Skip to main content

Dry and Water-Based EEG Electrodes in SSVEP-Based BCI Applications

  • Conference paper
Biomedical Engineering Systems and Technologies (BIOSTEC 2012)

Abstract

This paper evaluates whether water-based and dry contact electrode solutions can replace the gel ones in measuring electrical brain activity by the electroencephalogram (EEG). The quality of the signals measured by three setups (dry, water, and gel), each using 8 electrodes, is estimated for the case of a brain-computer interface (BCI) based on steady state visual evoked potential (SSVEP). Repetitive visual stimuli in the low (12 to 21Hz) and high (28 to 40Hz) frequency ranges were applied. Six people, that had different hair length and type, participated in the experiment. For people with shorter hair style the performance of water-based and dry electrodes comes close to the gel ones in the optimal setting. On average, the classification accuracy of 0.63 for dry and 0.88 for water-based electrodes is achieved, compared to the 0.96 obtained for gel electrodes. The theoretical maximum of the average information transfer rate across participants was 23bpm for dry, 38bpm for water-based and 67bpm for gel electrodes. Furthermore, the convenience level of all three setups was seen as comparable. These results demonstrate that, having optimized headset and electrode design, dry and water-based electrodes can replace gel ones in BCI applications where lower communication speed is acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kübler, A., Birbaumer, N.: Brain-Computer Interfaces and Communication in Paralysis: Extinction of Goal Directed Thinking in Completerly Paralysed Patients. Clinical Neurophysiology 119, 2658–2666 (2008)

    Article  Google Scholar 

  2. Cheng, M., Gao, X., Gao, S.: Design and Implementation of a Brain-Ccomputer Interface with High Transfer Rates. IEEE Transactions on Biomedical Engineering 49, 1181–1186 (2002)

    Article  Google Scholar 

  3. Garcia-Molina, G., Zhu, D., Abtahi, S.: Phase Detection in a Visual-Evoked-Potential Based Brain Computer Interface. In: Proceedings of the 18th European Signal Processing Conference, EUSIPCO, pp. 949–953 (2010)

    Google Scholar 

  4. Regan, D. (ed.): Human Brain Electrophysiology: Evoked Potentials and Evoked Magnetic Fields in Science and Medicine, 1st edn. Elsevier (1989)

    Google Scholar 

  5. Gao, X., Xu, D., Cheng, M., Gao, S.: A BCI-Based Environmental Controller for the Motion-Disabled. IEEE Transactions on Neural Systems and Rehabilitation Engineering 11, 137–140 (2003)

    Article  Google Scholar 

  6. Lalor, E.C., Kelly, S.P., Finucane, C., Burke, R., Smith, R., Reilly, R.B., McDarby, G.: Steady-State VEP-Based Brain-Computer Interface Control in an Immersive 3D Gaming Environment. Eurasip Journal on Applied Signal Processing 19, 3156–3164 (2005)

    Google Scholar 

  7. Friman, O., Lüth, T., Volosyak, I., Gräser, A.: Spelling with Steady-State Visual Evoked Potentials. In: Proceedings of the 3rd International IEEE EMBS Conference on Neural Engineering, pp. 354–357 (2007)

    Google Scholar 

  8. Garcia-Molina, G., Mihajlović, V.: Spatial Filters to Detect Steady-State Visual Evoked Potentials Elicited by High Frequency Stimulation: BCI Application. Biomedical Engineering 55, 173–182 (2010)

    Article  Google Scholar 

  9. Zhu, D., Bieger, J., Garcia-Molina, G., Aarts, R.M.: A Survey of Stimulation Methods Used in SSVEP-Based BCIs. Computational Intelligence and Neuroscience (2010)

    Google Scholar 

  10. Fisher, R.S., Harding, G., Erba, G., Barkley, G.L., Wilkins, A.: Photic- and Pattern-Induced Seizures: a Review for the Epilepsy Foundation of America Working Group. Epilepsia 46, 1426–1441 (2005)

    Article  Google Scholar 

  11. Webster, J.G. (ed.): Medical Instrumentation: Application and Design, 3rd edn. Wiley (1997)

    Google Scholar 

  12. Alba, N.A., Sclabassi, R.J., Sun, M., Cui, X.T.: Novel Hidrogel-Based Preparation-Free EEG Electrode. IEEE Transactions on Neural Systems and Rehabilitation Engineering 18, 415–423 (2010)

    Article  Google Scholar 

  13. Alizadeh-Taheri, B., Smith, R.L., Knoght, R.T.: An Active, Microfabricated, Scalp Electrode Array for EEG Recording. Senosors and Actuators A, 606–611 (1996)

    Google Scholar 

  14. Harland, C.J., Clark, T.D., Prance, R.J.: Remote Detection of Human Electroencephalograms using Ultrahigh Input Impedance Electric Potential Sensors. Applied Physics Letters 81, 3284–3286 (2002)

    Article  Google Scholar 

  15. von Ellenreider, N., Spinelli, E., Muravchik, C.H.: Capacitive Electrodes in Electroencephalography. In: Proceedings of the 28th IEEE EMBS Annual International Conference, pp. 1126–1129 (2006)

    Google Scholar 

  16. Sullivan, T.J., Deiss, S.R., Cauwenbergs, G.: A Low-Noise, Non-Contact EEG/ECG Sensor. In: Proceedings of the IEEE Biomedical Circuits and Systems Conference, BIOCAS, pp. 154–157 (2007)

    Google Scholar 

  17. Fonseca, C., Cunha, J.P.S., Martins, R.E., Ferreira, V.M., de Sá, J.P.M., Barbose, M.A., da Silva, A.M.: A Novel Dry Active Electrode for EEG recording. IEEE Transactions on Biomedical Engineering 54, 162–165 (2007)

    Article  Google Scholar 

  18. Chi, Y.M., Deiss, S.R., Cauwenberghs, G.: Non-Contact Low Power EEG/ECG Electrode for High Density Wearable Biopotential Sensor Networks. In: Proceedings of the Sixth International Workshop on Wearable and Implantable Body Sensor Networks, BSN, pp. 246–250 (2009)

    Google Scholar 

  19. Ruffini, G., Dunne, S., Farrés, E., Marco-Pallarés, J., Ray, C., Mendoza, E., Silva, R., Grau, C.: A Dry Electrophysiology Electrode Using CNT Arrays. Sensors and Actuators A: Physical 132, 34–41 (2006)

    Article  Google Scholar 

  20. Ruffini, G., Dunne, S., Farrés, E., Marco-Pallarés, J., Ray, C., Mendoza, E., Silva, R., Grau, C.: First Human Trials of a Dry Electrophysiology Sensor Using Carbon Nanotube Array Interface. Sensors and Actuators A: Physical 144, 275–279 (2008)

    Article  Google Scholar 

  21. Griss, P., Tolvanen-Laakso, H.K., Stemme, P.M.G.: Characterization of Micromachined Spiked Biopotential Electrodes. IEEE Transactions on Biomedical Engineering 49, 597–604 (2002)

    Article  Google Scholar 

  22. Gramatica, F., Carabalona, R., Casella, M., Cepek, C., Fabrizio, E.D., Rienzo, M.D., Gavioli, L., Matteucci, M., Rizzo, F., Sancrotti, M.: Micropatterned Non-Invasive Dry Electrodes for Brain-Computer Interface. In: Proceedings of the 3rd IEEE-EMBS International Summer School and Symposium on Medical Devices and Biosensors, pp. 69–72 (2006)

    Google Scholar 

  23. Chiou, J.C., Ko, L.W., Lin, C.T., Hong, C.T., Jung, T.P., Liang, S.F., Jeng, J.L.: Using Novel MEMS EEG Sensors in Detecting Drowsiness Application. In: Proceedings of the IEEE Biomedical Circuits and Systems Conference, BioCAS, pp. 33–36 (2006)

    Google Scholar 

  24. Matteucci, M., Carabalona, R., Casella, M., Fabrizio, E.D., Gramatica, F., Rienzo, M.D., Snidero, E., Gavioli, L., Sancrotti, M.: Micropatterned Dry Electrodes for Brain– Computer Interface. Microelectronic Engineering 84, 1737–1740 (2007)

    Article  Google Scholar 

  25. Lin, B.C.T., Ko, L.W., Chiou, J.C., Duann, J.R., Huang, R.S., Liang, S.F., Chiu, T.W., Jung, T.P.: Noninvasive Neural Prostheses Using Mobile and Wireless EEG. Proceedings of the IEEE 96, 1167–1183 (2008)

    Article  Google Scholar 

  26. Chang, C.W., Chiou, J.C.: Surface-Mounted Dry Electrode and Analog-Front-End Systems for Physiological Signal Measurements. In: Proceedings of the IEEE/NIH Life Science Systems and Applications Workshop, LiSSA, pp. 108–111 (2009)

    Google Scholar 

  27. Ng, W., Seet, H., Lee, K., Ning, N., Tai, W., Sutedja, M., Fuh, J., Li, X.: Micro-Spike EEG Electrode and the Vacuum-Casting Technology for Mass Production. Journal of Materials Processing Technology 209, 4434–4438 (2009)

    Article  Google Scholar 

  28. Dias, N., Carmo, J., da Silva, A.F., Mendes, P.M., Correia, J.: New Dry Electrodes Based on Iridium Oxide (IrO) for Non-Invasive Biopotential Recordings and Stimulation. Sensors and Actuators A: Physical 164, 28–34 (2010)

    Article  Google Scholar 

  29. Taheri, B.A., Knight, R.T., Smith, R.L.: A Dry Electrode for EEG Recording. Electroencephalography and Clinical Neurophysiology 90, 376–383 (1994)

    Article  Google Scholar 

  30. Matthews, R., McDonald, N.J., Hervieux, P., Turner, P.J., Steindorf, M.A.: A Wearable Physiological Sensor Suite for Unobtrusive Monitoring of Physiological and Cognitive State. In: Proceedings of the 29th IEEE EMBS Annual International Conference, pp. 5276–5281 (2007)

    Google Scholar 

  31. Gargiulo, G., Calvo, R.A., Bifulco, P., Cesarelli, M., Jin, C., Mohamed, A., van Schaik, A.: A New EEG Recording System for Passive Dry Electrodes. Clinical Neurophysiology 121, 686–693 (2010)

    Article  Google Scholar 

  32. Grozea, C., Voinescu, C.D., Fazli, S.: Bristle-Sensors–Low-Cost Flexible Passive Dry EEG Electrodes for Neurofeedback and BCI Applications. Journal of Neural Engineering 8 (2011)

    Google Scholar 

  33. Chi, Y.M., Jung, T.P., Cauwenberghs, G.: Dry-contact and Non-contact Biopotential Electrodes. IEEE Reviews in Biomedical Engineering 3, 106–119 (2010)

    Article  Google Scholar 

  34. Ferree, T.C., Luu, P., Russell, G.S., Tucker, D.M.: Scalp Electrode Impedance, Infection Risk, and EEG Data Quality. Clinical Neurophysiology 112, 536–544 (2001)

    Article  Google Scholar 

  35. Chi, Y.M., Wang, Y.T., Wang, Y., Maier, C., Jung, T.P., Cauwenberghs, G.: Dry and Non-contact EEG Sensors for Mobile Brain-Computer Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering PP, 1–7 (2011)

    Google Scholar 

  36. Kitoko, V., Nguyen, T.N., Nguyen, J.S., Tran, Y., Nguyen, H.T.: Performance of Dry Electrode with Bristle in Recording EEG Rhythms Across Brain State Changes. In: 33rd Annual International Conference of the IEEE EMBS, pp. 59–62 (2011)

    Google Scholar 

  37. Zander, T.O., Lehne, M., Ihme, K., Jatzev, S., Correia, J., Kothe, C., Picht, B., Nijboer, F.: A Dry EEG-System for Scientific Research and Brain–Computer Interfaces. Frontiers in Neuroscience 5 (2011)

    Google Scholar 

  38. Popescu, F., Fazli, S., Badower, Y., Blankertz, B., Müller, K.R.: Single Trial Classification of Motor Imagination Using 6 Dry EEG Electrodes. PloS One 2, e637 (2007)

    Google Scholar 

  39. Sellers, E.W., Turner, P., Sarnacki, W.A., McManus, T., Vaughan, T.M., Matthews, R.: A Novel Dry Electrode for Brain-Computer Interface. In: Jacko, J.A. (ed.) Human-Computer Interaction, Part II HCII 2009. LNCS, vol. 5611, pp. 623–631. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  40. Luo, A., Sullivan, T.J.: A User-Friendly SSVEP-Based Brain–Computer Interface using a Time-Domain Classifier. Journal of Neural Engineering 7, 1–10 (2010)

    Article  Google Scholar 

  41. Volosyak, I., Valbuena, D., Malechka, T., Peuscher, J., Gräser, A.: Brain-Computer Interface using Water-Based Electrodes. Journal of Neural Engineeting 7 (2010)

    Google Scholar 

  42. Welch, P.D.: The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging over Short, Modified Periodograms. IEEE Transactions of Audio and Electroacoustics 15, 70–73 (1967)

    Article  MathSciNet  Google Scholar 

  43. Dornhege, G., del R. Millán, J., Hinterberger, T., McFarland, D.J., Müller, K.R. (eds.): Medical Instrumentation: Application and Design, 1st edn. The MIT Press (2007)

    Google Scholar 

  44. Garcia-Molina, G., Zhu, D.: Optimal Spatial Filtering for the Steady State Visual Evoked Potential: BCI application. In: 5th International IEEE EMBS Neural Engineering Conference (2011)

    Google Scholar 

  45. Mihajlović, V., Jäger, M., Asvadi, S., Asjes, R.: Flexible Dry Electrodes for Usage in Daily Life Situations (2012) (submitted for publication)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mihajlović, V., Garcia-Molina, G., Peuscher, J. (2013). Dry and Water-Based EEG Electrodes in SSVEP-Based BCI Applications. In: Gabriel, J., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2012. Communications in Computer and Information Science, vol 357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38256-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38256-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38255-0

  • Online ISBN: 978-3-642-38256-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics