
Decentralized Throughput Scheduling�

Jasper de Jong, Marc Uetz, and Andreas Wombacher

University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
{j.dejong-3,m.uetz,a.wombacher}@utwente.nl

Abstract. Motivated by the organization of distributed service systems,
we study models for throughput scheduling in a decentralized setting. In
throughput scheduling, a set of jobs j with values wj , processing times
pij on machine i, release dates rj and deadlines dj , is to be processed
non-preemptively on a set of unrelated machines. The goal is to maximize
the total value of jobs scheduled within their time window [rj , dj ]. While
approximation algorithms with different performance guarantees exist for
this and related models, we are interested in the situation where subsets
of machines are governed by selfish players. We give a universal result
that bounds the price of decentralization: Any local α-approximation
algorithm, α ≥ 1, yields Nash equilibria that are at most a factor (α+1)
away from the global optimum, and this bound is tight. For identical
machines, we improve this bound to α

√
e/( α

√
e− 1) ≈ (α + 1/2), which

is shown to be tight, too. The latter result is obtained by considering
subgame perfect equilibria of a corresponding sequential game. We also
address some variations of the problem.

1 Model and Notation

We consider a non-preemptive scheduling problem with unrelated machines, to
which we refer as decentralized throughput scheduling problem throughout the
paper. The input of an instance I ∈ I consists of a set of jobs J , a set of
machines M, and a set of players N . Each job j ∈ J comes with a release time
rj , a deadline dj , a nonnegative value wj and a processing time pij if scheduled
on machine i ∈ M. Machines can process only one job at a time. Job j is feasibly
scheduled (on any of the machines) if its processing starts no earlier than rj and
finishes no later than dj . For any set of jobs S ⊆ J , we let w(S) =

∑
j∈S wj be

the total value. Each player n ∈ N controls a subset of machines Mn ⊆ M and
aims to maximize the total value of jobs that can be feasibly scheduled on its
set of machines Mn. Here Mn, n ∈ N , is a partition of the set of machines M.

In this paper we are interested in equilibrium allocations, which we define as
an allocation in which none of the players n can improve the total value of jobs
that can be feasibly scheduled on its set of machines Mn by removing some of its
jobs and adding some of the yet unscheduled jobs. Here we make the assumption
that a player cannot make a claim on jobs that are scheduled on machines of

� Research supported by CTIT, Centre for Telematics and Information Technology,
University of Twente, project “Mechanisms for Decentralized Service Systems”.

P.G. Spirakis and M. Serna (Eds.): CIAC 2013, LNCS 7878, pp. 134–145, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Decentralized Throughput Scheduling 135

other players. An equilibrium allocation is a (pure) Nash equilibrium (NE) in a
strategic form game where player n’s strategies are all subsets of jobs Sn ⊆ J .
If jobs Sn can be feasibly scheduled on machines Mn, then player n’s valuation
for Sn is w(Sn) =

∑
j∈Sn

wj , and we let w(Sn) = −∞ otherwise. Furthermore,
the utility of player n is −∞ whenever Sn is not disjoint with the sets chosen
by all other players. This way, in any strategy profile (Sn)n∈N that is at Nash
equilibrium, the sets Sn, n ∈ N , are pairwise disjoint.

Our main focus will be the analysis of the price of decentralization, better
known as the price of anarchy (PoA) [11], lower bounding the quality of any
Nash equilibrium relative to the quality of a globally optimal allocation, OPT .
Here OPT is an allocation maximizing the weighted sum of feasibly scheduled
jobs over all players. More specifically, we are interested in the ratio

PoA = sup
I∈I

sup
NE∈NE(I)

w(OPT )

w(NE)
, (1)

where NE(I) denotes the set of all Nash equilibria of instance I. Note that OPT
is a Nash equilibrium too, hence the price of stability, as proposed in [1], equals 1.

In general, the question whether a strategy profile (Sn)n∈N is a Nash equi-
librium describes an NP-hard optimization problem for each player, even if each
player controls a single machine only [14]. Therefore, we also consider a relaxed
equilibrium condition: We say an allocation is an α-approximate Nash equilib-
rium (α-NE) if none of the players n can improve the total value of jobs that
can be feasibly scheduled on its set of machines Mn by a factor larger than α by
removing some of its jobs and adding some of the yet unscheduled jobs. By the
existence of constant factor approximation algorithms for (centralized) through-
put scheduling, e.g. [3,4], the players are thus equipped with polynomial time
algorithms to reach an α-NE in polynomial time, for certain constant values α.

As an interesting variant of the model described thus far, we also propose
to analyze the price of anarchy for subgame perfect equilibria of an extensive
form game as introduced by Selten [12,17]. Here, we make the assumption that
players select their subsets of jobs sequentially in an arbitrary but fixed order.
In that situation, the n-th player is presented the set of yet unscheduled jobs
J −⋃

i<n Si, from which he may select a subset Sn once, and is not allowed to
revoke this decision later. For the special case where all machines are identical,
the resulting subgame perfect equilibria of the extensive form game are provably
better than Nash equilibria of the strategic game.

2 Motivation, Related Work and Contribution

Our motivation to study this problem is to analyze the performance of decen-
tralized service systems, where jobs are posted, e.g. on a portal, and service
providers can select these on a take-it-or-leave-it basis. The problem can be seen
as a stylized version of coordination problems that appear in several application
domains. We give three examples: (1) When operating microgrids for decentral-
ized energy production and consumption, the goal is to consume locally produced



136 J. de Jong, M. Uetz, and A. Wombacher

energy as much as possible. Here, jobs can be defined as the operation of ap-
pliances (e.g. operating a washing machine), bounded by a time window and
attached with a certain $-value. Machines, on the other side, are local energy
producers like PV-panels or micro CHPs [2,15]. (2) In cloud computing, service
providers such as Amazon and Google provide an infrastructure service, that
is, provide a virtual machine with a specific service level for a certain period of
time. The aim of a federated cloud computing environment, e.g. [6], is to “co-
ordinate load distribution among different cloud-based data centers in order to
determine optimal location for hosting application services ”. (3) In private car
sharing portals like Tamyca or Autonetzer [19], clients post car rental requests
for a certain time period, and the price they are willing to pay. Car owners in the
vicinity can select requests and rent their car(s). Stripping off the online nature
from these applications exactly yields the type of problems we address.

The underlying non-strategic optimization problem is sometimes referred to
as throughput scheduling. See for example [3], and follow-up papers, e.g. [4]. In
the 3-field notation of [9], the problem reads R|rj |

∑
wjUj, where R denotes the

unrelated machine model, rj specifies that there are release dates, and the objec-
tive is to minimize the total weight of late jobs. In terms of the optimal objective
value this is equivalent to the maximization objective considered here, yet it is
standard to revert to the maximization version for the purpose of approximation.
Indeed, approximation algorithms for several versions of the maximization prob-
lem have been discussed in the literature, e.g., with or without weights, identical
or unrelated machines, most notably [3,4]. Special cases that are of particular
interest are the single machine case with unit weights and zero release dates,
solved in polynomial time by the Moore-Hodgson algorithm [16], and the case
with identical machines and unit processing times, which can be cast and solved
as an assignment problem [5]. To the best of our knowledge, the decentralized
version that we propose here has not been addressed before.

Our contribution lies in the informal claim that the price of decentralization
is very moderate: If local decisions of all players are approximately optimal with
performance guarantee α, then any equilibrium allocation is not worse than an
(α+1)-fraction of the global optimum. We improve this to ≈ (α+1/2) when all
machines are identical, and when we consider only subgame perfect equilibria
of a corresponding extensive form game. Along the way, we also obtain some
additional insights.

3 A First Encounter

Example 1. There are two playersN = {1, 2}, each controlling exactly one of two
related machines M = {1, 2}, with machine speeds s1 = 1, s2 = 2

3 , respectively
1.

There are two jobs J = {1, 2} with processing times p1 = p2 = 1, deadlines
d1 = 1, d2 = 3

2 and values w1 = w2 = 1. Release dates are r1 = r2 = 0. �

In this example, when job 1 is allocated to machine 1 and job 2 to machine
2, both jobs can meet their respective deadlines. This is obviously an optimal

1 This is a special case of the unrelated machine model by letting pij = pj/si.



Decentralized Throughput Scheduling 137

allocation. However when job 2 is allocated to machine 1, only one job can be
scheduled before its deadline. See also Figure 1. Note that both allocations are

s1 = 1

p2 = 1, d2 = 1 1
2

s2 = 2
3

NEOPT

s1 = 1

p2 = 1, d2 = 1 1
2

p1 = 1, d1 = 1

s2 = 2
3

Fig. 1. Optimal solution and Nash equilibrium in the case of related machines

a Nash equilibrium. Now w(OPT )/w(NE) = 2/1 = 2 for the second allocation,
and we see from this simple example that

PoA ≥ 2

in (1), even for the case of related machines, unit weights, unit processing times
and zero release dates. The strategic form game for Example 1 with both Nash
equilibria in boldface is shown in Figure 2. A corresponding extensive form game

player 2
∅ {1} {2} {1,2}

player 1

∅ 0,0 0,−∞ 0, 1 0,−∞
{1} 1,0 −∞,−∞ 1, 1 −∞,−∞
{2} 1,0 1,−∞ −∞,−∞ −∞,−∞
{1,2} −∞, 0 −∞,−∞ −∞,−∞ −∞,−∞

Fig. 2. Strategic form game for Example 1 with Nash equilibria

where players select their jobs sequentially, player 1 first, and suppressing the
solutions for the trivially inferior strategies {1, 2}, is shown in Figure 3. Note
that each subgame perfect equilibrium of this extensive form game yields an
allocation that corresponds to a Nash equilibrium of the strategic form game.
Yet the extensive form game has generally more Nash equilibria (here, 3) due to
richer strategy spaces of players.

4 Bounds for Approximate Equilibrium Allocations

The players problem to decide if a strategy is at equilibrium is polynomially
solvable only for special cases. For instance when jobs have unit values and zero



138 J. de Jong, M. Uetz, and A. Wombacher

{1} {2}∅

player 1

player 2

{1} {2}∅

−∞,−∞1, 0

{1} {2}∅ {1} {2}∅
0, 0 0, 10,−∞ 1,−∞1,01,1 −∞,−∞

Fig. 3. Extensive form game for Example 1 with subgame perfect equilibria

release dates, and when each player controls exactly one machine, the Moore-
Hodgson algorithm [16] maximizes the total number of early jobs. But when
players control more than one machine, the players problem is NP-complete as
generalization of the makespan minimization problem on parallel machines [8].
When the machines Mn of a player n are identical, and jobs have unit processing
times, the players’ problem can be cast and solved as an assignment problem
[5]. In most other cases, the players’ problem is NP-complete. For example, for
a player that controls a single machine, when jobs have zero release dates, but
arbitrary processing times and weights, the problem is (weakly) NP-hard [13,10].
Adding nontrivial release dates makes the problem strongly NP-hard [14].

Therefore, we consider a relaxed equilibrium concept, assuming that play-
ers strategies are only approximately optimal. This leads to the concept of α-
approximate equilibria, which has lately been discussed also in the literature on
computing Nash equilibria, for instance in the context of congestion games [18].
Approximate Nash equilibria can also be defined by allowing additive deviations
instead of relative deviations, e.g. [7], but given that there exist constant-factor
approximation algorithms for throughput scheduling, e.g. [3,4], it appears more
reasonable to work with relative bounds here. We say the allocation is an α-
approximate Nash equilibrium, or α-NE, if no player n can improve the total
value of its jobs by a factor larger than α. That said, we obtain the following.

Theorem 1. The decentralized throughput scheduling problem has PoA = α+ 1,
assuming that equilibrium allocations are α-approximate Nash equilibria. The
lower bound PoA ≥ α+ 1 even holds for the special case of unit values wj , unit
processing times pj, related machines and zero release dates.

Proof. First we prove PoA ≤ α + 1. Take any instance with optimal solution
OPT and Nash equilibrium NE2, and let NEn and OPT n, n ∈ N , be the jobs
allocated to player n in NE and OPT , respectively. For any S ⊆ J , let S = J \S
be the complement of S in J .

Since all jobs in NE are available, and all jobs in OPT n can be feasibly be
scheduled by player n, by the definition of α-approximate Nash equilibrium, we
have for all n, αw(NEn) ≥ w(OPT n ∩ NE). Now we get, by using linearity of
the objective function across players,

2 In a slight abuse of notation, we use OPT and NE to also denote the set of feasibly
scheduled jobs in the respective solutions.



Decentralized Throughput Scheduling 139

s1 = 1

di = p+ ε

di = p, i = 1 . . . p

s2 = 1
p+ε

s... =
1

p+ε

sq+1 = 1
p+ε

OPT

s1 = 1

α−NE

i = p+ 1 . . . p+ q

s2 = 1
p+ε

s... =
1

p+ε

sq+1 = 1
p+ε

Fig. 4. Optimal solution and α-NE in case of related machines

(α+ 1)w(NE) ≥ αw(NE) + w(OPT ∩NE)

=
∑

n
αw(NEn) + w(OPT ∩NE)

≥
∑

n
w(OPT n ∩NE) + w(OPT ∩NE)

= w(OPT ) .

To prove PoA ≥ α+ 1 we give a tight example.

Example 2. Consider an instance with unit processing times pj = 1, unit values
wj = 1, related machines, and zero release dates. Assume w.l.o.g. that α = p/q,
p ≥ q, and assume players deploy an α-approximation each. There are q + 1
players N , each controlling one of q + 1 machines M = {1, . . . , q + 1} with
machine speeds s1 = 1 and s2 = s3 = · · · = sq+1 = 1/(p+ ε) for some 0 < ε < 1.
There are p + q jobs J = {1, . . . , p + q}. Jobs J1 = {1, . . . , p} have deadline p.
Jobs J2 = {p+ 1, . . . , p+ q} have deadline p+ ε. �

Here, machine 1 can schedule at most p jobs. Machines 2, . . . , q+1 can schedule
no jobs from J1 and only one job from J2 each. In OPT all p+q jobs are feasibly
scheduled: jobs J1 on Machine 1 and each of machines 2, . . . , q + 1 has one job
from J2. Now consider the α-approximate Nash equilibrium where only q jobs
are scheduled: Machine 1 schedules all q jobs from J2, and machines 2, . . . , q+1
schedule no job. This is indeed an α-approximate Nash equilibrium, as machine
1 can schedule at most p = αq jobs, and since all jobs from J2 are scheduled on
machine 1, machines 2, . . . , q + 1 cannot improve from their 0 jobs either. See
Figure 4 for an illustration. We conclude that PoA ≥ (p+ q)/q = α+ 1. 
�
Note that α = 1 in the special case where the players can verify if a solution is a
Nash equilibrium; in that case PoA = 2. Also note that the given upper bound
is universal in the sense that it is independent of how the (α-approximate) Nash
equilibrium is obtained. It is conceivable that specific algorithms can yield a
better bound for the price of anarchy. However, the existence of more complicated
counter-examples for specific algorithms is not unlikely either, and we did not
take the effort to find them.



140 J. de Jong, M. Uetz, and A. Wombacher

5 Subgame Perfect Equilibria

We here propose to analyze the extensive form game in which the players select
their subsets of jobs sequentially, and are not allowed to revoke their decisions
later. Following Selten [17], an equilibrium of an extensive form game is called
(α-approximate) subgame perfect if it induces a (α-approximate) Nash equi-
librium in every subgame. The following example shows that indeed, not all
(α-approximate) Nash equilibria are (α-approximate) subgame perfect.

Example 3. There are n players each controlling one of n identical machines
M = {1, . . . , n}, and 2n−1 jobs J = {1, . . . , 2n−1}with unit weights. Jobs J1 =
{1, . . . , n} have processing time 1/n and deadline 1. Jobs J2 = {n+1, . . . , 2n−1}
have processing time 1 and deadline 1. �

In OPT , machine 1 schedules jobs J1 and machines 2, . . . , n schedule jobs J2.
Consider Nash equilibrium NE where each machine schedules one job from J1.
Note that NE is indeed an equilibrium: no machine can schedule more than one
job without exchanging jobs with another machine. See Figure 5 for an illus-
tration. For this instance w(OPT )/w(NE) = 2n−1

n → 2 for n → ∞. This Nash

pi =
1
n , di = 1, i = 1 . . . n
NE

pi =
1
n , di = 1, i = 1 . . . n

pi = 1, di = 1, i = n+ 1 . . . 2n− 1

OPT

Fig. 5. An optimal solution and a Nash equilibrium in case of identical machines

equilibrium is not subgame perfect, however. In any subgame perfect equilib-
rium, the first player would necessarily schedule all jobs from J1 on his machine.

This example also shows that the identical machine model does not allow an
improvement of the result of Theorem 1. Although non-subgame perfect equi-
libria might seem unrealistic, the equilibrium obtained in this example is quite
reasonable: In a round robin assignment, each player chooses to schedule the
most flexible available job(s) first.

Remark: It is not hard to see that each subgame perfect equilibrium of the
sequential game proposed here corresponds to an outcome equivalent Nash equi-
librium of the (non-sequential) strategic form game that we studied in Section 4.
In that sense, our move to subgame perfect equilibria indeed makes sense from
the perspective of worst case analysis.



Decentralized Throughput Scheduling 141

6 Identical Machines

In this section we improve our previous results for the special case of identical
machines when considering (α-approximate) subgame perfect equilibria of an
extensive form game in which players select their jobs sequentially in any order.

6.1 Identical Machines: Lower Bound

We give a lower bound on the price of anarchy for subgame perfect equilibria.

Theorem 2. PoA ≥ α
√
e/( α

√
e− 1) for identical machines, even in the restricted

model where we only consider α-approximate subgame perfect equilibria, and for
unit processing times, unit weights, and zero release dates.

Proof. We give a corresponding example.

Example 4. There are n players controlling one of n identical machines M =
{1, . . . , n}. There are n2 jobs J = {1, . . . , n2} with unit processing times and
unit weights. Jobs have deadlines δ ∈ {1, . . . , n} and for each deadline, there are
n jobs with this deadline, that is, for all δ, dj = δ for j = 1+ (δ − 1)n, . . . , δn.�

We refer to jobs as δ-jobs, δ = 1, . . . , n. In Figure 6 we see an instance and
solution for n = 5 and α = 2 (that is, machines use a 2-approximation).

For each of the jobs, the number displayed on it corresponds to its deadline.
In OPT , every machine schedules n jobs with different deadlines, ordered by
increasing deadline. Therefore w(OPT ) = n2. We construct an α-approximate
subgame perfect equilibrium, say S, as follows. For every machine i = 1, . . . , n
in this order, we find the maximum number of jobs that can be scheduled, say
oi, and let Si be the �oi/α� jobs with the largest deadlines (which are the most
flexible jobs). For example, for n = 5 and α = 2, w(S) = 3 + 3 + 2 + 2 + 2 = 12
as can be seen in Figure 6. We bound w(S) in the following way. In S, denote
by rδ(i) the fraction of δ-jobs on machine i, relative to the total number of
jobs on machine i. Let rδ =

∑
i rδ(i). In our example, r4 = 0 + 1

3 + 1 + 1 + 0.
Observe that

∑
δ rδ = n for any allocation. In S, any machine scheduling a δ-

job, does not schedule any job with deadline (δ+2) or larger, hence it schedules
at most �(δ + 1)/α� ≤ (δ + 1 + α)/α jobs. Therefore, each job with deadline δ
contributes at least α/(δ + 1 + α) to rδ. For any δ for which all n δ-jobs are
allocated in S, we get rδ ≥ nα/(δ + 1 + α).

Now, for some δ′ ≥ 0, by construction of the allocation we have that all n
δ-jobs with δ = n − δ′, . . . , n are fully scheduled, as well as a fraction of the
(n− (δ′ + 1))-jobs. We get

n ≥
n∑

δ=n−δ′
rδ ≥

n∑

δ=n−δ′

nα

δ + 1 + α
≥

∫ n

δ=n−δ′

nα

δ + 1 + α
dδ . (2)

Because the last term is upper bounded by n, we can derive an upper bound
on δ′. In fact, basic calculus shows that

δ′ >
(n+ 1 + α)( α

√
e− 1)

α
√
e

⇒
∫ n

δ=n−δ′

nα

δ + 1 + α
dδ > n ,



142 J. de Jong, M. Uetz, and A. Wombacher

1 2 3 4 5

1

1

1

1

OPT α−NE

2

2

2

2

3

3

3

3

4

4

4

4

4

4

4 4

4

3 3

5

5

5

5

5 5 5

55

Fig. 6. Optimal solution and 2-approximate subgame perfect equilibrium in case of
identical machines. Numbers denote job deadlines.

which together with (2) yields that δ′ ≤ (n+1+α)( α
√
e−1)

α
√
e

. Because only δ-jobs

with δ ≥ n− (δ′ + 1) are scheduled, we conclude that

w(S) ≤ (δ′ + 1)n ≤
(n+ 1 + α+

α
√
e

α
√
e−1

)( α
√
e− 1)

α
√
e

· n .

We see that

w(OPT )

w(S)
≥ n α

√
e

(n+ 1 + α+
α
√
e

α
√
e−1

)( α
√
e− 1)

→
α
√
e

α
√
e− 1

for n → ∞ ,

and the claim follows. 
�
Note that the lower bound construction assumes that players choose the most
flexible jobs first, which seems reasonable. The bound also holds for the case
with unit processing times, where we may assume that the players use optimal
strategies [5], that is α = 1. For that case, the result shows that the price of
anarchy can be as high as e/(e− 1) ≈ 1.58.

6.2 Identical Machines: Upper Bound

To derive a matching upper bound for identical machines, when considering only
subgame perfect equilibria, we use a proof idea from Bar-Noy et al. [3] in their
analysis of k-GREEDY, but need a nontrivial generalization to make it work for
the case where players control multiple machines.

Assume there are n players and m identical machines, and each player i con-
trolsmi machines. Denote by Si the set of jobs selected by player i, and S =

⋃
i Si

the total set of jobs scheduled in an α-approximate subgame perfect equilibrium.
The following lemma lower bounds the total weight collected by i.



Decentralized Throughput Scheduling 143

Lemma 1. We have for all players i

w(Si) ≥ mi

mα
w
(
OPT

(
J \

⋃

j<i
Sj

))
.

where OPT (W ) denotes an optimal solution for any given set of jobs W and m
machines.

Proof. Let W := J \⋃j<i Sj . Let OPT i denote the maximum weight set of jobs
that can be scheduled by player i. Observe that w(OPT i) ≥ (mi/m)OPT (W ).
This follows because player i could potentially select the jobs scheduled on the
mi most valuable machines from OPT (W ), as all machines are identical. Now,
by definition w(Si) ≥ w(OPT i)/α ≥ miw(OPT (W ))/(mα). Here, the first in-
equality holds because we assume an α-approximate Nash equilibrium, and in
particular no player will choose a subset of jobs that is not disjoint from the
subsets selected earlier. 
�

We are now ready to prove the following.

Theorem 3. PoA ≤ α
√
e/( α

√
e− 1) for identical machines and α-approximate

subgame perfect equilibria.

Proof. Due to space limitations, we skip some technicalities of the proof, but
give the main idea here. Let γ := mα, and recall that w(OPT ) = w(OPT (J ))
denotes the value of the optimal solution. We use Lemma 1, to get

w(Si) ≥ mi

γ
w
(
OPT

(
J \

⋃

j<i
Sj

))
≥ mi

γ

(
w(OPT )−

∑

j<i
w(Sj)

)
,

where the latter inequality holds because w(OPT )−∑
j<i w(Sj) represents the

value of a feasible solution for the jobs J \ ⋃
j<i Sj . Add

∑i−1
j=1 w(Sj) to both

sides to get
i∑

j=1

w(Sj) ≥ miw(OPT )

γ
+

γ −mi

γ

i−1∑

j=1

w(Sj) . (3)

We prove by induction on i that

i∑

j=1

w(Sj) ≥ γm′
i − (γ − 1)m

′
i

γm′
i

w(OPT ) ,

where m′
i =

∑i
j=1 mj . When i = 1, we can show by induction on m1 that

w(S1) ≥ γm1−(γ−1)m1

γm1
w(OPT ). Assume the claim holds for i − 1. Applying the

induction hypothesis to (3) we get

i∑

j=1

w(Sj) ≥ miw(OPT )

γ
+

γ −mi

γ
· γ

m′
i−1 − (γ − 1)m

′
i−1

γm′
i−1

w(OPT ) .



144 J. de Jong, M. Uetz, and A. Wombacher

This can be used to prove the inductive claim, using basic but careful calculus.
Hence we get for i = n (see also [3, Thm 3.3])

w(S) =
n∑

j=1

w(Sj) ≥ γm − (γ − 1)m

γm
w(OPT ) .

We get

PoA ≤ γm

γm − (γ − 1)m
=

(mα)m

(mα)m − (mα− 1)m
≤

α
√
e

α
√
e− 1

, (4)

where the the last inequality follows because the right hand side is exactly the
limit for m → ∞, and the series bm = (mα)m/((mα)m − (mα− 1)m) is mono-
tone in m, with b1 = α ≤ α

√
e/( α

√
e− 1). 
�

Theorems 2 and 3 yield PoA = α
√
e/( α

√
e− 1) when considering only α-

approximate subgame perfect equilibria. Basic calculus shows that

α+
1

2
≤ α

√
e/( α

√
e− 1) ≤ α+

1

e− 1

for α ≥ 1. Also, for α → ∞ this value approaches α + 1
2 . Note that for α =

1,PoA = e/(e− 1) ≈ 1.58.

Concluding Remarks

We briefly mention some more results for the the case α = 1, that is, the case of
Nash equilibrium allocations. Due to space limitations, any details are deferred
to a full version of this paper.

First, we can show that the bound PoA =
√
e/(

√
e − 1) for identical machines

with unit processing times, unit weights and zero release dates holds without
requiring that the Nash equilibria are subgame perfect. Next, we can generalize
our results to a setting where bundle costs are not additive: When w(J) �=∑

j∈J wj , but if we know that that
∑

j∈J wj/β ≤ w(J) ≤ β
∑

j∈J wj for all

J ⊆ J and for some parameter β ≥ 1, then we can show that PoA = β4 + β2.
(Note that β4 + β2 = 2 for β = 1.) Also, when we allow players to afterwards
trade one single job, or even a set of jobs (for money), we can show that this
does not improve the PoA substantially.

The most challenging next step from an application viewpoint is to consider
online settings. When the goal is (constant) competitive ratios for online-time
models, however, we will most probably need to revert to preemptive scheduling
models.

Acknowledgements. Thanks to Johann Hurink for some helpful discussions
on the context, and Rudolf Müller and Frits Spieksma for very helpful remarks.



Decentralized Throughput Scheduling 145

References

1. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden,
T.: The price of stability for network design with fair cost allocation. In: Proc. 45th
Symp. Foundations of Computer Science (FOCS), pp. 295–304. IEEE (2004)

2. Bakker, V., Bosman, M.G.C., Molderink, A., Hurink, J.L., Smit, G.J.M.: Demand
side load management using a three step optimization methodology. In: 1st IEEE
Int. Conf. on Smart Grid Communications, pp. 431–436. IEEE (2010)

3. Bar-Noy, A., Guha, S., Naor, J., Schieber, B.: Approximating the throughput of
multiple machines in real-time scheduling. SIAM J. Comp. 31(2), 331–352 (2001)

4. Berman, P., Dasgupta, B.: Multi-phase Algorithms for Throughput Maximization
for Real-Time Scheduling. J. Combinatorial Optimization 4(3), 307–323 (2000)

5. Brucker, P.: Scheduling Algorithms, 4th edn. Springer, Berlin (2004)
6. Buyya, R., Ranjan, R., Calheiros, R.N.: InterCloud: Utility-oriented federation of

cloud computing environments for scaling of application services. In: Hsu, C.-H.,
Yang, L.T., Park, J.H., Yeo, S.-S. (eds.) ICA3PP 2010, Part I. LNCS, vol. 6081,
pp. 13–31. Springer, Heidelberg (2010)

7. Daskalakis, C., Mehta, A., Papadimitriou, C.: Progress in Approximate Nash Equi-
libria. In: Proceedings 8th ACM EC, pp. 355–358. ACM (2007)

8. Garey, M.R., Johnson, D.S.: “Strong” NP-completeness results: motivation, exam-
ples, and implications. Journal of the ACM 25(3), 499–508 (1978)

9. Graham, R., Lawler, E., Lenstra, J., Rinnooy Kan, A.: Optimization and approx-
imation in deterministic sequencing and scheduling: A survey. Annals of Discrete
Mathematics 5(2), 287–326 (1979)

10. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103 (1972)

11. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

12. Kuhn, H.W.: Extensive Games and the Problem of Information. In: Contribution
to the Theory of Games. Annals of Math. Studies, 28, vol. II, pp. 193–216 (1953)

13. Lawler, E.L., Moore, J.M.: A functional equation and its application to resource
allocation and sequencing problems. Management Science 16, 77–84 (1969)

14. Lenstra, J.K., Rinnooy Kan, A.H.G., Brucker, P.: Complexity of Machine Schedul-
ing Problems. Annals Disc. Math. 1, 343–362 (1977)

15. Molderink, A., Bakker, V., Bosman, M.G.C., Hurink, J.L., Smit, G.J.M.: Man-
agement and Control of Domestic Smart Grid Technology. IEEE Transactions on
Smart Grid 1(2), 109–119 (2010)

16. Moore, J.M.: An n job, one machine sequencing algorithm for minimizing the
number of late jobs. Management Science 15, 102–109 (1968)

17. Selten, R.: A simple model of imperfect competition, where 4 are few and 6 are
many. International Journal of Game Theory 2, 141–201 (1973)

18. Skopalik, E., Vöcking, B.: Inapproximability of pure Nash equilibria. In: Proc. 40th
Symp. on Theory of Computing (STOC), pp. 355–364. ACM (2008)

19. http://www.tamyca.com and http://www.tamyca.com

http://www.tamyca.com
http://www.tamyca.com

	Decentralized Throughput Scheduling
	Model and Notation
	Motivation, Related Work and Contribution
	A First Encounter
	Bounds for Approximate Equilibrium Allocations
	Subgame Perfect Equilibria
	Identical Machines
	Identical Machines: Lower Bound
	Identical Machines: Upper Bound



