Skip to main content

Linear Vertex-kernels for Several Dense Ranking r -Constraint Satisfaction Problems

  • Conference paper
Book cover Theory and Applications of Models of Computation (TAMC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7876))

  • 840 Accesses

Abstract

A ranking r -constraint satisfaction problem (ranking r-CSP for short) consists of a ground set of vertices V, an arity \(r \geqslant 2\), a parameter k ∈ ℕ and a constraint system c, where c is a function which maps rankings (i.e. orderings) of r-sized sets S ⊆ V to {0,1} [16]. The objective is to decide if there exists a ranking σ of the vertices satisfying all but at most k constraints (i.e. \(\sum_{S \subseteq V, |S| = r} c(\sigma(S)) \leqslant k\)). Famous ranking r-CSPs include Feedback Arc Set in Tournaments and Dense Betweenness [4,15]. In this paper, we prove that so-called l r -simply characterized ranking r-CSPs admit linear vertex-kernels whenever they admit constant-factor approximation algorithms. This implies that r -Dense Betweenness and r -Dense Transitive Feedback Arc Set [15], two natural generalizations of the previously mentioned problems, admit linear vertex-kernels. Both cases were left opened by Karpinksi and Schudy [16]. We also consider another generalization of Feedback Arc Set in Tournaments for constraints of arity \(r \geqslant 3\), that does not fit the aforementioned framework. Based on techniques from [11], we obtain a 5-approximation and then provide a linear vertex-kernel. As a main consequence of our result, we obtain the first constant-factor approximation algorithm for a particular case of the so-called Dense Rooted Triplet Inconsistency problem [9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abu-Khzam, F.N.: A kernelization algorithm for d-hitting set. J. Comput. Syst. Sci. 76(7), 524–531 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ailon, N., Alon, N.: Hardness of fully dense problems. Inf. Comput. 205(8), 1117–1129 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N.: Ranking tournaments. SIAM J. Discrete Math. 20(1), 137–142 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alon, N., Lokshtanov, D., Saurabh, S.: Fast fast. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 49–58. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Bessy, S., Fomin, F.V., Gaspers, S., Paul, C., Perez, A., Saurabh, S., Thomassé, S.: Kernels for feedback arc set in tournaments. JCSS 77(6), 1071–1078 (2011)

    MATH  Google Scholar 

  6. Bessy, S., Perez, A.: Polynomial kernels for proper interval completion and related problems. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 229–239. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. JCSS 75(8), 423–434 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new technique for kernelization lower bounds. In: STACS. LIPIcs, vol. 9, pp. 165–176 (2011)

    Google Scholar 

  9. Byrka, J., Guillemot, S., Jansson, J.: New results on optimizing rooted triplets consistency. Discrete Applied Mathematics 158(11) (2010)

    Google Scholar 

  10. Charbit, P., Thomassé, S., Yeo, A.: The minimum feedback arc set problem is NP-hard for tournaments. Combinatorics, Probability & Computing 16(1), 1–4 (2007)

    Article  MATH  Google Scholar 

  11. Coppersmith, D., Fleischer, L., Rudra, A.: Ordering by weighted number of wins gives a good ranking for weighted tournaments. In: SODA, pp. 776–782 (2006)

    Google Scholar 

  12. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)

    Google Scholar 

  13. Guillemot, S., Havet, F., Paul, C., Perez, A.: On the (Non-)Existence of Polynomial Kernels for P l -Free Edge Modification Problems. Algorithmica 65(4), 900–926 (2013)

    Article  MathSciNet  Google Scholar 

  14. Guillemot, S., Mnich, M.: Kernel and fast algorithm for dense triplet inconsistency. In: Kratochvíl, J., Li, A., Fiala, J., Kolman, P. (eds.) TAMC 2010. LNCS, vol. 6108, pp. 247–257. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Karpinski, M., Schudy, W.: Faster algorithms for feedback arc set tournament, kemeny rank aggregation and betweenness tournament. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part I. LNCS, vol. 6506, pp. 3–14. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Karpinski, M., Schudy, W.: Approximation schemes for the betweenness problem in tournaments and related ranking problems. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) RANDOM 2011 and APPROX 2011. LNCS, vol. 6845, pp. 277–288. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Kratsch, S., Wahlström, M.: Two edge modification problems without polynomial kernels. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 264–275. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, USA (2006)

    Book  MATH  Google Scholar 

  19. Paul, C., Perez, A., Thomassé, S.: Conflict packing yields linear vertex-kernels for k -FAST, k -dense RTI and a related problem. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 497–507. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Thomassé, S.: A 4k 2 kernel for feedback vertex set. ACM Transactions on Algorithms 6(2) (2010)

    Google Scholar 

  21. van Bevern, R., Moser, H., Niedermeier, R.: Kernelization through tidying. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 527–538. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Weller, M., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: On making directed graphs transitive. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 542–553. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Perez, A. (2013). Linear Vertex-kernels for Several Dense Ranking r -Constraint Satisfaction Problems. In: Chan, TH.H., Lau, L.C., Trevisan, L. (eds) Theory and Applications of Models of Computation. TAMC 2013. Lecture Notes in Computer Science, vol 7876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38236-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38236-9_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38235-2

  • Online ISBN: 978-3-642-38236-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics