Lecture Notes in Computer Science

Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison Lancaster University, UK Takeo Kanade Carnegie Mellon University, Pittsburgh, PA, USA Josef Kittler University of Surrey, Guildford, UK Jon M. Kleinberg Cornell University, Ithaca, NY, USA Alfred Kobsa University of California, Irvine, CA, USA Friedemann Mattern ETH Zurich, Switzerland John C. Mitchell Stanford University, CA, USA Moni Naor Weizmann Institute of Science, Rehovot, Israel Oscar Nierstrasz University of Bern, Switzerland C. Pandu Rangan Indian Institute of Technology, Madras, India Bernhard Steffen TU Dortmund University, Germany Madhu Sudan Microsoft Research, Cambridge, MA, USA Demetri Terzopoulos University of California, Los Angeles, CA, USA Doug Tygar University of California, Berkeley, CA, USA Gerhard Weikum Max Planck Institute for Informatics, Saarbruecken, Germany T-H. Hubert Chan Lap Chi Lau Luca Trevisan (Eds.)

Theory and Applications of Models of Computation

10th International Conference, TAMC 2013 Hong Kong, China, May 20-22, 2013 Proceedings

Volume Editors

T-H. Hubert Chan The University of Hong Kong, China E-mail: hubert@cs.hku.hk

Lap Chi Lau The Chinese University of Hong Kong, China E-mail: chi@cse.cuhk.edu.hk

Luca Trevisan Stanford University, CA, USA E-mail: trevisan@stanford.edu

ISSN 0302-9743 e-ISSN 1611-3349 ISBN 978-3-642-38235-2 e-ISBN 978-3-642-38236-9 DOI 10.1007/978-3-642-38236-9 Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013937226

CR Subject Classification (1998): F.2, F.3, F.4, G.2.2, H.1.1, E.1, G.4, I.1

LNCS Sublibrary: SL 1 - Theoretical Computer Science and General Issues

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

[©] Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

Preface

Theory and Applications of Models of Computation (TAMC) is an international conference series with an interdisciplinary character, bringing together researchers working in different areas of theoretical computer science and mathematics. TAMC 2013 was the tenth conference in the series, held during May 20–22 in Hong Kong, China. This year, there were 70 submissions, out of which 31 papers were selected by the Program Committee. There was also a poster session for researchers to illustrate and discuss their recent research work. We are very grateful to the Program Committee for their hard work, and to the authors who submitted their work for our considerations. The conference had invited talks by two leading researchers, Sanjeev Arora from Princeton University and Avi Wigderson from the Institute of Advanced Study.

We would like to thank the Department of Computer Science, The University of Hong Kong, for organizing the conference, and the "K.C. Wong Education Foundation" for the Conference Sponsorship Programme for providing financial support to Chinese scholars to attend this conference.

May 2013

Lap Chi Lau Luca Trevisan

Invited Talks: Turing Lectures 2013

• Randomness and Pseudorandomness

Avi Wigderson, Institute for Advanced Study

Is the universe inherently deterministic or probabilistic? Perhaps more importantly — can we tell the difference between the two?

Humanity has pondered the meaning and utility of randomness for millennia. There is a remarkable variety of ways in which we utilize perfect coin tosses to our advantage: in statistics, cryptography, game theory, algorithms, gambling... Indeed, randomness seems indispensable! Which of these applications survive if the universe had no randomness in it at all? Which of them survive if only poor-quality randomness is available, e.g., that arises from "unpredictable" phenomena like the weather or the stock market?

A computational theory of randomness, developed in the past three decades, reveals (perhaps counterintuitively) that very little is lost in such deterministic or weakly random worlds – indeed, most application areas above survive! The main ideas and results of this theory are explained in this talk. A key notion is pseudorandomness, whose understanding impacts large areas in mathematics and computer science.

• Towards Provable Bounds for Machine Learning: Three Vignettes Sanjeev Arora, Princeton University

Many tasks in machine learning (especially unsupervised learning) are provably intractable: NP-hard or worse. Nevertheless, researchers have developed heuristic algorithms to solve these tasks in practice. In most cases, there are no provable guarantees on the performance of these algorithms/heuristics —neither on their running time, nor on the quality of solutions they return. Can we change this state of affairs?

This talk suggests that the answer is yes, and cover three recent works as illustration. (a) A new algorithm for learning topic models. This concerns a new algorithm for topic models (including the Linear Dirichlet Allocations of Blei et al. but also works for more general models) that provably works in theory under some reasonable assumptions and is also up to 50 times faster than existing software in practice. It relies upon a new procedure for non-negative matrix factorization. (b) What classifiers are worth learning? (c) Provable ICA with unknown Gaussian noise.

(Based joint works with Rong Ge, Ravi Kannan, Ankur Moitra, Sushant Sachdeva.)

Organization

Conference Chair

Francis Chin The University of Hong Kong, SAR China

Program Committee

Andrej Bogdanov	The Chinese University of Hong Kong, SAR China	
T-H. Hubert Chan	The University of Hong Kong, SAR China	
Ho-Lin Chen	National Taiwan University	
Jianer Chen	Texas A&M University, USA	
Ning Chen	Nanyang Technological University, Singapore	
Wei Chen	Microsoft Research Asia	
Xi Chen	Columbia University, USA	
Marek Chrobak	UC Riverside, USA	
Nicola Galesi	Università di Roma La Sapienza, Italy	
Naveen Garg	Indian Institute of Technology, Delhi, India	
Navin Goyal	Microsoft Research Asia	
Nick Harvey	University of British Columbia, Canada	
Rahul Jain	National University of Singapore	
David Jao	University of Waterloo, Canada	
Ken-Ichi Kawarabayashi	National Institute of Informatics, Japan	
Jochen Koenemann	University of Waterloo, Canada	
Amit Kumar	IIT Delhi, India	
Lap Chi Lau (Co-chair)	The Chinese University of Hong Kong,	
	SAR China	
Jian Li	Tsinghua University, China	
Huijia Rachel Lin	MIT and Boston University, USA	
Pinyan Lu	Microsoft Research Asia	
Mohammad Mahdian	Google Research	
Seffi Naor	Technion University, Israel	
Krzysztof Onak	IBM Research, USA	
Periklis Papakonstantinou	Tsinghua University, China	
Seth Pettie	University of Michigan, USA	
Atri Rudra	University at Buffalo, State University of	
New York, USA		
Alexander Russell	University of Connecticut, USA	
Piotr Sankowski	University of Warsaw, Poland	
Rahul Santhanam	University of Edinburgh, UK	

Anastasios Sidiropoulos University of Illinois at Urbana-Champaign, USA Microsoft Research Redmond, USA Mohit Singh Man Cho Anthony So The Chinese University of Hong Kong, SAR China John Steinberger Tsinghua University, China Stanford University, USA Luca Trevisan (Co-chair) Laszlo Vegh London School of Economics, UK David Woodruff IBM Research, USA Ke Yi Hong Kong University of Science and Technology, SAR China IBM Research and Indiana University, USA Qin Zhang

Steering Committee

Manindra Agrawal	Indian Institute of Technology, Kanpur, India
Jin-Yi Cai	University of Wisconsin-Madison, USA
Barry S. Cooper	University of Leeds, UK
John Hopcroft	Cornell University, USA
Angsheng Li	Chinese Academy of Sciences, China

Local Organizing Committee

T-H. Hubert Chan	The University of Hong Kong
H.F. Ting	The University of Hong Kong
Zhang Yong	The University of Hong Kong

External Reviewers

Georgios Barmpalias Simone Bova Christian Cachin Lorenzo Carlucci Yijia Chen Andreas Feldmann Zachary Friggstad Lingxiao Huang Jiongxin Jin Raghav Kulkarni Anna Labella Duc-Phong Le Troy Lee Michael Naehrig Li Ning Kenta Ozeki Attila Pereszlenyi Giovanni Pighizzini Janos Simon Frank Stephan Xiaoming Sun Kanat Tangwongsan Chengu Wang Haitao Wang Yajun Wang Zhewei Wei Xiaowei Wu Guang Yang Jonathan Yaniv Penghui Yao Chihao Zhang Jialin Zhang Peng Zhang Zhichao Zhao

Table of Contents

Online Scheduling on a CPU-GPU Cluster Lin Chen, Deshi Ye, and Guochuan Zhang	1
Throughput Maximization for Speed-Scaling with Agreeable Deadlines Eric Angel, Evripidis Bampis, Vincent Chau, and Dimitrios Letsios	10
Temperature Aware Online Algorithms for Minimizing Flow Time Martin Birks and Stanley Fung	20
Priority Queues and Sorting for Read-Only Data Tetsuo Asano, Amr Elmasry, and Jyrki Katajainen	32
$(1 + \epsilon)$ -Distance Oracles for Vertex-Labeled Planar Graphs Mingfei Li, Chu Chung Christopher Ma, and Li Ning	42
Group Nearest Neighbor Queries in the L_1 Plane Hee-Kap Ahn, Sang Won Bae, and Wanbin Son	52
Modelling the Power Supply Network – Hardness and Approximation Alexandru Popa	62
Approximation Algorithms for a Combined Facility Location Buy-at-Bulk Network Design Problem Andreas Bley, S. Mehdi Hashemi, and Mohsen Rezapour	72
k-means++ under Approximation Stability Manu Agarwal, Ragesh Jaiswal, and Arindam Pal	84
An Exact Algorithm for TSP in Degree-3 Graphs via Circuit Procedure and Amortization on Connectivity Structure <i>Mingyu Xiao and Hiroshi Nagamochi</i>	96
Non-crossing Connectors in the Plane Jan Kratochvíl and Torsten Ueckerdt	108
Minimax Regret 1-Sink Location Problems in Dynamic Path Networks	121
A Notion of a Computational Step for Partial Combinatory Algebras Nathanael L. Ackerman and Cameron E. Freer	133

Selection by Recursively Enumerable Sets	144
On the Boundedness Property of Semilinear Sets Oscar H. Ibarra and Shinnosuke Seki	156
Turing Machines Can Be Efficiently Simulated by the General Purpose Analog Computer Olivier Bournez, Daniel S. Graça, and Amaury Pouly	169
Computing with and without Arbitrary Large Numbers	181
On the Sublinear Processor Gap for Parallel Architectures Alejandro López-Ortiz and Alejandro Salinger	193
On Efficient Constructions of Short Lists Containing Mostly Ramsey Graphs Marius Zimand	205
On Martin-Löf Convergence of Solomonoff's Mixture Tor Lattimore and Marcus Hutter	212
Any Monotone Property of 3-Uniform Hypergraphs Is Weakly Evasive	224
The Algorithm for the Two-Sided Scaffold Filling Problem Nan Liu and Daming Zhu	236
Energy-Efficient Threshold Circuits Detecting Global Pattern in 1-Dimentional Arrays Akira Suzuki, Kei Uchizawa, and Xiao Zhou	248
Resolving Rooted Triplet Inconsistency by Dissolving Multigraphs Andrew Chester, Riccardo Dondi, and Anthony Wirth	260
Obnoxious Facility Game with a Bounded Service Range Yukun Cheng, Qiaoming Han, Wei Yu, and Guochuan Zhang	272
Efficient Self-pairing on Ordinary Elliptic Curves	282
Grey-Box Public-Key Steganography Hirotoshi Takebe and Keisuke Tanaka	294
Linear Vertex-Kernels for Several Dense RANKING <i>r</i> -CONSTRAINT SATISFACTION Problems	306

On Parameterized and Kernelization Algorithms for the Hierarchical	
Clustering Problem	319
Yixin Cao and Jianer Chen	
Vector Connectivity in Graphs Endre Boros, Pinar Heggernes, Pim van 't Hof, and Martin Milanič	331
Trees in Graphs with Conflict Edges or Forbidden Transitions Mamadou Moustapha Kanté, Christian Laforest, and Benjamin Momège	
Author Index	355