Skip to main content

The Laplace-Beltrami Operator: A Ubiquitous Tool for Image and Shape Processing

  • Conference paper
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2013)

Abstract

The ubiquity of the Laplace-Beltrami operator in shape analysis can be seen by observing the wide variety of applications where it has been found to be useful. Here we demonstrate a small subset of such uses with their latest developments including a scale invariant transform for general triangulated meshes, an effective and efficient method for denoising meshes using Beltrami flows via high dimensional embeddings of 2D manifolds and finally the possibility of viewing the framework of geodesic active contours as a surface minimization having the Laplace-Beltrami operator as its main ingredient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aflalo, Y., Raviv, D., Kimmel, R.: Scale invariant geometry for non-rigid shapes. Technical report, Technion University (2011)

    Google Scholar 

  2. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  3. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)

    Article  Google Scholar 

  4. Bogdanova, I., Bresson, X., Thiran, J.P., Vandergheynst, P.: Scale space analysis and active contours for omnidirectional images. IEEE Transactions on Image Processing 16(7), 1888–1901 (2007)

    Article  MathSciNet  Google Scholar 

  5. Bresson, X., Vandergheynst, P., Thiran, J.-P.: Multiscale active contours. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 167–178. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Bronstein, A.M., Bronstein, M., Guibas, L.J., Ovsjanikov, M.: Shape google: Geometric words and expressions for invariant shape retrieval. ACM Transactions on Graphics 30(1), Article 1 (2011)

    Google Scholar 

  7. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching. Proceedings of the National Academy of Science, pp. 1168–1172 (2006)

    Google Scholar 

  8. Bronstein, A.M., Bronstein, M.M., Kimmel, R., Mahmoudi, M., Sapiro, G.: A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. International Journal of Computer Vision 89(2-3), 266–286 (2010)

    Article  MATH  Google Scholar 

  9. Bronstein, M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: Proc. Computer Vision and Pattern Recognition (CVPR), San Francisco, USA, December 13-18, pp. 1704–1711. IEEE Computer Society (2010)

    Google Scholar 

  10. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  11. Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 3, pp. 2724–2729 (1991)

    Google Scholar 

  12. Coifman, R.R., Lafon, S.: Diffusion maps. Applied and Computational Harmonic Analysis 21(1), 5–30 (2006); Special Issue: Diffusion Maps and Wavelets

    Google Scholar 

  13. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Transactions on Image Processing, 2080–2095 (2007)

    Google Scholar 

  14. Elad (Elbaz), A., Kimmel, R.: On bending invariant signatures for surfaces. IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI) 25(10), 1285–1295 (2003)

    Article  Google Scholar 

  15. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3D shapes. In: ACM SIGGRAPH 2001, Los Angeles, CA, August 12-17 (2001)

    Google Scholar 

  16. Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 2000), pp. 279–286. ACM Press/Addison-Wesley Publishing Co., New York (2000)

    Google Scholar 

  17. Levy, B.: Laplace-beltrami eigenfunctions towards an algorithm that ”understands” geometry. In: IEEE International Conference on Shape Modeling and Applications (SMI 2006), p. 13 (2006)

    Google Scholar 

  18. Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics 5(3), 313–347 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Transactions on Graphics 21(4), 807–832 (2002)

    Article  Google Scholar 

  20. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R., Sochen, N.: Affine-invariant geodesic geometry of deformable 3D shapes. In: Computers and Graphics, Herzliya, Israel, June 22-24. Proceedings of Shape Modelling International (SMI 2011), vol. 35(3). Elsevier (2011)

    Google Scholar 

  22. Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R., Sochen, N.: Affine-invariant geometry of deformable 3D shapes. In: Proc. of Computer vision and Pattern Recognition (CVPR). IEEE Computer Society (June 2011)

    Google Scholar 

  23. Roussos, A., Maragos, P.: Tensor-based image diffusions derived from generalizations of the total variation and Beltrami functionals. In: ICIP (September 2010)

    Google Scholar 

  24. Sochen, N., Kimmel, R., Bruckstein, A.M.: Diffusions and confusions in signal and image processing. Journal of Mathematical Imaging and Vision 14(3), 195–209 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sochen, N., Kimmel, R., Malladi, R.: A general framework for low level vision. IEEE Trans. on Image Processing, 310–318 (1998)

    Google Scholar 

  26. Sochen, N.A.: Stochastic processes in vision: From langevin to beltrami. In: IEEE International Conference on Computer Vision, vol. 1, p. 288 (2001)

    Google Scholar 

  27. Sun, J., Ovsjanikov, M., Guibas, L.J.: A concise and provably informative multi-scale signature based on heat diffusion. Computer Graphics Forum 28(5), 1383–1392 (2009)

    Article  Google Scholar 

  28. Wetzler, A., Kimmel, R.: Efficient beltrami flow in patch-space. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 134–143. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wetzler, A., Aflalo, Y., Dubrovina, A., Kimmel, R. (2013). The Laplace-Beltrami Operator: A Ubiquitous Tool for Image and Shape Processing. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2013. Lecture Notes in Computer Science, vol 7883. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38294-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38294-9_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38293-2

  • Online ISBN: 978-3-642-38294-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics