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Abstract. We revisit the random-access-machine model in which the
input is given on a read-only random-access media, the output is to
be produced to a write-only sequential-access media, and in addition
there is a limited random-access workspace. The length of the input
is N elements, the length of the output is limited by the computation
itself, and the capacity of the workspace is O(S + w) bits, where S is a
parameter specified by the user and w is the number of bits per machine
word. We present a state-of-the-art priority queue—called an adjustable
navigation pile—for this model. Under some reasonable assumptions, our
priority queue supports minimum and insert in O(1) worst-case time and
extract in O(N/S +1g S) worst-case time, where lg N < S < N/1g N. We
also show how to use this data structure to simplify the existing optimal
O(N?/S + Nlg S)-time sorting algorithm for this model.

1 Introduction

Problem Area. Consider a sequential-access machine (Turing machine) that
has three tapes: input tape, output tape, and work tape. In space-bounded com-
putations the input tape is read-only, the output tape is write-only, and the aim
is to limit the amount of space used in the work tape. In this set-up, the the-
ory of language recognition and function computation requiring O(lg N) bits*
of working space for an input of size N is well established; people talk about
log-space programs [25, Section 3.9.3] and classes of problems that can be solved
in log-space [25, Section 8.5.3]. Also, in this set-up, trade-offs between space and
time have been extensively studied [25, Chapter 10]. Although one would seldom
be forced to rely on a log-space program, it is still interesting to know what can
be accomplished when only a logarithmic number of extra bits are available.

* (© 2013 Springer-Verlag GmbH Berlin Heidelberg. This is the authors’ version of the
work. The final publication is availbale at 1link.springer.com.
! Throughout the paper we use lgx as a shorthand for log,(max {2, z}).



In this paper we reconsider the space-time trade-offs in the random-access
machine. Analogous with the sequential-access machine, we have a read-only
array for input, a write-only array for output, and a limited workspace that
allows random access. Over the years, starting by a seminal paper of Munro and
Paterson [20], the space-time trade-offs have been studied in this model for many
problems including: sorting [4, 12, 24], selection [11,12], and various geometric
tasks [2,3,7]. The practical motivation for some of the previous work has been
the appearance of special devices, where the size of working space is limited
(e.g. mobile devices) and where writing is expensive (e.g. flash memories).

An algorithm (or a data structure) is said to be memory adjustable if it uses
O(S) bits of working space for a given parameter S. Naturally, we expect to
use at least one word, so 2(w) is a lower bound for the space usage, w being
the size of the machine word in bits. Sorting is one of the few problems for
which the optimal space-time product has been settled: Beame showed [4] (see
also [25, Theorem 10.13.8]) that 2(N?) is a lower bound, and Pagter and Rauhe
showed [24] that an O(N?/S+ N 1g S) running time is achievable for any S when
lgN < S<N/IgN.

Model of Computation. We assume that the elements being manipulated
are stored in a read-only media. Throughout this paper we use N to denote the
number of elements burned on the read-only media. Observe that N does not
need to be known beforehand. If an algorithm must do some outputting, this is
done on a separate write-only media. When something is printed to this media,
the information cannot be read or rewritten again.

In addition to the input media and the output media, a limited random-access
workspace is available. The data on this workspace is manipulated wordwise
as on the word RAM [14]. We assume that the word size is at least [lg V]
bits and that the processor is able to execute the same arithmetic, logical, and
bitwise operations as those supported by contemporary imperative programming
languages—like C [17]. It is a routine matter [19, Section 7.1.3] to store a bit
vector of size n such that it occupies [n/w] words and any string of at most
w bits can be accessed in O(1) worst-case time. That is, the time complexity
is proportional to the number of the primitive operations plus the number of
element accesses and element comparisons performed in total.

We do not assume the availability of any powerful memory-allocation rou-
tines. The workspace is an infinite array (of words), and the space used by an
algorithm is the prefix of this array. Even though this prefix can have some un-
used zones, the length of the whole prefix specifies the space complexity of the
algorithm.

Our Results. In our setting the elements lie in a read-only array and the
data structure only constitutes references to these elements. We assume that
each of the elements appears in the data structure at most once, and it is the
user’s responsibility to make sure that this is the case. Also, all operations are
position-based; the position of an element can be specified by a pointer or an
index. Since the positions can be used to distinguish the elements, we implicitly
assume that the elements are distinct. Consider a priority queue @. Recall that



Table 1. The performance of adjustable navigation piles (described in this paper)
and their competitors in the read-only random-access model; N is the size of the
read-only input and S is an asymptotic target for the size of workspace in bits where
IgN<S<N/IgN.

Reference| Space minimum insert extract
5 |o(NigN)| o) o(1) O(ig V)
[16] O(N) o(1) O(lgN) O(lgN)
[12] o(9) o(1) O(NlgN/S+1gS) |O(NlgN/S+1gS)
[24] O(S) |O(N/S*+1gS)|O(N/S +1g S) amortized| O(N/S +1g*S)
[this paper]| ©(S) o(1) o(1) O(N/S +1gS)

a priority queue is a data structure that stores a collection of elements and
supports the operations minimum, insert, and extract defined as follows:

Q.minimum(): Return the position of the minimum element in Q.
Q.insert(p): Insert the element at position p of the read-only array into Q.
Q.extract(p): Extract the element at position p of the read-only array from Q.

In the non-adjustable set-up, any priority queue—Ilike a binary heap [26] or a
queue of binary heaps [5] (that are both in-place data structures)—could be used
to store positions of the elements instead of the elements themselves.

The main result of this paper is a simplification of the memory-adjustable
priority queue by Pagter and Rauhe [24] that is a precursor of all later con-
structions. First, we devise a memory-adjustable priority queue that we call an
adjustable navigation pile. Compared to navigation piles [16], that require ©(N)
bits, our adjustable variant can achieve the same asymptotic performance with
only ©(N/1g N) bits. (Another priority queue that uses ©(N) bits in addition to
the input array was given in [9].) Second, we use this data structure for sorting.
The algorithm is priority-queue sort like heapsort [26]: Insert the N elements
one by one into a priority queue and extract the minimum from that priority
queue N times. In Table 1 we compare the performance of the new data struc-
ture to some of its competitors. Note that the stated bounds are valid under
some reasonable assumptions that are made explicit in Section 2.

We encourage the reader to compare our solution to that of Pagter and
Rauhe [24]. In the basic setting, Pagter and Rauhe proved that the running time
of their sorting algorithm is O(N?/S + N lg* S) using O(S) bits of workspace.
Lagging behind the optimal bound for the space-time product by a logarithmic
factor when S = w(N/lg? N), they suggested using their memory-adjustable
data structure in Frederickson’s adjustable binary heap [12] to handle subprob-
lems of size Nlg N/S using O(lg N) bits for each. In accordance, by combining
the two data structures, the treatment achieves an optimal O(N?/S + Nlg )
running time for sorting, where lg N < .S < N/lg N. In our treatment we avoid
the complication of plugging two data structures together.

Related Models. The basic feature that distinguishes the model of compu-
tation we use from other related models is the capability of having random access



to the input data. In the context of sequential-access machines, the input is on a
tape that only allows single-pass algorithms. The so-called streaming model still
enforces sequential access, but allows multi-pass algorithms (Munro and Pater-
son [20] considered this model). For some problems, the read-only random-access
model is more powerful than the multi-pass sequential-access model (for exam-
ple, for selection the lower bound known for the multi-pass streaming model [6]
can be bypassed in the read-only random-access model [11]).

2 Memory-Adjustable Priority Queues

Assumptions. In this section two memory-adjustable priority queues are de-
scribed. The first structure is a straightforward adaptation of a tournament
tree (also called a selection tree [18, Section 5.4.1]) for read-only data. For a
parameter S, it uses O(S) words of workspace. The second structure is an im-
provement of a navigation pile [16] for which the workspace is O(S + w) bits,
lgN <5 < N/lgN, where N is the size of the read-only input and w is the size
of the machine word in bits. Both data structures can perform minimum and
insert in O(1) worst-case time and extract in O(N/S + 1g.5) worst-case time.
When describing the data structures, we tactically assume that

1. N is known beforehand.

2. The elements are extracted from the data structure in monotonic fashion.
Accordingly, at any given point of time, we keep a single element as a bound-
ary telling that the elements smaller than or equal to that element have been
extracted from the data structure. We call such an element the latest output,
and say that an element is alive if it is larger than the latest output.

3. The elements are inserted into the data structure sequentially—but still in-
sertions and extractions can be intermixed—in streaming-like fashion start-
ing from the first element stored in the read-only input.

These assumptions are valid when a priority queue is used for sorting. Actually,
in sorting all insertions are executed before extractions; a restriction that is not
mandated by the data structure. At the end of this section, we show how to get
rid of these assumptions. The first assumption is not critical. But, when relaxing
the second assumption, the required size of workspace has to increase by N bits.
In addition, when relaxing the third assumption, the worst-case running time of
insert will become the same as that required by extract.

Tournament Trees. For an integer S, we use S as a shorthand for 21851,
It suffices that S < N/lg N; even if S was larger, the operations would not be
asymptotically faster. The input array is divided into S buckets and a complete
binary tree is built above these buckets. Each leaf of the tree covers a single
bucket and each branch node covers the buckets covered by the leaves in the
subtree rooted at that branch. We call the elements within the buckets covered
by a node the covered range of this node. Note that the covered range of a node
is a sequence of elements stored in consecutive locations of the input array. The
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Fig. 1. (a) A tournament tree and (b) a navigation pile when N = 16000 and S = 8.
Only the smallest alive element in each bucket is shown.

actual data stored at each node is a pointer or an index specifying the position
of the smallest alive element in the covered range of that node.

In its basic form, the data structure is an array of 25 — 1 positions (indices).
To make the connection to our adjustable navigation piles clear, we store the
positions in breadth-first order as in a binary heap [26]. We start the numbering
of the nodes at each level from 0. For the sake of simplicity, we maintain a
header that stores the pointers to the beginning of each level (even though this
information could be calculated). For a node number i, its left child has number
2¢ at the level below, the right child has number 2¢ + 1 at the level below, and
the parent has number [i/2] at the level above. When we know the current level
and the number of a node, the information available at the header and these
formulas are enough to get to a neighbouring node in constant time. In Fig. 1(a)
we give an illustration of a tournament tree when N = 16000 and S = 8.

To support insert efficiently, we partition the data structure into three com-
ponents: the tournament tree, the submersion buffer, and the insertion buffer.
The submersion buffer is the last full bucket that is being integrated with the
tournament tree incrementally. The insertion buffer is the bucket that embraces
all the new elements. Observe that one or both of these buffers can be empty.
The idea is to insert the elements into a buffer and, first when the buffer gets
full, integrate it with the tournament tree. This buffering technique has been
used in other contexts as well (see, for example, [1,8]). The overall minimum
can be in any of the three components. To support minimum in O(1) worst-case
time, we keep track of the position of the overall minimum.

In connection with insert, the next element from the read-only array becomes
part of the insertion buffer. If the new element is smaller than the buffer mini-



mum and/or the overall minimum, the positions of these minima are updated. If
the insertion buffer becomes full, the submersion buffer must have been already
integrated into the tournament tree. At this point, we treat the insertion buffer
as the new submersion buffer and start a bottom-up submersion process updat-
ing the nodes of the tournament tree that cover this bucket. Every branch node
inherits the position of the smaller of the two elements pointed to via its two
children. As long as the submersion is not finished, each insert is responsible for
continuing a constant amount of the submersion work. Since the work needed
to update this path is O(lg.S) = O(N/S), the process terminates before the
insertion buffer is again full. Clearly, insert takes O(1) worst-case time.

In extract, simple calculations are done to determine which bucket covers
the element being extracted. The latest output is first set up to date. Since the
smallest alive element of the present bucket must have been extracted, the bucket
is scanned to find its new minimum. There are three cases depending on whether
the present bucket is one of the buffers or covered by the tournament tree. If the
present bucket is the insertion buffer, it is just enough to update the position
of its minimum. If the present bucket is the submersion buffer, the submersion
process is completed by recomputing the positions in the nodes of the tournament
tree that cover the submersion buffer. Hereafter, the submersion buffer ceases
to exist. If the present bucket is covered by the tournament tree, it is necessary
to redo the comparisons at the branch nodes that cover the present bucket. In
all three cases the position of the overall minimum is updated, if necessary. It
is the scanning of a bucket that makes this operation expensive: The worst-case
running time is O(N/S +1g S), which is O(N/S) when S < N/Ig N.

Navigation Piles. In principle, a navigation pile [16] is a compact repre-
sentation of a tournament tree. The main differences are (see Fig. 1(b)):

1. Ounly the nodes whose heights are larger than 0 have a counterpart. Hence,
the number of nodes in the complete binary tree is .S — 1.

2. Any node only stores partial information about the position of the smallest
alive element in the covered range of that node. Here our construction differs
from that used in the navigation piles [16] and their precursors [24].

A branch node of height h € {1,2,...,1gS5} covers 2" buckets. As in the
original navigation piles, we use h bits to specify in which bucket the smallest
alive element is. A significant ingredient is the concept of a quantile. (A similar
quantile-thinning technique was used in [24], but not in an optimal way, and
later in [10].) For a branch node of height h, every covered bucket is divided
into 2" quantiles, and another h bits are used to specify in which quantile the
smallest alive element is. That is, except that the last quantile can possibly be
smaller, a quantile contains {N /(S - 2hﬂ elements. We need 2h bits per node;
but if 2h > [lg N, we do not use more than [lg N bits (since this is enough to
specify the exact position of the smallest alive element). To sum up, since there
are S/2" nodes of height h and since at each node we store min {2h, [lg N1} bits,



the total number of bits is bounded by
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The navigation bits are stored in a bit vector in breadth-first order. As before,
we maintain a header giving the position of the first bit at each level. The
space needed by the header is O(lg> S) bits. Inside each level the navigation
information is stored compactly side by side, and the nodes are numbered at
each level starting from 0. Since the length of the navigation bits is fixed for all
nodes at the same level, using the height and the number of a node, it is easy to
calculate the positions where the navigation bits of that node are stored.

Let us now illustrate how to access the desired quantile for a branch node in
constant time. Let the number of the branch node be x within its own level, and
assume that its height is h. The first element of the covered range is in position
z-2h. {N / Sﬂ. The first h bits of the navigation information gives the desired
bucket; let this bucket index be b, so we have to go b - [N / 5—| positions forward.
The second h bits of the navigation information gives the desired quantile in-
side that bucket; let this quantile index be g, so we have to proceed another
q- [N /(S - Qh)] positions forward before we reach the beginning of the desired
quantile. Obviously, these calculations can be carried out in constant time.

The priority-queue operations can be implemented in a similar way as for a
tournament tree. To facilitate constant-time minimum, we can keep a separate
pointer to the overall minimum (since the root of an adjustable navigation pile
does not necessarily specify a single element). One subtle difference is that, when
we update a path from a node at the bottom level to the root, we have to scan
the elements in the quantiles specified for the sibling nodes of the nodes along
the path. After updating the navigation bits of a node y, we locate its parent
x and its sibling z. The navigation bits at z are used to locate the quantile
that has the minimum element covered by z. This quantile is scanned and the
minimum element is found and compared with the minimum element covered by
y. From the bucket number and the position of the smaller of the two elements,
the navigation bits at x are then calculated and accordingly updated. If the
quantile for z has only one element, the position of this single element can be
stored as such. The key is that for a node of height h, the size of the quantile is
[N/(S - 2M)], so the total work done in the scans of the quantiles of the siblings
along the path is proportional to [N /5‘] as it should be. It follows that the
efficiency of the priority-queue operations is the same as for a tournament tree.

Getting Rid of the Assumptions. So far we have consciously ignored the
fact that the size of the buckets depends on the value of N, and that we might
not know this value beforehand. The standard way of handling this situation is to
rely on global rebuilding [23, Chapter V]. We use an estimate Ny and initially set
Ny = 8. We build two data structures, one for Ny and another for 2/Ny. The first
structure is used to perform the priority-queue operations, but insertions and
extractions are mirrored in the second structure (if the extracted element exists
there). When the structure for Ny becomes too small, we dismiss the smaller



structure in use, double Ny, and in accordance start building a new structure of
size 2Ny. We should speed up the construction of the new structure by inserting
up to two alive elements into it at a time, instead of only one. This guarantees
that the new structure will be ready for use before the first one is dismissed.
Even though global rebuilding makes the construction more complicated, the
time and space bounds remain asymptotically the same.

A possible scenario in applications is when extractions are no more mono-
tonic. To handle this situation, we have to allocate one bit per array entry,
indicating whether the corresponding element is alive or not. This increases the
size of the workspace significantly if S is much smaller than N.

Since we have random-access capability to the read-only input, it is not
absolutely necessary that elements are inserted into the data structure by visiting
the input sequentially. We could insert the elements in arbitrary order. If this is
the case, in connection with each insert we have to fix the information related
to the present bucket as in extract. That is, we have to find the smallest alive
element of the bucket and update the navigation information on the path from
a node at the bottom level to the root. This means that the worst-case cost of
insert becomes the same as that of extract, i.e. O(N/S +1g5).

3 Sorting

Priority-Queue Sort. To sort the given N elements, we create an empty ad-
justable navigation pile, insert the elements into this pile by scanning the read-
only array from beginning to end, and then repeatedly extract the minimum of
the remaining elements from the pile. See the pseudo-code in Fig. 2.

Analysis. From the bounds derived for the priority queue, the asymptotic
performance can be directly deduced: The worst-case running time is O(N?/S +
NlgS) and the size of workspace is O(S + w) bits. It is also easy to count the
number of element comparisons performed during the execution of the algorithm.
When inserting the N elements into the data structure, O(N) element compari-
sons are performed. We can assume that after these insertions, the buffers are
integrated into the main structure. In each extract we have to find the minimum

procedure: priority-queue-sort
input: A: read-only array of N elements; S: space target
output: stream of elements produced by the print statements
P + navigation-pile(A, S)
for z € {0,1,...,N — 1}
‘ P.insert(x)
repeat N times
y < P.minimum()
P.extract(y)
print(Aly])

Fig. 2. Priority-queue sort in pseudo-code; the position of an element is its index.



of a single bucket which requires at most N/S element comparisons. In addition,
we have to update a single path in the complete binary tree. At each level, the
minimum below the current node is already known and we have to scan the quan-
tiles of the sibling nodes. During the path update, we have to perform at most
N/S + lgS’ element comparisons. We know that S < S < 28. Hence, the total
number of element comparisons performed is bounded by 2N?/S+N lg S+O(N).

4 Concluding Remarks

Summary. In the construction of adjustable navigation piles three techniques
are important: 1) node numbering with implicit links between nodes, 2) bit
packing and unpacking, and 3) quantile thinning. In addition to the connection
to binary heaps [26], we pointed out the strong connection to tournament trees.
We made the conditions explicit for when a succinct implementation of a priority
queue requiring o(N) bits is possible (when extractions are monotonic), so that
algorithm designers would be careful when using the data structure.

Our sorting algorithm for the read-only random-access model is a heapsort
algorithm [26] that uses an adjustable navigation pile instead of a binary heap. In
spite of optimality, one could criticize the model itself since the memory-access
patterns may not always be friendly to contemporary computers; and we are
not allowed to move the elements. Navigation piles are slow [15] for two reasons:
1) The bit-manipulation machinery is heavy and index calculations devour clock
cycles. 2) The cache behaviour is poor because the memory accesses lack locality.
Unfortunately, the situation is not much better for adjustable navigation piles;
the buckets are processed sequentially, but the quantiles lie in different buckets.

Other Data Structures for Read-Only Data. In our experience, very few
data structures can be made memory adjustable as elegantly as priority queues.
A stack is another candidate [3]. For example, a dictionary must maintain a
permutation of a set of size N; this means that it is difficult to manage with
much less than N [lg N| bits. However, when the goal is to cope with about
N bits, a bit vector extended with rank and select facilities (for a survey, see
e.g. [21]) is a relevant data structure. Two related constructions are the wavelet
stack used in [11] and the wavelet tree introduced in [13] (for a survey, see [22]).
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