po, P, idp)
Anot algo(po, P, ip) A not algo(po, P, d) A not algo(po, P,iq)) = T Therefore, by
Lemmd1 algo(po, P, na) € M.

(<) Suppose thatlgo(po, P,na) € M. Based on Lemm@ 3, there is a rule where
algo(po, P, na) as the head and the body is true undér There is only a rule in
IT wherealgo(po, P,na) as the head, i.ealgo(po,P,na) < not algo(po, P, p),
not algo(po, P, i4p), not algo(po, P, i,), not algo(po, P, d), not algo(po, P, iq). Then,
M (not algo(po, P, p)Anot algo(po, P, igp) Anot algo(po, P, i,) Anot algo(po, P, d)A
not algo(po,P,iq)) = T. Thereforealgo(po,P,p) ¢ M, algo(po,P,isp) & M,
algo(po, P, i) & M, algo(po, P,d) ¢ M andalgo(po, P,iq) ¢ M.Based on Lemma
[19,,.(R) # p. Basedon Lemnfa2@p,,,(R) # i4p. Based onLemnfa2gp ,(R) #
i,- Based on Lemnfa2Zp (R) # i,. Based on Lemn{a2gp (R) # iy. Therefore,
based on(8)D,,(R) = na. 0
Proposition 8. Let II = IIg U II,, U II” be a program obtained by merging Re-
guest transformation prograrfl o, permit-overrides combining algorithm transforma-

tion program1II,,, and PolicyP transformation program with its componeni&”. Let
M be an answer set dff. Then,

Pr) =v if and only if algo(po, P, V) e M

po
whereR = (R1(Q),...,R,(Q)) be a sequence of policy value where edthis a
Rule in the sequence inside PoliBy

Proof. It follows from Lemmd 1D, Lemma20, Lemrhal21, Lemim& 22, Lerhi@arzd
Lemmd 24 since the value &f only has six possibilities, i.e{,p,d, ip, i4, idp, na }. O

Combining Algorithm: First Applicable.

Proposition 9. LetIT = Il U II, U IT” be a program obtained by merging Request
transformation progranil o, first-applicable combining algorithm transformation pro
gram I, and PolicyP transformation program with its componeri”. Let M be an
answer set of. Then,

Pr)=v if and only if algo(fa, P,V) e M
fa

whereR = ([R1](Q),...,[R,](Q)) be a sequence of policy value where e&hs
a Rule in the sequence inside Poliey

Proof. (=) Suppose tha®,,(R) = V holds. Then, as defined inl (i : [R:](Q) =
VandV # naandvj : j <i = [R;](Q) = na. Based on Proj] & : val(R;, V) €

M whereV # naandvVj : j < i=-val(R;,na) € M. Based on the Policy transforma-
tion there is a ruléecision_of (P, R;, V) «< val(R;, V) in II andVj : j < i we get that
there are rules in the formtecision_of (P, R, na) < val(R,,na) in II. Therefore, we
havedecision_of (P, R;, V) € M andv¥j : j < i we also haveecision_of (P, R;, na) €
M sinceM is a minimal model fod7. Thus, by LemmBllzlgo(fa, P, V) € M.

(<) Suppose thatlgo(fa,P,V) € M. Based on Lemm@l 3, there is a clauseAn
wherealgo(fa, P, V) as the head and the body is true undér There are several
rules in P wherealgo(fa, P, V) as the head. We can see that in each rule the body
contains3i : decision_of (P, R;,V),V # na andVj : j < i the body also con-
tains decision_of (P, R, na). Thereforedi : decisionof(P,R;,V) € M andVj :

J < 1, decision_of(P,R;,na) € M. Based on Lemmg]3, there is a clause where
decision_of (P, R;,V) as the head and the body is true undérand¥j : j < 4,
there isdecision_of (P, R, na) as the head and the body is true undierThere is only
one rule inP wheredecision_of (P, R;, V) as the head, i.edecision_of (P, R;, V) «+
val(R;, V). The same case faecision_of (P, R;,na). Then.3i : M (val(R;,V)) =T
andvj < i: M(val(R;j,na)) = T. Therefored: : val(R;,V) € M andVj : j < i =
val(R;,na) € M.Based on Propl &i : [R;](Q) =V andVj : j <i= [R;](Q) =

na andR,; andR; belong to the sequence inside Poliey Therefore, based ohl(8) we
obtain®,(R) = V. O

Combining Algorithm: Only-One-Applicable.

Lemma 25. Let IT = IIg U I, U II” be a program obtained by merging Request
transformation progranilg, only-one-applicable combining algorithm transformaitio
programI1,., and PolicyP transformation program with its component®”. Let M

be an answer set dfi. Then,

@(R) = igp if and only if algo(ooa, P, igp) € M

00a

whereR = (R1(Q),...,R,(Q)) be a sequence of policy value where edthis a
Rule in the sequence inside PoliBy

Proof. (=) Suppose tha®,,(R) = igp holds. Then, as defined in_(10), we have that

1. 3i: [Ri](Q) = idp-
Based on Profi] %al(R;,i4p) € M. Based on the Policy transformation, there is a
rule decision_of (P, R;, idp) < val(Ri,idp). Therefore, by Lemmal 1, we find that
decision_of (P, R, i4p) € M. Thus, by Lemmallalgo(ooa, P, igp) € M.

2.3, : [R](Q) = d and[R,](Q) = p.
Based on Prof] %al(R;,d) € M andval(R;,p) € M. Based on the Policy trans-
formation, there are rules ifY with the formdecision_of (P, R;,d) + val(R;,d)
and decision_of (P, R;,p) < val(R;,p). Therefore, by LemmA&l1, we find that
decision_of (P, R;,d) € M anddecision_of (P, R;,p) € M. Thus, by Lemma]1,
algo(ooa, P, igp) € M.

3. 3,5 : [Ri(Q) = ig and[R;](Q) = p.
Based on Propl] #al(R;,i4) € M andval(R,,p) € M. Based on the Policy trans-
formation there are rules iff in the formdecision_of (P, R;,d) + val(R;, i4). and
decision_of (P, R;j,p) < val(R;,p). Then, by Lemmalldecision_of (P, R;,iq)
€ M anddecision_of (P, R;, p) € M. Thus, by Lemm@llzlgo(ooa, P, i4p) € M.

4. 3,5 : [Ri(Q) = d and[R;](Q) = ip-

Based on Profp] %al(R;,d) € M andval(R,,i,) € M. Based on the Policy trans-
formation, there are rules iff in the formdecision_of (P, R;,d) + val(R;,d). and
decision_of (P, R;, i) « val(Ri,ip). Then, by Lemmalldecision_of (P, R;,d) €
M anddecision_of (P, R;,i,) € M. Thus, by Lemm&llalgo(ooa, P, iqp) € M.

5. 3i,7 : [R:](Q) = ig and[R;](Q) = ip.

Based on Propl %al(R;,iq) € M andval(R;,i,) € M. Based on the Policy trans-
formation there are rules iff in the formdecision_of (P, R;, i4) < val(R;,iq). and
decision_of (P, R;,ip) < val(R;,ip). Then, by Lemmalldecision_of (P, R;, iq) €
M anddecision_of (P, R;,i,) € M. Thus by Lemmallalgo(ooa, P, igp) € M.

(<) Suppose thatlgo(ooa, P,igp) € M. Based on Lemm@l 3, there is a rule where
algo(ooa, P, igp) as the head and the body is true undér There are five rules iifil,
ie.,

1. algo(ooa, P, igp) ¢ decision_of (P, R, idp).
Then, M (decision_of (P, R,i4qp)) = T. Thereforedecision_of (P, R,iqp) € M.
Based on Lemmfd 3, there is a rule whéeeision_of (P, R,i4p) € M as the head
and the body is true undér. There is only one rule if/, i.e.,decision_of (P, R, iap)
« val(R,igp). Then,M(val(R,igp)) = T. Thereforeyal(R,iqp) € M. Based on
Prop[T,[R](Q) = isp @andR belongs to the sequence inside PolRRyTherefore,
based on{I0XP,,.(R) = idp

2. algo(ooa, P, igp) < decision_of (P, R1,iq4), decision_of (P, R2,i,).
Then, M (decision_of (P, R1,iq) A decision_of (P, R2),i,) = T. Hence, we find
thatdecision_of (P, R1,iq) € M anddecision_of (P, R2,i,) € M.Based on Lemma
[3, there is a rule wherdecision_of (P,R1,i4) € M as the head and the body
is true under), i.e., decision_of (P, R1,i4) «+ val(R1,iq), and there is a rule
wheredecision_of (P, R2,i,) € M as the head and the body is true undér
i.e., decision_of (P, R2,i,) + val(R2,i,). Therefore,M(val(R1,iq)) = T and
M(val(R2,i,)) = T . Then,val(R1,iq) € M andval(R2,i,) € M. Based on
Prop[T,[R1](Q) = is and[R2](Q) = i, andR1 andR2 belong to the sequence
inside PolicyP. Therefore, based on (LGP, ., (R) = idp.

3. algo(ooa, P, igp) < decision_of (P, R1,iq4),decision_of (P, R2, p).
Then, we find thal/ (decision_of (P, R1, iq) Adecision_of (P, R2),p) = T. There-
fore,decision_of (P, R1,iq) € M anddecision_of (P, R2,p) € M.Based on Lemma
[3, there is a rule wherégecision_of (P, R1,iq) € M as the head and the body
is true underM, i.e., decision_of (P, R1,iq) <+ val(R1,iq) and there is a rule
wheredecision_of (P, R2,p) € M as the head and the body is true undéri.e.,
decision_of (P, R2, p) « val(R2,p). Then, we find tha\/ (val(R1,iq)) = T and
M (val(R2,p)) = T . Thereforeyal(R1,iq) € M andval(R2,p) € M. Based on
Prop[T,[R1](Q) = ig and[R2](Q) = p andR1 andR2 belong to the sequence
inside PolicyP. Therefore, based o (L&D, (R) = idp

4. algo(ooa, P, igp) < decision_of (P, R1,d), decision_of (P, R2,i,).
Then we find thaf\/ (decision_of (P, R1, d) A decision_of (P, R2),i,) = T. There-
fore,decision_of (P, R1,d) € M anddecision_of (P, R2,i,) € M.Based onLemma

[3, there is a rule wherdecision_of (P, R1,d) € M as the head and the body
is true under)/, i.e., decision_of (P, R1,d) « val(R1,d) and there is a rule
wheredecision_of (P, R2,i,) € M as the head and the body is true undéri.e.,
decision_of (P, R2,i,) < val(R2,i,). Then, we find thaf/ (val(R1,d)) = T and
M (val(R2,i,)) = T. Thereforeyal(R1,d) € M andval(R2,i,) € M. Based on
Prop[T,[R1](Q) = d and[R2](Q) = i, andR1 andR2 belong to the sequence
inside PolicyP. Therefore, based on (1&D, ., (R) = igp

5. algo(ooa, P, igp) < decision_of (P, R1,d), decision_of (P, R2, p).
Then we find thaf\/ (decision_of (P, R1, d) A decision_of (P, R2),p) = T. There-
fore,decision_of (P, R1,d) € M anddecision_of (P, R2,p) € M.Based on Lemma
[3, there is a rule wherdecision_of (P, R1,d) € M as the head and the body
is true under)/, i.e., decision_of (P, R1,d) « val(R1,d) and there is a rule
wheredecision_of (P, R2,p) € M as the head and the body is true undéri.e.,
decision_of (P, R2, p) + val(R2,p). Then, we find thaf\/ (val(R1,d)) = T and
M (val(R2,p)) = T. Thereforeyal(R1,d) € M andval(R2,p) € M. Based on
Prop[T,[R1](Q) = d and[R2](Q) = p andR1 andR2 belong to the sequence
inside PolicyP. Therefore, based o (L&D, (R) = idp o

Lemma 26. Let IT = IIg U 1,0, U II” be a program obtained by merging Request
transformation progranil g, only-one-applicable combining algorithm transformaitio
programI1,., and PolicyP transformation program with its component&”. Let M

be an answer set dfi. Then,

PrR) =i if and only if algo(ooa, P, i4) € M

0o0a

whereR = (R1(Q),...,R,(Q)) be a sequence of policy value where edthis a
Rule in the sequence inside PoliBy

Proof. Suppose tha®, ., (R) = iq holds. Then, as defined in_(10), we have that

1. Vi: [R;](Q) # (poripOrigy) and3j : s; = ig
Based on Profl ®i : val(R;,p) & M, val(R;,i,) & M andval(R;,idqp) & M.
Based on Prof] Aj : val(R;,iq) € M. Based on Lemma 25]go(ooa, P, iap) &
M since ifitis in M, there is a Rul&R such thafR](Q) = (p ori, oriq,) Based
on the Policy transformation there is a rdlecision_of (P, R, id4) + val(R;,iq).
Then, by Lemmalidecision_of (P, R;,iq) € M. Then, by Lemmall, we obtain
algo(ooa, P,iq) € M.

2. Vi: [Ri](Q) # (pori,orig,) and3j, k : j # k ands; = s, = d Based on Prop.
[0, Vi : val(R;,p) & M, val(R;,ip) ¢ M andval(R;,i4p) ¢ M since if they are in
M it will lead a contradiction. Based on Prdp.¥j, k : j # k andval(R;,d) €
M andval(R;kd) € M. Based on Lemma 2%lgo(ooa, P,igp) ¢ M since if
it is in M, there is a RuléR such thatfR](Q) = (p ori, orig,) Based on the
Policy transformation there is a rudecision_of (P, R, d) < val(R;, d). and there
is a ruledecision_of (P, Ry, d) < val(Rg,d). Thereforedecision_of (P, R;,d) €
M anddecision_of (P, Ry,d) € M sinceM is the minimal model off7. Thus,
algo(ooa, P, iq) € M sinceM is the minimal model of!.

(<) Suppose thatlgo(ooa, P,iq) € M. Based on LemmEl 3, there is a rule where
algo(ooa, P, iq) as the head and the body is true undérThere are rules idl where
algo(ooa, P, iq) as the head, i.e.,

1. algo(ooa, P, iq) < not algo(ooa, P, iqp), decision_of (P, R, iq).
Then we find thaf\/ (not algo(ooa, P, i4p) A decision_of (P, R,i4)) = T. There-
fore,algo(ooa, P, idp) € M anddecision_of (P, R,iq) € M. Based on Lemma25,
D...(R) # igp. Based on Lemmia 3, there is a rule wheeeision_of (P, R, i4) as
the head and the body is true unddr, i.e., decision_of (P, R,i4) < val(R,i4).
Then we find thatM (val(R,i4)) = T. Thereforeyval(R,iq) € M. Based on
Prop.[T,[R](Q) = i4. Based on[(IO)¥i : [R;](Q) # (porip,orig,) since
P.o.(R) # igp. Therefore, based on 1AP, ., (R) = iq.

2. algo(ooa, P, i4) < not algo(ooa, P, i4p), decision_of (P, R1,d),
decision_of (P, R2,d), R1 # R2.
Then,M (not algo(ooa, P, igp) Adecision_of (P, R1, d) Adecision_of (P, R2,d)) =
T, R1 # R2. Thereforealgo(ooa, P, iqp) ¢ M anddecision_of (P, R1,d) € M
anddecision_of (P,R2,d) € M, R1 # R2. Based on Lemma2%p, . (R) # idp-
Based on Lemmid 3, there is a rule whee¢eision of (P, R1, d) as the head and the
body is true unded, i.e.,decision_of (P, R1,d) < val(R1,d). Then we find that
M (val(R1,d)) = T. Thereforeyal(R1,d) € M. Based on Prof] {R1](Q) =
d. Based on Lemma@l 3, there is a rule whekeeision_of (P, R2,d) as the head
and the body is true undevl, R1 # R2. There is only one rule idl where
decision_of (P, R2, d) as the head, i.edecision_of (P, R2,d) + val(R2,d)., R1 #
R2. Then we find thaf\/ (val(R2,d)) = T, R1 # R2. Thereforeyal(R2,d) €
M, R1 # R2. Based on Profp] T/R2](Q) = d. Based on[(A0Y: : [R;:](Q) #
(p orip origp) sinced, ., (R) # igp. Therefore, based on (1&P, ., (R) =ig. O

Lemma 27. Let IT = Il U I,., U II” be a program obtained by merging Request
transformation progranilg, only-one-applicable combining algorithm transformaitio
programI1,., and PolicyP transformation program with its component&”. Let M

be an answer set dfi. Then,

PR) =i, if and only if algo(ooa, P, i,) € M

00a

whereR = (R1(Q),...,R,(Q)) be a sequence of policy value where edthis a
Rule in the sequence inside PoliBy

Proof. Note:The proof is similar to the proof of Lemnial26.

Lemma 28. LetIT = Ilg U Il,,, U IT” be a program obtained by merging Request
transformation progranilg, only-one-applicable combining algorithm transformatio
programI1,,, and PolicyP transformation program with its componert&”. Let M

be an answer set dfl. Then,

Pmr) =p if and only if algo(ooa, P,p) € M

0o0a

whereR = (R1(Q),...,R,(Q)) be a sequence of policy value where edthis a
Rule in the sequence inside PoliBy

Proof. (=) Suppose tha&p,.,(R) = p holds. Then, as defined if_(10) we have
that3i : [R;](Q) = dandVj : j # i, [R;](Q) = na. Based on Prof.] 73 :
val(R;,p) € M. Based on Lemma 2%/go(o0a,00a,iqp) ¢ M since if it is in M,
there exists a Rul& in Policy Psequence such thR](Q) = i4p. Based on Lemma

[28,algo(o0a, 003, ig) ¢ M since ifitisin, there exists a RutR in Policy Psequence
such thafR](Q) = i4q or there are at least two Rule elemeRts andR2, R1 # R2,
such thaffR1](Q) = [R2](Q) = d. Based on Lemma 2algo(ooa,00a,i,) & M
since if it is in M, there exists a Rul®& in Policy Psequence such thiiR](Q) = i,
or there are at least two Rule eleme®$ andR2, R1 # R2, such thafR1](Q) =
[R2](Q) = p. Based on the Policy transformation there is a daldsion_of (P, R;, p) +
val(R;, p). Thereforedecision_of (P, R;,p) € M anddecision_of(P,R;,na) € M
sinceM is the minimal model of. Thus,algo(ooa, P,p) € M sinceM is the min-
imal model ofI1.
(<) Suppose thatlgo(ooa,P,p) € M. Based on Lemmal 3, there is a rule where
algo(ooa, P, d) as the head and the body is true undiér There are rules il where
algo(ooa, P, d) as the head, i.ealgo(ooa, P, i4) + not algo(ooa, P, iqp),
not algo(ooa, P, ig), not algo(ooa, P, i), decision_of (P, R, p).
Then, we find thad/ (not algo(ooa, P, iap)Anot algo(ooa, P, iq) Anot algo(ooa, P, iy)
Ndecision_of (P, R,i4)) = T. Thereforealgo(ooa, P,igqp) & M, algo(ooa, P,iq) &
M, algo(ooa, P,i,) ¢ M anddecision_of (P, R,iq) € M. By Lemmd 25 . (R) #
igp- By Lemmée 26P. .. (R) # ia. By Lemmd 2V P, ,(R) # ip. By Lemmd3, there
is a rule wheredecision_of (P, R, p) as the head and the body is true undér i.e.,
decision_of (P, R, p) + val(R,p). Then we find that\/ (val(R,i4)) = T. Therefore,
val(R,p) € M. Based on Prog] /R](Q) = p. Based on[{I0)Y: : [R:](Q) #
(porip origp) sinced,,(R) # iap. Based on[(AO)y: : [R;](Q) # i or there are
no two rules which[R1](Q) = [R2](Q) = d since@®,,,(R) # iq. Based on[(10),
Vi: [Ri](Q) # ip orp since@, ,(R) # ip. Therefore, based oh (1&P, . (R) = p.
O

Lemma 29. Let IT = IIg U I1,., U II” be a program obtained by merging Request
transformation progranil g, only-one-applicable combining algorithm transformaitio
programI1,., and PolicyP transformation program with its component®”. Let M

be an answer set dfi. Then,

PR)=d if and only if algo(ooa, P,d) € M

00a

whereR = (R1(Q),...,R,(Q)) be a sequence of policy value where edthis a
Rule in the sequence inside PoliBy

Proof. Note:The proof is similar to the proof of Lemnial28.

Lemma 30. Let IT = IIg U Il,,, U IT” be a program obtained by merging Request
transformation progranil g, only-one-applicable combining algorithm transformaitio
programI1,,, and PolicyP transformation program with its component&”. Let M

be an answer set dfl. Then,

PR) =na if and only if algo(ooa, P, na) € M

whereR = (R1(Q),...,R,(Q)) be a sequence of policy value where edthis a
Rule in the sequence inside PoliBy

Proof. (=) Suppose thagp,,,(R) = na holds. Then, as defined inl(8) we have that
@003(R) # idP’ @ooa(R) 7& id’ @ooa(R) # iP’ @003(1:{) 7& d’ and@ooa(R) # p

By Lemmal25,algo(ooa, P,i4p) ¢ M. By Lemma[26,algo(ooa, P,iq) ¢ M. By
Lemmal 27 algo(ooa, P,i,) ¢ M. By Lemma28algo(ooa,P,p) ¢ M. By Lemma
[29, algo(ooa, P,d) & M. Thus, M (not algo(ooa,P,i4p) A not algo(ooa, P, iq) A
not algo(ooa, P, i,) A not algo(ooa, P,d) A not algo(ooa, P,p)) = T Therefore,
algo(ooa, P,na) € M sinceM is the minimal model of .

(<) Suppose thatlgo(ooa, P,na) € M. Based on Lemmal 3, there is a rule where
algo(ooa, P, na) as the head and the body is true undér There is only a rule ifl
wherealgo(ooa, P, na) as the head, i.ealgo(ooa, P,na) < not algo(ooa, P, idp),
not algo(ooa, P, ig), not algo(ooa, P, i), not algo(ooa, P,d), not algo(ooa, P, p).
Then we find thall/ (not algo(ooa, P, igp) Anot algo(ooa, P, iq) Anot algo(ooa, P, iy)
Anot algo(ooa, P, d) A not algo(ooa, P, p)) = T. Thereforealgo(ooa, P, iqp) ¢ M,
algo(ooa, P, iq) ¢ M, algo(ooa, P,i,) & M, algo(ooa, P,d) ¢ M andalgo(ooa, P, p)
¢ M.By Lemmed 19D . (R) # iqp. By Lemmd 2D . (R) # igp. By Lemmd 21,
@ooa(R) 7é iP' By Lemm@@ooa(R) # iP' By Lemm@@ooa(R) # iP‘ There-
fore, based ori {8YD,,(R) = na o

Proposition 10. LetIT = I1gUII,,,UII” be a program obtained by merging Request
transformation progranilg, only-one-applicable combining algorithm transformaitio
programI1,., and PolicyP transformation program with its component&”. Let M

be an answer set dfi. Then,

Pr) =v if and only if algo(ooa, P, V) € M

00a

whereR = (R1(Q),...,R,(Q)) be a sequence of policy value where edthis a
Rule in the sequence inside PoliBy

Proof. It follows from Lemmd2b, Lemm@a26, Lemrhal27, Lemima 28, Lerh@aid
Lemmé& 3D since the value ®f only has six possibilities, i.e{,p,d, i, i4, idp, na }. O
Evaluation to Combining Algorithms.

Proposition 11. Let IT = I1g U Icompip U 11”7 be a program obtained by merging
Request transformation prograiig, combining algorithm transformation program
Hcompip and PolicyP transformation program with its componedi®’. Let M be an
answer set of. Then,

Pp r)=V if and only if algo(CombID, P, V) € M
CombID

whereR = (R1(Q),...,R,(Q)) be a sequence of policy value where edthis a
Rule in the sequence inside PoliBy

Proof. It follows from Prop[8, Profd.]9 and Prdp.]10. O

Policy Evaluation.

Lemma 31. Let IT = IIo U II” be a program obtained by merging Request trans-
formation programiIo Policy Ptransformation program and its componerid’. Let
M be an answer set dfl. Then,

[PI(Q) = i iff val(P,i4) € M.

Proof. (=) Suppose thdtP](Q) = iy holds. Then, as defined inl (7) we have that

1. [T](Q) = idtand@P,,,,;n(R) = d. Based on Propl5 and Prépl 14|(7, idt) €
M andalgo(CombID, P,d) € M. Thus,M (val(T,idt) A algo(CombID, P,d)) =
T. Hence, by Lemm ¥al(P,iy) € M.

2. [TI(Q) = idt and@P, ., ip(R) = iqg and¥i : [R;](Q) # na. Based on Profp.]5
and Prop[Illyal(7,idt) € M andalgo(CombID, P,i4) € M. Based on Prof]7,
3 :val(R;, V) € M,V # na. Therefore, we havéecision_of(P,R;,V) € M
sinceM is the minimal model ofT Thus,M (val(T, idt) A algo(CombID, P, i) A
decision_of (P, R;, V) A (V # na)) = T. Hence, by Lemm@ dal(P,i4) € M.

3. [TI(Q) = mand@c,,,ip(R) = iad andVi : [R;](Q) # na. Based on Prof.]5
and Prop[dllyal(7,m) € M andalgo(CombID,P,i4) € M. Based on Prof]7,
Ji :val(R;,V) € M,V # na. Therefore, we haveecision_of (P,R;,V) € M
sinceM is the minimal model ofI Thus,M (val(7T, m) A algo(ComblID, P, ig4) A
decision_of (P,R;,V) A (V # na)) = T. Thereforeyal(P,iq) € M sinceM is
the minimal model ofl 1.

(<) Suppose thatal(P,iy) € M.Based on Lemnid 3, there is a clause whet€P, iq)
as the head and the body is true undi€rThere are rules itif whereval(P, iq) as the
head, i.e.,

1. val(P,iq) < val(T,idt), algo(CombID, P, d).
Then, M (val(T,idt) A algo(CombID,P,d)) = T. Thereforeyal(T,idt) € M
andalgo(ComblD, P, d) € M. Based on Propl]5 and Prépl] J%,](Q) = idt and

DB compip (R) = d. Therefore, based obl(P](Q) = iq.
2. val(P,iq) « val(T,idt), decision_of (P, R, V),V # na,algo(ComblID, P, iq4), i4 #
d

Then,M (val(T,idt) A decision_of (P, R, V) A (V # na) Aalgo(CombID, P, ig) A
(ia # d)) = T. Thereforeyal(T,idt) € M, decision_of(P,R,V) € M,V # na
andalgo(ComblID, P, i4) € M. Based on Prof]5 and Prép] 7,](Q) = idt and
P compin(R) = ia. Based on Lemnid 3, there is a clause whietgsion_of (P, R, V)
as the head and the body is true undferThere is a ruldl wheredecision_of (P, R, V)
asthe head, i.edecision_of (P, R, V') < val(R, V). Thenwe find thab/ (val(R, V)) =
T. Thus,val(R,V) € M. Based on Prop] R](Q) = V, V # na. Therefore,
based on{7)[P](Q) = iq.

3. val(P,i4) + val(T,m), decision_of (P, R, V),V # na,algo(ComblID, P, i4).
Then we find thaf/ (val(7, m)Adecision_of (P, R, V)A(V # na)Aalgo(ComblID, P, iq)) =
T.Thereforeyal(7,m) € M, decision_of (P, R,V) € M,V # naandalgo(CombID, P, i4) €
M. Based on Propl]5 and Prgpl IT,](Q) = m and@P,.,io (R) = is. Based on
Lemmal3, there is a clause wheteision_of (P, R, V) as the head and the body
is true underM . There is a rulel wheredecision_of (P, R, V) as the head, i.e.,
decision_of (P, R, V) < val(R, V). Then we find thafl/ (val(R,V)) = T. Thus,
val(R,V) € M. Based on Profll TR](Q) = V, V # na. Therefore, based on

@. [PI(Q) = ia. 0

Lemma 32. Let IT = IIo U II” be a program obtained by merging Request trans-
formation programilo Policy Ptransformation program and its componeri? . Let
M be an answer set dff. Then,

[PI(Q) =ip if and only if val(P,ip,) € M .

Proof. Note:The proof is similar with the proof in Lemniai31.

Lemma 33. Let IT = IIo U IT” be a program obtained by merging Request trans-
formation programiIo Policy Ptransformation program and its componerid . Let
M be an answer set dff. Then,

[PI(Q) = na if and only if val(P,na) e M .
Proof. (=) Suppose thdgtP](Q) = na holds. Then, as defined il (7) we have that

1. [T](Q) = nm. Based on Profp]5al(7,nm) € M. Thus,M (val(7,nm)) = T.
Thereforeyal(P, na) € M sinceM is the minimal model of].

2. Vi : [R;](Q) = na. Based on Propl ¥ : val(R;,na) € M. Thus,M (val(R1, na)A
...Aval(R,,na)) = T. Thereforeyal(P, na) € M sinceM is the minimal model
of II.

(<) Supposethatal(P, i) € M. Based on Lemnid 3, there is a clause whel€P, i)
as the head and the body is true undlér There are rules iti/ whereval(P, i,) as the
head, i.e.,

1. val(P,na) «+ val(T,nm). Then we find thatM (val(7,nm)) = T. Therefore,
val(T,nm) € M. Based on Prod5[7](Q) = na. Therefore, based ofl(7),
[P](Q) = na.

2. val(P,na) < val(Rq,na),...,val(R,,na). Then we find that\/ (val(R4, na) A
... Aval(R,,na)) = T. ThereforeVi : val(R;,na) € M. Based on Prod.]7,
Vi : [R;](Q) = na. Therefore, based obl(P](Q) = na. O

Lemma 34. Let IT = IIo U II” be a program obtained by merging Request trans-
formation programilo Policy Ptransformation program and its componeri? . Let
M be an answer set dff. Then,

[P1(Q) = igp if and only if val(P,igp) € M .
Proof. (=) Suppose thdtP](Q) = ig, holds. Then, as defined inl(7) we have that

1. [TI(Q) = idt andPc,,ip(R) = idgp @and¥i : [R;](Q) # na. Based on Prop.
Bl and Propl_Il1val(7,idt) € M andalgo(ComblID, P, iq4,) € M. Based on Prop.
[7, 3i : val(R;,V) € M,V # na. Therefore, we havéecision_of (P, R;,V) € M
since)M is the minimal model ofI Thus,M (val(T,idt) Aalgo(ComblID, P, igp) A
decision_of (P, R;, V) A (V # na)) = T. Thereforeyal(P,iq,) € M sinceM is
the minimal model of 7.

2. [T1(Q) = mand@c,,,,ip(R) = igp @andVi : [R;[(Q) # na. Based on Prop.5
and Prop[Illyal(7,m) € M andalgo(ComblID, P, i4,) € M. Based on Prof]7,
3 :val(R;, V) € M,V # na. Therefore, we havdecision of (P, R;,V) € M
sinceM is the minimal model of Thus,M (val(7, m) A algo(ComblID, P, igp) A
decision_of (P, R;, V) A (V # na)) = T. Thereforeyal(P,iq,) € M sinceM is
the minimal model of 1.

(<) Suppose thaval(P,iq,) € M. Based on LemmAl3, there is a clause where
val(P,iqp) as the head and the body is true undér There are rules il where
val(P,iq4p) as the head, i.e.,

1. val(P,igp) < val(T,idt), decision_of (P, R, V),V # na, algo(ComblID, P, iqp), idp #
d. Then we find thal// (val(T, idt) Adecision_of (P, R, V)A(V # na)Aalgo(CombID, P, igp)A
(igp # d)) = T. Thereforeyal(T,idt) € M, decision_of(P,R,V) € M,V # na
andalgo(CombID, P,i4,) € M. Based on Propl]5 and Prép] JT,](Q) = idt and
B compin(R) = igp. Based on Lemnrid 3, there is a clause whietision_of (P, R, V')
as the head and the body is true undferThere is a ruldl wheredecision_of (P, R, V)
asthe head, i.edecision_of (P, R, V') < val(R, V). Thenwe find thab/ (val(R, V)) =
T. Thus,val(R,V) € M. Based on Prop] R](Q) = V, V # na. Therefore,
based on{7)[P](Q) = idp.

2. val(P,igp) « val(T,m),decisionof(P,R,V),V # na,algo(CombID, P, iqgp).
Then we find thad/ (val(7", m)Adecision_of (P, R, V)A(V # na)Aalgo(ComblID, P, iqp)) =
T.Thereforeyal(7T,m) € M, decision_of (P, R,V) € M,V # naandalgo(CombID, P, iq4,) €
M. Based on Prop]5 and Prépl 1T,[(Q) = m and@®,,,ip(R) = idp. Based on
Lemma[3, there is a clause whetecision_of (P, R, V') as the head and the body
is true underM . There is a rulel wheredecision_of (P, R, V) as the head, i.e.,
decision_of (P, R, V) « val(R, V). Then we find thaf\/ (val(R,V)) = T. Thus,
val(R,V) € M. Based on Profl]l f/R](Q) = V, V # na. Therefore, based on

@, [PI(Q) = iap- u

Lemma 35. Let IT = IIo U II” be a program obtained by merging Request trans-
formation programiIo Policy Ptransformation program and its componeiid . Let
M be an answer set dff. Then,

[PI(Q)=p if and only if val(P,p) € M .

Proof. (=) Suppose thafP](Q) = p holds. Then, as defined il (7) we have that
[T1(Q) = mand@Pc,,,p(R) = pandVi : [R;](Q) # na. Based on Prof.]5
and Prop[Illyal(7,m) € M andalgo(CombID,P,p) € M. Based on Prod.]7,

i : val(R;, V) € M,V # na. Therefore, we havéecision of(P,R;, V) € M
since M is the minimal model offf Thus, M (val(7,m) A algo(CombID,P,p) A
decision_of (P,R;, V) A (V # na)) = T. Thereforeyal(P,p) € M sinceM is the
minimal model off1.

(<) Suppose thatal(P, i) € M.Based on Lemnid 3, there is a clause whet€P, i4)

as the head and the body is true undi€rThere are rules itif whereval(P, iq) as the
head, i.e.yal(P, p) + val(T,m), decision_of (P, R, V),V # na, algo(ComblID, P, p).

Then we find thal/ (val(T, m)Adecision_of (P, R, V)A(V # na)Aalgo(CombID, P, p)) =
T.Thereforeyal(T,m) € M, decision_of (P,R,V) € M,V # naandalgo(ComblID, P, p) €
M. Based on Prof.]5 and Prap] J7](Q) = m and@c,..,io(R) = p. Based on
Lemmd3, there is a clause whekeision_of (P, R, V) as the head and the body is true
underM . Thereis a ruld] wheredecision_of (P, R, V') as the head, i.edecision_of (P, R, V') «
val(R, V). Then we find thatV/(val(R,V)) = T. Thus,val(R,V) € M. Based on
Prop[7,[R](Q) =V, V # na. Therefore, based ohl(7)P](Q) = p. O

Lemma 36. Let IT = I1o U II” be a program obtained by merging Request trans-
formation programiIo Policy Ptransformation program and its componerid’. Let
M be an answer set df. Then,

[PI(Q) =d if and only if val(P,d) € M .

Proof. (=) Suppose thafP](Q) = d holds. Then, as defined il (7) we have that
[TI(Q) = mand@P.,,,p(R) = dandVi : [R;](Q) # na. Based on Prog.]5

and Prop[Illyal(7,m) € M andalgo(CombID,P,d) € M. Based on Prod.]7,

3 : val(R;,V) € M,V # na. Therefore, we havéecision of(P,R;, V) € M
since M is the minimal model offf Thus, M (val(7,m) A algo(CombID, P,d) A
decision_of (P,R;,V) A (V # na)) = T. Thereforeyal(P,d) € M sinceM is the
minimal model off1.

(<) Suppose thatal(P, ig) € M.Based on Lemnid 3, there is a clause whket€P, i4)

as the head and the body is true undérThere are rules iil whereval(P,i4) as the
head, i.e.yal(P,d) + val(T,m), decision_of (P, R, V),V # na, algo(ComblID, P, d).

Then we find thal/ (val(T, m)Adecision_of (P, R, V)A(V # na)Aalgo(CombID, P, d)) =
T.Thereforeyal (7, m) € M, decision_of (P,R,V) € M,V # naandalgo(ComblID,P,d) €
M. Based on Prof.]5 and Prap] J7](Q) = m and@c,,..,ip(R) = d. Based on
Lemmd3, there is a clause whekeision_of (P, R, V') as the head and the body is true
underM . There is aruldl wheredecision_of (P, R, V') as the head, i.edecision_of (P, R, V') <
val(R, V). Then we find thatV/(val(R,V)) = T. Thus,val(R,V) € M. Based on
Prop[7,[R](Q) =V, V # na. Therefore, based ohl(7)P](Q) = d. O

Proposition 12. LetIT = IIg U II” be a program obtained by merging Request trans-
formation programilo Policy Ptransformation program and its componeri? . Let
M be an answer set dff. Then,

[P1(Q) =V if and only if val(P,V) e M .

Proof. It follows from Lemmd 31, Lemma32, Lemrhal33, Lemima 34, LerhBard
Lemmd 36 since the value &f only has six possibilities, i.e{,p,d, ip, i4, idp, na }. O

Evaluation to XACML Component.

Corollary 1. Letll = IIg U IL.cw be a program obtained by merging Request trans-
formation program//, and all XACML components transformation prografigey,.
Let M be an answer set df. Then,

[X](Q) =V if and only if val(X,V)e M
whereX is an XACML component.

Proof. It follows from Prop[2, Prod.]3, Propl 4, Prdg. 5, Prop. 6,fd and Prop.
[12. o

	XACML 3.0 in Answer Set Programming – Extended Version

