
Map Edit Distance vs Graph Edit Distance
for Matching Images

Camille Combier1,2, Guillaume Damiand3,2, and Christine Solnon3,2

1 Université Lyon 1, LIRIS, UMR 5205 CNRS, 69622 Villeurbanne, France
2 Université de Lyon, France

3 INSA de Lyon, LIRIS, UMR 5205 CNRS, 69621 Villeurbanne, France
{guillaume.damiand,christine.solnon}@liris.cnrs.fr

Abstract. Generalized maps are widely used to model the topology
of nD objects (such as 2D or 3D images) by means of incidence and
adjacency relationships between cells (0D vertices, 1D edges, 2D faces,
3D volumes, ...). We have introduced in [1] a map edit distance. This
distance compares maps by means of a minimum cost sequence of edit
operations that should be performed to transform a map into another
map. In this paper, we introduce labelled maps and we show how the
map edit distance may be extended to compare labeled maps. We exper-
imentally compare our map edit distance to the graph edit distance for
matching regions of different segmentations of a same image.

1 Motivations

In many computer vision applications we have to match interest points or regions
extracted from different images in order to, e.g., recognize objects or reconstitute
3D models from 2D images. When looking for such matchings, graph-based ap-
proaches offer a good compromise between local approaches, which match each
point with the most similar point of the other image independently from its
relationships with other points, and global approaches such as RANSAC, which
consider rigid transformations. Indeed, graph-based approaches are able to ex-
ploit local relationships while being more tolerant to deformations than global
approaches such as RANSAC.

There exist different kinds of graph matchings [2], ranging from subgraph
isomorphism to more error-tolerant matchings such as the graph edit distance.
The graph edit distance is a generic measure, which is parametrized by edition
costs, and it is widely used to match graphs. It defines the distance between
two graphs G1 and G2 as the minimum cost sequence of edit operations for
transforming G1 into G2. Edit operations are vertex and edge deletion, insertion
and substitution. A vertex matching may be derived from the sequence of edit
operations in a straightforward way: Any vertex v1 of G1 which is substituted
to a vertex v2 of G2 is actually matched with v2.

Graphs are well suited to model binary relationships such as point proximity
or region adjacency. However, graphs are less well suited to model the topology
of the subdivision of a plane in faces, edges, and vertices. Combinatorial maps

are very nice data structures to model this kind of topological information: they
model the topology of nD objects subdivided into cells (e.g., vertices, edges,
faces, volumes, . . .) by means of incidence and adjacency relationships between
these cells. Combinatorial maps have been extended to generalized maps in [3],
which are fully homogeneous in any dimension, thus simplifying algorithms and
the development of computer libraries. In 2D, combinatorial and generalized
maps may be used to model the topology of an embedding of a planar graph in
a plane. In particular, these models are very well suited for scene modeling [4],
for 2D and 3D image segmentation [5], and there exist efficient algorithms to
extract maps from images [6].

We have defined a map edit distance in [1]. This map edit distance is a
straightforward extension of the graph edit distance: it defines the distance be-
tween two maps as a minimum cost sequence of edit operations, and a matching
may be derived from this edit operation sequence. However, this map edit dis-
tance has been defined for non labelled maps. In this paper, we introduce labelled
maps, such that cells may be associated with labels which describe their prop-
erties, and we extend our map edit distance to labelled maps. Another goal of
this paper is to compare our map edit distance with the graph edit distance
for matching regions of different segmentations of a same image, and therefore
answer the following question: Does the topology of the subdivision of the image
in regions (besides region adjacency relationships) help to match image regions?

Outline of the paper. In Section 2, we recall definitions related to generalized
maps and to the map edit distance. In Section 3, we introduce labelled maps and
show how the map edit distance may be extended to handle labels. In Section 4,
we experimentally compare our map edit distance to the graph edit distance for
matching regions of segmented images. In Section 5, we discuss further work.

2 Recalls on generalized maps and the map edit distance

In this work we consider generalized maps, and we refer the reader to [3] for
more details.

Definition 1 (nG-map). Let n ≥ 0. An n-dimensional generalized map (or
nG-map) is defined by a tuple G = (D,α0, . . . , αn) such that

1. D is a finite set of darts;
2. ∀i ∈ {0, . . . , n}, αi is an involution on D (i.e., it is a bijection such that
∀d ∈ D,αi(αi(d)) = d);

3. ∀i, j ∈ {0, . . . , n} such that i+ 2 ≤ j, αi ◦ αj is an involution.

We say that a dart d is i-sewn with a dart d′ whenever d′ = αi(d) and d 6= d′,
whereas it is i-free whenever d = αi(d). We say that a dart d is free if it is i-free
for every dimension.

2G-maps may be used to model the embedding of a planar graph into a plane.
For example, Fig. 1 displays a plane graph, composed of 5 vertices, 6 edges and
2 faces, and the corresponding 2G-map, composed of 14 darts.

v3f1 f2

v1 v2

v5 v4

a b c d e f g h i j k l m n

α0 h c b e d g f a j i l k n m

α1 b a d c f e h g n k j m l i

α2 a b c i j f g h d e k l m n

(a) (b) (c)

Fig. 1. (a) A plane graph. (b) The corresponding 2G-map. (c) Its graphical repre-
sentation: darts are represented by segments labeled with letters, consecutive darts
separated with a little segment are 0-sewn (e.g., α0(b) = c and α0(c) = b), consecutive
darts separated with a dot are 1-sewn (e.g., α1(a) = b and α1(b) = a), parallel darts
are 2-sewn (e.g., α2(d) = i and α2(i) = d).

Cells are implicitly defined by sets of darts corresponding to orbits: the i-cell
incident to a dart d is defined by celli(d) =< {α0, . . . , αn} \ {αi} > (d). Let us
consider, for example, the 2G-map of Fig. 1. The cells incident to dart e are:

– cell0(e) =< {α1, α2} > (e) = {e, f, j, k}, corresponding to vertex v4;
– cell1(e) =< {α0, α2} > (e) = {d, e, i, j}, corresponding to edge (v2, v4);
– cell2(e) < {α0, α1} > (e) = {a, b, c, d, e, f, g, h}, corresponding to face f1.

The map edit distance is based on edit operations which are used to transform
maps. These edit operations allow one to add/delete free darts, and to sew/unsew
darts. More precisely, let G = (D,α0, . . . , αn) be an nG-map.

– Let d ∈ D be a free dart of G (i.e., ∀i ∈ {0, . . . , n}, αi(d) = d). The deld(G)
operation removes d from D.

– Let d 6∈ D be a dart. The addd(G) operation adds d to D so that d becomes
a free dart of G, i.e., ∀i ∈ {0, . . . , n}, αi(d) = d.

– Let S be a set of triples (d, i, d′) such that d ∈ D and d′ ∈ D are i-free (i.e.,
d 6= d′, αi(d) = d, and αi(d

′) = d′). The sewS(G) operation i-sews d to d′

for every triple (d, i, d′) ∈ S, i.e., it sets αi(d) to d′ and αi(d
′) to d.

– Let S be a set of triples (d, i, d′) such that d ∈ D and d′ ∈ D are i-sewn darts
(i.e., d 6= d′, αi(d) = d′, and αi(d

′) = d). The unsewS(G) operation i-unsews
d to d′ for every triple (d, i, d′) ∈ S, i.e., it sets αi(d) to d and αi(d

′) to d′.

When comparing these edit operations to classical graph edit operations, the
del and add operations are related to vertex deletion and addition operations,
whereas the sew and unsew operations are related to edge deletion and addition
operations. A main difference is that sew/unsew operations operate on sets of
darts instead of sewing/unsewing darts one by one. Indeed, sewing/unsewing a
single dart may lead to a non valid nG-map. Let us consider for example the
nG-map of Fig. 1. We cannot 2-unsew darts d and i without also 2-unsewing
darts e and j (otherwise α0 ◦α2 no longer is an involution so that Property 3 of
definition 1 no longer is satisfied). The map edit distance is then defined as the
cost of the minimal cost edit path.

Definition 2 (edit path). Let G be an nG-map and ∆ =< δ1, . . . , δk > be a
sequence of k edit operations. ∆ is an edit path for G if δk(δk−1(. . . (δ1(G)))),
denoted ∆(G), is an nG-map (according to definition 1).

Definition 3 (map edit distance). Let c be a function which associates a cost
c(δ) ∈ R+ with every operation δ. The edit distance between the two nG-maps G
and G′ is dc(G,G

′) =
∑
δi∈∆(c(δi)) where ∆ is an edit path such that ∆(G) = G′

and
∑
δi∈∆(c(δi)) is minimal.

3 Extension of the map edit distance to labelled maps

Generalized maps describe the topology of the subdivision of a space into cells.
However, they do not express other information such as, for example, geometry,
texture or colour information. This kind of information may be added by means
of labels associated with cells. In generalized maps, cells are implicitly defined by
sets of darts and correspond to orbits. Therefore, to associate a label with an i-
cell c, we propose to label every dart of c, i.e., every dart d such that celli(d) = c.
Note that, a dart belongs to exactly one cell for every dimension i ∈ {0, . . . , n}.
For consistency reasons, we impose that all darts of a same i-cell have the same
label for dimension i.

Definition 4 (Labelled nG-maps). Let n ≥ 1. A labelled nG-map is a tuple
G = (D,α0, . . . , αn, L, l) such that (D,α0, . . . , αn) is an nG-map, L is a set
of labels, and l : D × {0, . . . , n} → L is a labelling function such that ∀d, d′ ∈
D,∀i ∈ {0, . . . , n}, celli(d) = celli(d

′)⇒ l(d, i) = l(d′, i).

In other words, l(d, i) is the label associated with the i-cell incident to d. Let
us consider, for example, the 2G-map of Fig. 1. To associate the label x with
vertex v4, we define l(e, 0) = l(f, 0) = l(j, 0) = l(k, 0) = x; to associate the label
y with edge (v2, v4), we define l(d, 1) = l(e, 1) = l(i, 1) = l(j, 1) = y; to associate
the label z with face f1, we define l(a, 2) = l(b, 2) = l(c, 2) = l(d, 2) = l(e, 2) =
l(f, 2) = l(g, 2) = l(h, 2) = z.

The map edit distance of [1] has been defined for non labelled maps. To
extend it to labelled maps, we introduce a new edit operation that substitutes
dart labels. Let G = (D,α0, . . . , αn, L, l) be a labelled nG-map, d ∈ D be a dart,
i ∈ {0, ..., n}, and l′ ∈ L be a label. The subs(d,l′,i)(G) operation substitutes the
label l(d, i) of dart d with the new label l′. The cost function c must also be
extended so that the cost of an edit operation (subs, del, add, sew, or unsew)
depends on dart labels.

4 Experimental comparison

In this section, we compare the map edit distance with the graph edit distance
for matching regions of different segmentations of a same image. Our goal is to
evaluate the interest of using maps, which model the topology of the subdivi-
sion of the image in regions, instead of using graphs, which only model region
adjacency relationships.

(a) (b) (c)

Fig. 2. (a) An image. (b) A segmentation of (a) in 389 regions. (c) A finer segmentation
of (a) in 415 regions.

4.1 Test suite

For this very first experimental comparison, we compare different segmentations
of a same image. This allows us to have a ground truth for evaluating match-
ings: we consider that two regions coming from two different segmentations of
the same image are correctly matched if their intersection is not empty. We have
considered 6 different images (2 cars, 2 cows and 2 motorbikes) extracted from
the ETHZ benchmark4. For each image, we have generated different segmen-
tations, using the algorithm of [7] with different threshold values, so that the
number of regions varies from 240, for the coarser segmentations, to 460, for the
finer ones. Fig. 2 gives an example of two segmentations of a same image. Note
that all segmentations are recomputed from the same initial image so that re-
gions of finer segmentations are not necessarily subdivisions of regions of coarser
segmentations.

For each segmentation, we have built a graph and a 2G-map which represent
it. The graph is a classical region adjacency graph (RAG), which associates a
vertex with each region, and an edge with every pair of adjacent regions. The
2G-map associates a face with every region, the edges of the map describe the
adjacency relations between the regions and the vertices of the map describe the
adjacency relations between the edges.

The sizes of the resulting RAGs and 2G-maps are given in Table 1. Note that
if the number of faces of the 2G-maps corresponds to the number of vertices of
the RAGs, the 2G-maps have slightly more edges than RAGs as two regions
having multiple adjacency relationships are linked by a single edge in RAGs
(multiple adjacency occurs when two regions are adjacent several times).

Each region r of the segmented images is described by two basic descriptors:
A color descriptor, color(r), which is the average color of the pixels of r (a
value ranging between 0 and 255 as we consider gray-level colours), and an area
descriptor, area(r), which is the number of pixels of r.

First experiments showed us that the graph edit distance can hardly correctly
match regions when RAGs are not labelled. Actually, RAGs usually have many
automorphisms (i.e., symetries), so that there exist many different matchings

4 available at http://pascallin.ecs.soton.ac.uk/challenges/VOC/databases.html

RAGs 2G-maps

Nb of vertices Nb of edges Nb of darts Nb of vertices Nb of edges Nb of faces

Min Max Min Max Min Max Min Max Min Max Min Max

240 460 688 1217 2792 4948 463 816 698 1237 240 460

Table 1. Comparison of the sizes of RAGs and 2G-maps, for the coarser segmentations
(Min) and the finer ones (Max).

between two isomorphic RAGs which preserve adjacency relationships (but of
course, only one of these matchings correctly matches regions). In order to im-
prove the matching process, we have added structural labels to RAGs. Therefore,
for RAGs:

– each edge (u, v) is labelled with adj(u, v), the number of adjacency relation-
ships between the two regions associated with u and v;

– each vertex u corresponding to a region ru is labelled with a triple (totAdj(u),
color(ru), area(ru)), where totAdj(u) =

∑
v(adj(u, v)) is the total number

of adjacency relationships of all edges (u, v) incident to u.

The structural labels adj(u, v) and totAdj(u) greatly improve results for RAGs.
We do not add these structural labels to 2G-maps as this information is already
available in 2G-maps. Therefore, for every dart d of 2G-maps, we define l(d, 2) =
(color(rd), area(rd)), where rd is the region associated with the dart d. As no
information is associated with vertices and edges of the 2G-maps, we define
l(d, 0) = l(d, 1) = ε.

4.2 Cost functions

For RAGs, we define the cost of substituting a vertex u whose label is (totAdj(u),
color(ru), area(ru)) with a vertex v whose label is (totAdj(v), color(rv), area(rv))
by

c(subs(u, v)) = ωstruct · |totAdj(u)− totAdj(v)|
+ ωcolor · |color(ru)−color(rv)|255

+ ωarea · (1− min(area(ru),area(rv))
max(area(ru),area(rv))

)

where ωstruct, ωcolor, and ωarea are 3 parameters which determine the relative
weights of structural, color and area information. The cost of adding or deleting
a vertex or an edge is set to 1.

For 2G-maps, we define the cost of substituting a dart u whose label is
l(u, 2) = (color(ru), area(ru)) with a dart v whose label is l(v, 2) = (color(rv),
area(rv)) by

c(subs(u, v)) = ωcolor · |color(ru)−color(rv)|255

+ ωarea · (1− min(area(ru),area(rv))
max(area(ru),area(rv))

)

where ωcolor and ωarea are 2 parameters which determine the relative weights
of color and area information. The cost of adding or deleting a dart is set to

1. The cost of sewing/unsewing operations is equal to the number of triples
(d, i, d′) added/removed (as sew/unsew operations add/remove sets of seams for
consistency reasons).

4.3 Matching algorithms

Computing edit distances is a NP-hard problem, both for graphs and maps.
Exact algorithms do not scale well and cannot compute edit distances within a
reasonable amount of time for the graphs and maps considered here. Therefore,
we use heuristic algorithms, which compute approximate solutions.

For the graph edit distance, we use the algorithm proposed in [8]: The graph
matching problem is approximated by an assignment problem which is solved
by the Munkres algorithm [9].

For the map edit distance, we use an extension to labelled maps of the greedy
algorithm described in [10]: Starting from an empty matching, this algorithm
iteratively matches darts until no more darts can be matched; at each iteration
the pair of darts to be matched is chosen in order to minimize the corresponding
edit costs.

Both algorithms have polynomial time complexities: O(v3) for the graph edit
distance, where v is the number of vertices of the largest graph, and O(d2 ·log(d))
for the map edit distance, where d is the number of darts of the largest map.
However, as d is more than ten times larger than v on our benchmark, the match-
ing process is faster for graphs than for maps: for the coarsest segmentations,
having 240 regions, graphs (having 240 vertices) are matched in 2 seconds or so
whereas maps (having 2792 darts) are matched in 8 seconds or so; for the finest
segmentations, having 460 regions, graphs (having 460 vertices) are matched in
5 seconds or so whereas maps (having 4948 darts) are matched in 25 seconds or
so.

4.4 Experimental results

Let us now compare graph and map edit distances for matching regions of two
different segmentations of a same image. Comparing different segmentations of a
same image allows us to have a ground truth: we consider that two regions coming
from two different segmentations of the same image are correctly matched if their
intersection is not empty. When images are modelled with RAGs, we measure the
percentage of vertices which are correctly matched, i.e., whose associated regions
are correctly matched. When images are modelled with 2G-maps, we measure
the percentage of darts which are correctly matched, i.e., whose associated 2-cells
are correctly matched.

For each image, we sort its different segmentations from the coarsest one
(which has 240 regions) to the finest one (which has 460 regions). For each
segmentation i, we measure the percentage of correctly matched vertices/darts
when comparing it with segmentation i + k of the same image, where the dif-
ference k of segmentation levels ranges from 0 up to 10 (it may be less than

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

2G−maps: wcolor=0, warea=0
Graphs: wstruct=1, wcolor=0, warea=0

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

2G−maps: wcolor=0, warea=1
Graphs: wstruct=1, wcolor=0, warea=1

(a) (b)

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

2G−maps: wcolor=1, warea=0
Graphs: wstruct=1, wcolor=1, warea=0

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

2G−maps: wcolor=1, warea=1
Graphs: wstruct=1, wcolor=1, warea=1

(c) (d)

Fig. 3. Average percentage of correctly matched darts/vertices (on the y-axis) with
respect to the difference k of segmentation levels (on the x-axis). (a) Using structural
information only, i.e., ωcolour = 0 and ωarea = 0. (b) Using structural and area infor-
mation, i.e., ωcolour = 0 and ωarea = 1. (c) Using structural and colour information,
i.e., ωcolour = 1 and ωarea = 0. (d) Using structural, colour and area information, i.e.,
ωcolour = 1 and ωarea = 1.

10 if segmentation i + 10 does not exist): when k = 0, we actually compare a
segmentation with itself; the larger k, the more different the two segmentations.

Fig. 3 displays the evolution of the percentage of correctly matched ver-
tices/darts with respect to the difference k of segmentation levels (on average
for the 6 images and each segmentation level i). For the graph edit distance,
we always set ωstruct to 1 as this always improves results. We consider different
combinations of the two other weight parameters ωcolour and ωweight. Let us first
compare graphs and 2G-maps when colour and area information is ignored, i.e.,
ωcolour = 0 and ωarea = 0. For 2G-maps, we are able to correctly match all darts
when k = 0 (i.e., when we compare isomorphic 2G-maps), but this rate quickly
decreases when increasing k: it is equal to 20% or so when k = 3, and smaller
than 10% when k ≥ 5. For graphs, we are never able to match more than 10% of

the vertices, even when k = 0. Actually, RAGs have many automorphisms (i.e.,
symetries). Some of these symetries are broken by adding the structural labels
(number of adjacency relationships on edges, and total number of adjacency re-
lationships on vertices). However, even with structural labels, RAGs still have
many automorphisms so that a vertex may be matched with several vertices.

Adding colour or area information, i.e., setting ωcolour or ωarea to 1, signif-
icantly improves results and, when k ≤ 5, results obtained with 2G-maps are
significantly better than those obtained with graphs. However, for higher values
of k, the percentage of correctly matched darts/vertices hardly reaches 20%.

Finally, when combining colour and area information, graphs and 2G-maps
obtain rather similar results, though 2G-maps are slightly better than graphs
when k ≤ 4.

This first experiment shows us that structural information is better modelled
and exploited with 2G-maps than with graphs. This comes from the fact that
2G-maps do not only model region adjacency relationships, but also other topo-
logical information such as, for example, the order in which faces are encountered
when turning around a vertex. As a matter of fact, if RAGs usually have many
automorphisms, 2G-maps usually have no automorphism at all. However, when
adding colour or area labels, the difference between 2G-maps and graphs be-
comes less significant as this information greatly improves the graph matching
process.

Note that the differences observed between 2G-maps and graphs may also
come from the matching algorithms we have considered: these matching algo-
rithms are heuristic algorithms which compute approximate solutions. The graph
matching algorithm of [8] considers only local, rather than global, edge structure
during the optimization process. Also, the greedy map matching algorithm of [10]
considers local seams to choose the next pair of darts to match. It is not possible
to compute exact solutions within a reasonable amount of time, considering the
fact that graphs (resp. maps) have hundreds (resp. thousands) of vertices (resp.
darts). Therefore, we cannot assess the quality of the approximations computed
by the heuristic algorithms.

5 Conclusion

In this paper, we have extended generalized maps to labelled nG-maps, thus al-
lowing us to add information on cells in every dimension, and we have extended
the map edit distance to handle these labels by adding a dart substitution op-
eration. We have compared the map edit distance with the graph edit distance
for matching regions of different segmentations of a same image. We have shown
that regions are better matched when we use 2G-maps for modelling the topol-
ogy of the subdivision of the image in regions rather than when we use RAGs
for modelling region adjacency relationships.

We have performed similar experiments on 2D meshes modelling 3D objects.
We have generated different degradations of a same mesh (obtained by merg-
ing nearly co-planar adjacent faces), and compare the percentage of correctly

matched faces when using 2G-maps and when using graphs. We observed simi-
lar results, i.e., 2G-maps allow us to better match faces than graphs.

As future works, we plan to study different domains of application which
use graphs and similarity measures in order to see if we can improve existing
solutions by using nG-maps and the map edit distance. We also would like to
improve our algorithm in order to speed-up the computation times and propose
more heuristics to guide the choice of the best pair of darts to be matched. Lastly
we plan to study other types of similarity measures. We think for example to
extend graph kernels to generalized maps.

References

1. Combier, C., Damiand, G., Solnon, C.: From maximum common submaps to edit
distances of generalized maps. Pattern Recognition Letters 33(15) (2012) 2020–
2028

2. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty Years Of Graph Matching In
Pattern Recognition. International Journal of Pattern Recognition and Artificial
Intelligence (2004)

3. Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular quasi-
manifolds. Computational Geometry and Applications 4(3) (1994) 275–324

4. Fradin, D., Meneveaux, D., Lienhardt, P.: A hierarchical topology-based model
for handling complex indoor scenes. Computer Graphics Forum 25(2) (June 2006)
149–162

5. Braquelaire, J.P., Brun, L.: Image segmentation with topological maps and inter-
pixel representation. Visual Communication and Image representation 9(1) (1998)
62–79

6. Damiand, G.: Topological model for 3d image representation: Definition and incre-
mental extraction algorithm. Computer Vision and Image Understanding 109(3)
(2008) 260–289

7. Dupas, A., Damiand, G.: First results for 3d image segmentation with topological
map. In Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F., eds.: DGCI. Volume
4992 of Lecture Notes in Computer Science., Springer (2008) 507–518

8. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vision Comput. 27 (June 2009) 950–959

9. Munkres, J.: Algorithms for the assignment and transportation problems. Journal
of the Society of Industrial and Applied Mathematics 5(1) (March 1957) 32–38

10. Combier, C., Damiand, G., Solnon, C.: Measuring the distance of generalized maps.
In: GbR. LNCS, Springer (2011) 82–91

