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Abstract. We study the 2-D and 3-D dynamic bin packing problem, in
which items arrive and depart at arbitrary times. The 1-D problem was
first studied by Coffman, Garey, and Johnson motivated by the dynamic
storage problem. Bar-Noy et al. have studied packing of unit fraction
items (i.e., items with length 1/k for some integer k ≥ 1), motivated by
the window scheduling problem. In this paper, we extend the study of
2-D and 3-D dynamic bin packing problem to unit fractions items. The
objective is to pack the items into unit-sized bins such that the maximum
number of bins ever used over all time is minimized. We give a scheme
that divides the items into classes and show that applying the First-Fit
algorithm to each class is 6.7850- and 21.6108-competitive for 2-D and
3-D, respectively, unit fraction items. This is in contrast to the 7.4842
and 22.4842 competitive ratios for 2-D and 3-D, respectively, that would
be obtained using only existing results for unit fraction items.

1 Introduction

Bin packing is a classical combinatorial optimization problem that has been
studied since the early 70’s and different variants continue to attract researchers’
attention (see [7, 10, 12]). It is well known that the problem is NP-hard [14]. The
problem was first studied in one dimension (1-D), and has been extended to
multiple dimensions (d -D, where d ≥ 1). In d-D packing, the bins have lengths
all equal to 1, while items are of lengths in (0, 1] in each dimension. The objective
of the problem is to pack the items into a minimum number of unit-sized bins
such that the items do not overlap and do not exceed the boundary of the bin.
The items are oriented and cannot be rotated.

Extensive work (see [7, 10, 12]) has been done in the offline and online settings.
In the offline setting, all the items and their sizes are known in advance. In the
online setting, items arrive at unpredictable time and the size is only known
when the item arrives. The performance of an online algorithm is measured
using competitive analysis [3]. Consider any online algorithm A with an input
I. Let OPT (I) and A(I) be the maximum number of bins used by the optimal
offline algorithm and A, respectively. Algorithm A is said to be c-competitive if
there exists a constant b such that A(I) ≤ c · OPT (I) + b for all I.

⋆ Supported by EPSRC Studentship.



In some real applications, item size is not represented by arbitrary real num-
bers in (0, 1]. Bar-Noy et al. [2] initiated the study of the unit fraction bin packing
problem, a restricted version where all sizes of items are of the form 1

k
, for some

integer k. The problem was motivated by the window scheduling problem [1, 2].
Another related problem is for power fraction items, where sizes are of the form
1

2k
, for some integer k. Bin packing with other restricted form of item sizes in-

cludes divisible item sizes [8] (where each possible item size can be divided by
the next smaller item size) and discrete item sizes [6] (where possible item sizes
are {1/k, 2/k, · · · , j/k} for some 1 ≤ j ≤ k). For d-D packing, items of restricted
form have been considered, e.g., [16] considered strip packing ([19]) of items with
one of the dimensions having discrete sizes and [17] considered bin packing of
items where the lengths of each dimension are at most 1/m, for some integer
m. The study of these problems is motivated by applications in job scheduling.
As far as we know, unit or power fraction items have not been considered in
multi-dimensional packing.

Dynamic Bin Packing. Earlier work concentrated on “static” bin packing,
where items do not depart. In potential applications, like warehouse storage, a
more realistic setting is the dynamic model, where items arrive and depart dy-
namically. This natural generalization, known as dynamic bin packing problem,
was introduced by Coffman, Garey, and Johnson [9]. The items arrive over time,
reside for some period of time, and may depart at arbitrary times. Each item
must be packed to a bin from its arrival to its departure. Again, migration to
another bin is not allowed, yet rearrangement of items within a bin is allowed.
The objective is to minimize the maximum number of bins used over all time. In
the offline setting, the sizes, and arrival and departure times of items are known
in advance, while in the online setting the sizes and arrival times of items are
only known when items arrive, and the departure times are known only when
items depart.

Previous Work. The dynamic bin packing problem was first studied in 1-D for
general size items by Coffman, Garey and Johnson [9], showing that the First-
Fit (FF) algorithm has a competitive ratio lying between 2.75 and 2.897, and
a modified First-Fit algorithm is 2.788-competitive. They gave a formula of the
competitive ratio of FF when the item size is at most 1

k
. When k = 2 and 3,

the ratios are 1.7877 and 1.459, respectively. They also gave a lower bound of
2.388 for any deterministic online algorithm, which was improved to 2.5 [5] and
then to 2.666 [21]. For unit fraction items, Chan et al. [4] obtained a competitive
ratio of 2.4942, which was recently improved by Han et al. to 2.4842 [15], while
the lower bound was proven to be 2.428 [4]. Multi-dimensional dynamic bin
packing of general size items has been studied by Epstein and Levy [13], who
showed that the competitive ratios are 8.5754, 35.346 and 2 · 3.5d for 2-D, 3-D
and d-D, respectively. The ratios are then improved to 7.788, 22.788, and 3d,
correspondingly [20]. For 2-D and 3-D general size items, the lower bounds are
3.70301 and 4.85383 [13], respectively. In this case, the lower bounds apply even
to unit fraction items.



Table 1. Competitive ratios for general size, unit fraction, and power fraction items.
Results obtained in this paper are marked with “[*]”.

1-D 2-D 3-D

General size 2.788 [9] 7.788 [20] 22.788 [20]

Unit fraction 2.4842 [15] 6.7850 [*] 21.6108 [*]

Power fraction 2.4842 [15] 6.2455 [*] 20.0783 [*]

Our Contribution. In this paper, we extend the study of 2-D and 3-D online
dynamic bin packing problem to unit and power fraction items. We observe that
using the 1-D results on unit fraction items [15], the competitive ratio of 7.788
for 2-D [20] naturally becomes 7.4842, while the competitive ratio of 22.788 for
3-D [20] becomes 22.4842. An immediate question arising is whether we can
have an even smaller competitive ratio. We answer the questions affirmatively
as follows (see Table 1 for a summary).

– For 2-D, we obtain competitive ratios of 6.7850 and 6.2455 for unit and
power fraction items, respectively; and

– For 3-D, we obtain competitive ratios of 21.6108 and 20.0783 for unit and
power fraction items, respectively.

We adopt the typical approach of dividing items into classes and analyzing
each class individually. We propose several natural classes and define different
packing schemes based on the classes1. In particular, we show that two schemes
lead to better results. We show that one scheme is better than the other for unit
fraction items, and vice versa for power fraction items. Our approach gives a
systematic way to explore different combinations of classes. One observation we
have made is that dividing 2-D items into three classes gives comparable results
but dividing into four classes would lead to much higher competitive ratios.

As an attempt to justify the approach of classifying items, we show that,
when classification is not used, the performance of the family of any-fit algo-
rithms is unbounded for 2-D general size items. This is in contrast to the case
of 1-D packing, where the First-Fit algorithm (without classification) is O(1)-
competitive [9].

2 Preliminaries

Notations and Definitions.We consider the online dynamic bin packing prob-
lem, in which 2-D and 3-D items must be packed into 2-D and 3-D unit-sized
bins, respectively, without overflowing. The items arrive over time, reside for
some period of time, and may depart at arbitrary times. Each item must be
packed into a bin from its arrival to its departure. Migration to another bin is
not allowed and the items are oriented and cannot be rotated. Yet, repacking

1 The proposed classes are not necessarily disjoint while a packing scheme is a collec-
tion of disjoint classes that cover all types of items.



Table 2. Types of unit fraction items considered

T(1, 1) T(1, 1

2
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3
) T(≤ 1
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Table 3. The 2-D results of [20] for unit-fraction items

Scheme in [20]

Classes Types of items Competitive ratios

Class A T(≤ 1

3
,≤1) 3 [20]

Class B T( 1
2
, 1),T( 1

2
, 1

2
),T( 1

2
,≤ 1

3
) 2 [20]

Class C T(1, 1),T(1, 1

2
),T(1,≤ 1

3
) 2.4842 [15]

Overall All items 7.4842

of items within the same bin is permitted2. The load refers to the total area or
volume of a set of 2-D or 3-D items, respectively. The objective of the problem
is to minimize the total number of bins used over all time. For both 2-D and
3-D, we consider two types of input: unit fraction and power fraction items.

A general size item is an item such that the length in each dimension is in
(0, 1]. A unit fraction (UF) item is an item with lengths of the form 1

k
, where

k ≥ 1 is an integer. A power fraction (PF) item has lengths of the form 1

2k
,

where k ≥ 0 is an integer.
A packing is said to be feasible if all items do not overlap and the packing

in each bin does not exceed the boundary of the bin; otherwise, the packing is
said to overflow and is infeasible.

Some of the algorithms discussed in this paper repack existing items (and
possibly include a new item) in a bin to check if the new item can be packed into
this bin. If the repacking is infeasible, it is understood that we would restore the
packing to the original configuration.

For 2-D items, we use the notation T(w, h) to refer to the type of items with
width w and height h. We use ‘∗’ to mean that the length can take any value
at most 1, e.g., T(∗, ∗) refers to all items. The parameters w (and h) may take
an expression ≤ x meaning that the width is at most x. For example, T(1

2
,≤ 1

2
)

refers to the items with width 1

2
and height at most 1

2
. In the following discussion,

we divide the items into seven disjoint types as showed in Table 2.
The bin assignment algorithm that we use for all types of 2-D and 3-D unit

and power fraction items is the First-Fit (FF) algorithm. When a new item
arrives, if there are occupied bins in which the item can be repacked, FF assigns
the new item to the bin which has been occupied for the longest time.

Remark on Existing Result on Unit Fraction Items. Using this notation,
the algorithm in [20] effectively classifies unit fraction items into the classes as
shown in Table 3. Items in the same class are packed separately, independent of

2 If rearrangement within a bin is not allowed, one can show that there is no constant
competitive deterministic online algorithm.



other classes. The overall competitive ratio is the sum of the competitive ratios
of all classes. By the result in [15], the competitive ratio for Class C reduces from
2.788 [9] to 2.4842 [15] and the overall competitive ratio immediately reduces
from 7.778 to 7.4842.

Corollary 1. The 2-D packing algorithm in [20] is 7.4842-competitive for UF
items.

Remarks on Using Classification of Items. To motivate our usage of clas-
sification of items, let us first consider algorithms that do not use classification.
In the full paper, we show that the family of any-fit algorithms is unbounded
for 2-D general size items (Lemma 1). When a new item R arrives, if there are
occupied bins in which R can be packed (allowing repacking for existing items),
the algorithms assign R to one of these bins as follows: First-Fit (FF) assigns R
to the bin which has been occupied for the longest time; Best-Fit (BF) assigns R
to the heaviest loaded bin with ties broken arbitrarily; Worst-Fit (WF) assigns
R to the lightest loaded bin with ties broken arbitrarily; Any-Fit (AF) assigns
R to any of the bins arbitrarily.

Lemma 1. The competitive ratio of the any-fit family of algorithms (First-Fit,
Best-Fit, Worst-Fit, and Any-Fit) for the online dynamic bin packing problem
of 2-D general size items with no classification of items is unbounded.

When the items are unit fraction and no classification is used, we can show
that FF is not c-competitive for any c < 5.4375, BF is not c-competitive for any
c < 9, and WF is not c-competitive for any c < 5.75. The results hold even for
power fraction items. These results are in contrast to the lower bound of 3.70301
of unit fraction items for any algorithm [13].

Repacking. To determine if an item can be packed into an existing bin, we will
need some repacking. Here we make some simple observations about the load
of items if repacking is not feasible. We first note the following lemma which is
implied by Theorem 1.1 in [18].

Lemma 2 ([18]). Given a bin with width u and height v, if all items have width
at most u

2
and height at most v, then any set of these items with total area at

most uv
2

can fit into the same bin by using Steinberg’s algorithm.

The implication of Lemma 2 is that if packing a new item of width w ≤ u
2

and height h into a bin results in infeasible packing, then the total load of the
existing items is at least uv

2
− wh.

Lemma 3. Consider packing of two types of items T(1
2
,≤ h) and T(1, ∗), for

some 0 < h < 1. If we have an item of type T(1, h′) that cannot be packed to an
existing bin, then the current load of the bin is at least 1− h

2
− h′.

Proof. We first pack all items with width 1, including the new type T(1, h′)
item, one by one on top of the previous one. For the remaining space, we divide
it into two equal halves each with width 1

2
. We then try to pack the T(1

2
,≤ h)
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(b)

Fig. 1. (a) Infeasible repacking of existing items of types T(1,≤ 1

3
) and T( 1

2
,≤ 1

3
) and

a new item of type T(1, ∗). The empty space has width 1

2
and height less than h. (b)

Illustration of the proof of Lemma 8. In each set of bins, the shaded items are the item
types that do not appear in subsequent bins. For example, items of type T( 1

2
,≤ 1

3
) in

the first x1 bins do not appear in the subsequent bins.

Table 4. Values of β 〈x, y〉 for 3 ≤ x ≤ 6 and 3 ≤ y ≤ 6

β 〈x, y〉 y = 3 4 5 6

x = 3 1 1 1 1

4 3

4

5

6
= 1

3
+ 1

4
+ 1

4

5

6

11

12
= 2

3
+ 1

4

5 7

10
= 1

4
+ 1

4
+ 1

5

47

60
= 1

3
+ 1

4
+ 1

5

5

6

17

20
= 1

4
+ 3

5

6 7

10

23

30
= 1

6
+ 3

5

49

60
= 1

4
+ 1

6
+ 2

5

17

20

items into one compartment until it overflows, and then continue packing into
the other compartment. The space left in the second compartment has a height
less than h, otherwise, the overflow item can be packed there (see Figure 1(a)).
As a result, the total load of items is at least 1 − h

2
. Since the new item has a

load of h′, the total load of existing items is at least 1− h
2
− h′ as claimed. ⊓⊔

In the case of 1-D packing, Chan et al. [4] have defined the following notion.
Let x and y be positive integers. Suppose that a 1-D bin is already packed
with some items whose sizes are chosen from the set {1, 1

2
, . . . , 1

x
}. They defined

the notion of the minimum load of such a bin that an additional item of size
1

y
cannot fit into the bin. We modify this notion such that the set in concern

becomes { 1

3
, 1

4
, . . . , 1

x
}. We define β 〈x, y〉 to be the minimum load of this bin

containing items with length at least 1

x
and at most 1

3
such that an item of size

1

y
cannot be packed into this bin. Precisely,

β 〈x, y〉 = min
3≤j≤x and nj≥0

{
n3

3
+

n4

4
+ . . .+

nx

x
|
n3

3
+

n4

4
+ . . .+

nx

x
> 1−

1

y
}.

Table 4 shows the values of this function for 3 ≤ x ≤ 6 and 3 ≤ y ≤ 6.



Table 5. Classifications of 2-D unit fraction items and their competitive ratios

Classes Types of items Competitive ratios

Class 1 T(≤ 1

3
,≤1) 2.8258

Class 2 T(1,≤ 1

3
), T( 1

2
,≤ 1

3
) 1.7804

Class 3 T(1, 1), T(1, 1

2
), T( 1

2
, 1), T( 1

2
, 1

2
) 2.25

Class 4 T(1, 1

2
), T(1,≤ 1

3
), T( 1

2
, 1

2
), T( 1

2
,≤ 1

3
) 2.4593

Class 5 T(1, 1), T( 1
2
, 1) 1.5

3 Classification of 2-D Unit Fraction Items

Following the idea in [20], we also divide the type of items into classes. In Table 5,
we list the different classes we considered in this paper. We propose two packing
schemes, each of which makes use of a subset of the classes that are disjoint.
The competitive ratio of a packing scheme is the sum of the competitive ratio
we can achieve for each of the classes in the scheme. In this section, we focus on
individual classes and in the next section, we discuss the two packing schemes.
For each class, we use FF (First-Fit) to determine which bin to assign an item.
For each bin, we check if the new item can be packed together with the existing
items in the bin; this is done by some repacking procedures and the repacking
is different for different classes.

Class 5: T(1, 1),T(1

2
, 1)

This is a simple case and we skip the details.

Lemma 4. FF is 1.5-competitive for UF items of types T(1, 1) and T(1
2
, 1).

Class 3: T(1, 1),T(1, 1

2
),T(1

2
, 1),T(1

2
,

1

2
)

We now consider Class 3 for which both the width and height are at least 1

2
.

Lemma 5. FF is 2.25-competitive for UF items of types T(1, 1),T(1, 1
2
),T(1

2
, 1),

T(1
2
, 1

2
).

Proof. Suppose the maximum load at any time is n. Then OPT uses at least
n bins. Let x1 be the last bin that FF ever packs a T(1

2
, 1

2
)-item, x1 + x2 for

T(1, 1

2
) and T(1

2
, 1), and x1 + x2 + x3 for T(1, 1). When FF packs a T(1

2
, 1

2
)-

item to bin-x1, all the x1 − 1 before that must have a load of 1. Therefore,
(x1 − 1) + 1

4
≤ n. When FF packs a T(1, 1

2
) or T(1

2
, 1)-item to bin-(x1 + x2), all

the bins before that must have a load of 1

2
. Hence, x1+x2

2
≤ n. When FF packs

a T(1, 1)-item to bin-(x1 + x2 + x3), the first x1 bins must have a load of at
least 1

4
, the next x2 bins must have a load of at least 1

2
, and the last x3 − 1 bins

must have a load of 1. Therefore, x1

4
+ x2

2
+ (x3 − 1) + 1 ≤ n. The maximum

value of x1 + x2 + x3 is obtained by setting x1 = x2 = n and x3 = n
4
. Then,

x1 + x2 + x3 = 2.25n ≤ 2.25OPT . ⊓⊔



Class 2: T(1,≤1

3
),T(1

2
,≤1

3
)

We now consider items whose width is at least 1

2
and height is at most 1

3
. For

this class, the repack when a new item arrives is done according to the description
in the proof of Lemma 3. We are going to show that FF is 1.7804-competitive
for Class 2.

Suppose the maximum load at any time is n. Let x1 be the last bin that FF
ever packs a T(1

2
,≤ 1

3
)-item. Using the analysis in [9] for 1-D items with size at

most 1

3
, one can show that x1 ≤ 1.4590n.

Lemma 6 ([9]). Suppose we are packing UF items of types T(1,≤ 1

3
),T(1

2
,≤ 1

3
)

and the maximum load over time is n. We have x1 ≤ 1.4590n, where x1 is the
last bin that FF ever packs a T(1

2
,≤ 1

3
)-item.

Lemma 6 implies that FF only packs items of T(1,≤1

3
) in bin-y for y >

1.459n. The following lemma further asserts that the height of these items is at
least 1

6
.

Lemma 7. Suppose we are packing UF items of types T(1,≤ 1

3
),T(1

2
,≤1

3
) and

the maximum load over time is n. Any item that is packed by FF to bin-y, for
y > 1.459n, must be of type T(1, h), where 1

6
≤ h ≤ 1

3
.

Proof. Suppose on the contrary that FF packs a T(1,≤ 1

7
)-item in bin-y for

y > 1.459n. This means that packing the item in any of the first 1.459n bins
results in an infeasible packing. By Lemma 3, with h = 1

3
and h′ = 1

7
, the load

of each of the first 1.459n bins is at least 1 − 1

6
− 1

7
= 0.69. Then the total is

at least 1.459n× 0.69 > 1.0067n, contradicting that the maximum load at any
time is n. Therefore, the lemma follows. ⊓⊔

Lemma 8. FF is 1.7804-competitive for UF items of types T(1,≤ 1

3
), T(1

2
,≤1

3
).

Proof. Figure 1(b) gives an illustration. Let (x1 + x6), (x1 + x6 + x5), (x1 + x6 +
x5 + x4), and (x1 + x6 + x5 + x4 + x3) be the last bin that FF ever packs a
T(1, 1

6
)-, T(1, 1

5
)-, T(1, 1

4
)-, and T(1, 1

3
)- item, respectively. When FF packs a

T(1, 1

6
)-item to bin-(x1+x6), the load of the first x1 is at least 1− 1

6
− 1

6
= 2

3
, by

Lemma 3. By Lemma 7, only type T(1, k)-item, for 1

6
≤ k ≤ 1

3
, could be packed

in the x6 bins. These items all have width 1 and thus can be considered as 1-D
case. Therefore, when we cannot pack a T(1, 1

6
)-item, the current load must be

at least β 〈6, 6〉. Then we have x1(
2

3
) + x6 β 〈6, 6〉 ≤ n. Similarly, we have

1. x1(
2

3
) + x6 β 〈6, 6〉 ≤ n,

2. x1(1−
1

6
− 1

5
) + x6 β 〈6, 5〉+ x5 β 〈5, 5〉 ≤ n,

3. x1(1−
1

6
− 1

4
) + x6 β 〈6, 4〉+ x5 β 〈5, 4〉+ x4 β 〈4, 4〉 ≤ n,

4. x1(1−
1

6
− 1

3
) + x6 β 〈6, 3〉+ x5 β 〈5, 3〉+ x4 β 〈4, 3〉+ x3 β 〈3, 3〉 ≤ n.

We note that for each inequality, the coefficients are increasing, e.g., for (1),
we have 2

3
≤ β 〈6, 6〉 = 17

20
, by Table 4. Therefore, the maximum value of x1 +

x6 + x5 + x4 + x3 is obtained by setting the maximum possible value of x6



Table 6. Competitive ratios for 2-D unit fraction items

2DDynamicPackUFS1

Classes Types of items Competitive ratios

Class 1 T(≤ 1

3
,≤1) 2.8258

Class 4 T(1, 1

2
), T(1,≤ 1

3
), T( 1

2
, 1

2
), T( 1

2
,≤ 1

3
) 2.4593

Class 5 T(1, 1), T( 1
2
, 1) 1.5

Overall All of the above 6.7850

satisfying (1), and then the maximum possible value of x5 satisfying (2), and so
on. Using Table 4, we compute the corresponding values as 1.4590n, 0.0322n,
0.0597n, 0.0931n and 0.1365n, respectively. As a result, x1+x6+x5+x4+x3 ≤
1.7804n ≤ 1.7804OPT . ⊓⊔

Class 1: T(≤1

3
,≤1)

Items of type T(≤ 1

3
,≤1) are further divided into three subtypes: T(≤ 1

3
,≤ 1

3
),

T(≤ 1

3
, 1

2
), and T(≤ 1

3
, 1). We describe how to repack these items and leave the

analysis in the full paper.

1. When the new item is T(≤ 1

3
,≤1

3
), we use Steinberg’s algorithm [18] to repack

the new and existing items. Note that the item width satisfies the criteria of
Lemma 2.

2. When the new item is T(≤ 1

3
, 1

2
) or T(≤ 1

3
, 1) and the bin contains T(≤1

3
,≤ 1

3
)-

item, we divide the bin into two compartments, one with width 1

3
and the

other 2

3
and both with height 1. We reserve the small compartment for the

new item and try to repack the existing items in the large compartment
using Steinberg’s algorithm. This idea originates from [20].

3. When the new item is T(≤ 1

3
, 1

2
) or T(≤ 1

3
, 1) and the bin does not contain

T(≤ 1

3
,≤1

3
)-item, we use the repacking method as in Lemma 3 but with

the width becoming the height and vice versa. Note that this implies that
Lemma 8 applies for these items.

Lemma 9. FF is 2.8258-competitive for UF items of type T(≤ 1

3
,≤1).

Class 4: T(1, 1

2
),T(1,≤1

3
),T(1

2
,

1

2
),T(1

2
,≤1

3
)

The analysis of Class 4 follows a similar framework as in Class 2. We state
the result (Lemma 10) and leave the proof in the full paper.

Lemma 10. FF is 2.4593-competitive for UF items of types T(1, 1

2
), T(1,≤1

3
),

T(1
2
, 1

2
), T(1

2
,≤1

3
).

4 Packing of 2-D Unit Fraction Items

Our algorithm, named as 2DDynamicPackUF, classifies items into classes and
then pack items in each class independent of other classes. In each class, FF is



Table 7. Competitive ratios for 2-D power fraction items. Marked with [*] are the
competitive ratios that are reduced as compared to unit fraction items.

2DDynamicPackPF

Class Types of items Competitive ratios

Class 1 T(≤ 1

4
,≤1) 2.4995 [*]

Class 2 T(1,≤ 1

4
), T( 1

2
,≤ 1

4
) 1.496025 [*]

Class 3 T(1, 1), T(1, 1

2
), T( 1

2
, 1), T( 1

2
, 1

2
) 2.25

Overall All items 6.2455

used to pack the items as described in Section 3. In this section, we present two
schemes and show their competitive ratios.

Table 6 shows the classification and associated competitive ratios for 2D-
DynamicPackUFS1. This scheme contains Classes 1, 4, and 5, covering all items.

Theorem 1. 2DDynamicPackUFS1 is 6.7850-competitive for 2-D UF items.

Scheme 2DDynamicPackUFS2 has a higher competitive ratio than Scheme
2DDynamicPackUFS1, nevertheless, Scheme 2DDynamicPackUFS2 has a smaller
competitive ratio for power fraction items to be discussed in the next section.
2DDynamicPackUFS2 contains Classes 1, 2, and 3, covering all items.

Lemma 11. 2DDynamicPackUFS2 is 6.8561-competitive for 2-D UF items.

5 Adaptations to Other Scenarios

In this section we extend our results to other scenarios.

2-D Power Fraction Items. Table 7 shows a scheme based on 2DDynamic-
PackUFS2 for unit fraction items and the competitive ratio is reduced to 6.2455.

Theorem 2. 2DDynamicPackPF is 6.2455-competitive for 2-D PF items.

3-D Unit and Power Fraction Items. The algorithm in [20] effectively classi-
fies the unit fraction items as shown in Table 8(a). The overall competitive ratio
reduces from 22.788 to 21.6108. For power fraction items we slightly modify the
classification for 3-D items, such that boundary values of 1

3
are replaced by 1

4
.

Table 8(b) details this classification. The overall competitive ratio reduces to
20.0783. We state the following theorem and leave the proof in the full paper.

Theorem 3. (1) Algorithm 3DDynamicPackUF is 21.6108-competitive for UF
items and (2) algorithm 3DDynamicPackPF is 20.0783-competitive for PF items.



Table 8. (a) Competitive ratios for 3-D UF items. [*] This result uses Theorem 1. [**]
This result uses Lemma 9. (b) Competitive ratios for 3-D PF items. [*] This result uses
Theorem 2. [**] This result uses the competitive ratio of Class 1 2-D PF items.

(a)

3DDynamicPackUF [20]

Classes Types of items
Competitive

ratios

Class 1 T(> 1

2
, ∗, ∗) 6.7850 [*]

Class 2 T(≤ 1

2
, > 1

2
, ∗) 4.8258 [**]

Class 3 T(≤ 1

2
, ( 1

3
, 1

2
], ∗) 4

Class 4 T(≤ 1

2
,≤ 1

3
, ∗) 6

Overall All items 21.6108

(b)

3DDynamicPackPF

Classes Types of items
Competitive

ratios

Class 1 T(> 1

2
, ∗, ∗) 6.2455 [*]

Class 2 T(≤ 1

2
, > 1

2
, ∗) 4.4995 [**]

Class 3 T(≤ 1

2
, ( 1

4
, 1

2
], ∗) 4

Class 4 T(≤ 1

2
,≤ 1

4
, ∗) 5.334

Overall All items 20.0783

6 Conclusion

We have extended the study of 2-D and 3-D dynamic bin packing problem to
unit and power fraction items. We have improved the competitive ratios that
would be obtained using only existing results for unit fraction items from 7.4842
to 6.7850 for 2-D, and from 22.4842 to 21.6108 for 3-D. For power fraction items,
the competitive ratios are further reduced to 6.2455 and 20.0783 for 2-D and 3-
D, respectively. Our approach is to divide items into classes and analyzing each
class individually. We have proposed several classes and defined different packing
schemes based on the classes. This approach gives a systematic way to explore
different combinations of classes.

An open problem is to further improve the competitive ratios for various
types of items. The gap between the upper and lower bounds could also be
reduced by improving the lower bounds. Another problem is to consider multi-
dimensional bin packing. For d-dimensional static and dynamic bin packing, for
d ≥ 2, the competitive ratio grows exponentially with d. Yet there is no matching
lower bound that also grows exponentially with d. It is believed that this is the
case [11] and any such lower bound would be of great interest.

Another direction is to consider the packing of unit fraction and power frac-
tion squares, where all sides of an item are the same length. We note that the
competitive ratio for the packing of 2-D unit fraction square items would reduce
to 3.9654 compared to the competitive ratio of 2-D general size square items of
4.2154 [13]. For 3-D unit fraction squares, this would reduce to 5.24537 compared
to 5.37037 for 3-D general size squares [13].
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