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Introduction

Floodings are useful for:

filtering images

suppressing regional minima and filling them by lakes ->
regularization and control of the watershed segmentation

Combined with the dual operator, the razings, they permit to construct
powerful autodual filters (alternate sequential, flattenings and levelings)
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Outline of the talk

We flood two types of graphs:
- node weighted graphs with a ground level on the nodes
- edge weighted graph without ground level on the nodes
The flooding assigns a flooding to each node.
We characterize valid floodings on both types of graphs: lakes, regional
minima lakes.
We show that flooding a node weighted graph is equivalent with flooding
an edge weighted graph with appropriate edge weights
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Outline of the talk

We then introduce dominated floodings under a ceiling function.
We present two classes of algorithms :

shortest path algorithms for the ultrametric flooding distance

direct construction of the flooding on the dendrogram of the closed
balls of the flooding distance
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Reminders on graphs
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Graphs

A non oriented graph G = [N, E ] : N = nodes ; E =,edges ; an edge
u ∈ E = a pair of vertices
A chain of length n is a sequence of n edges L = {e1, e2, . . . , en}, with
successive edges having a common node.
A path between two nodes x and y is a sequence of nodes
(n1 = x , n2, ..., nk = y) with successive nodes linked by an edge.
A cocycle is the set of all edges with one extremity in a subset Y and the
other in the complementary set Y .
The subgraph spanning a set A ⊂ N is the graph GA = [A, EA], where EA

are the edges linking two nodes of A.
The partial graph associated to the edges E ′ ⊂ E is G ′ = [N, E ′].
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Weighted graphs

In a graph G = [N, E ] , edges and nodes may be weighted :

eij is the weight of the edge (i , j)

ni the weight of the node i . The weights take their value in a
completely ordered lattice T .
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Flat zones and regional minima on node weighted graphs

A subgraph G ′ of a node weighted graph G is a flat zone, if any two nodes
of G ′ are connected by a path where all nodes have the same altitude.
A subgraph G ′ of a graph G is a regional minimum if G ′ is a flat zone and
all neighboring nodes have a higher altitude
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Distances on a graph

Case of edge weighed graphs
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Constructing distances on an edge weighted graph.

Distances on an edge weighted graph have chains as support :
1) Definition of the weight of a chain, as a measure derived from the edge
weights of the chain elements (example : sum, maximum, etc.)
2) Comparison of two chains by their weight. The chain with the smallest
weight is called the shortest.
The distance d(x , y) between two nodes x and y of a graph is ∞ if there
is no chain linking these two nodes and equal to the weight of the shortest
chain if such a chain exists.
Given three nodes (x , y , z) the concatenation of the shortest chain πxy

between x and y and the shortest chain πyz between y and z is a chain
πxz between x and z , whose weight is smaller or equal to the weight of
the shortest chain between x and z . To each distance corresponds a
particular triangular inequality : d(x , z) ≤ weight( πxyB πyz ) where
πxyB πyz represents the concatenation of both chains.
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Distance on an edge weighted graph based a the length of
the shortest chain

Length of a chain: The length of a chain between two nodes x and y is
defined as the sum of the weights of its edges.
Distance: The distance d(x , y) between two nodes x and y is the
minimal length of all chains between x and y . If there is no chain between
them, the distance is equal to ∞.
Triangular inequality : For (x , y , z) : d(x , z) ≤ d(x , y) + d(y , z)
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Distance on a graph based on the maximal edge weight
along the chain

The weights are assigned to the edges, and represent their altitudes.
Altitude of a chain: The altitude of a chain is equal to the highest
weight of the edges along the chain.
Flooding distance between two nodes: The flooding distance
fldist(x , y) between nodes x and y is equal to the minimal altitude of all
chains between x and y . During a flooding process, in which a source is
placed at location x , the flood would proceed along this chain of minimal
highest altitude to reach the pixel y . If there is no chain between them,
the level distance is equal to ∞.
Triangular inequality : For (x , y , z) : d(x , z) ≤ d(x , y) ∨ d(y , z) :
ultrametric inequality

Fernand Meyer (Centre de Morphologie Mathématique)Flooding edge or node weighted graphs 22 March 2013 12 / 165



The flooding distance is an ultrametric distance

An ultrametric distance verifies
* reflexivity : d(x , x) = 0
* symmetry: d(x , y) = d(y , x)
* ultrametric inequality: for all x , y , z : d(x , y) ≤ max{d(x , z), d(z , y)} :
the lowest lake containing both x and y is lower or equal than the lowest
lake containing x , y and z .
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Distances on a graph : sum and maximum of the edge
weights

The shortest chain (sum of weights of the edges) between x and y is a red
line and has a length of 4.
The lowest chain (maximal weight of the edges) between x and y is a red
line and a maximal weight of 2. A flooding between x and y would follow
this chain.
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Flooding a topographic surface or flooding a graph
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The region adjacency graph

We will work with ”neighborhood graphs” where the nodes are the
catchment basins and the edges connect neighboring bassins. The edges
are weighted by a dissimilarity measure between adjacent catchment
basins; the simplest being the altitude of the pass-point between two
basins.

Figure: The region adjacency graph of a topographic surface
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Representation of a flooded topographic surface as a node
weighted graph.

An image may be considered as a topographic surface. The altitude of
each pixel corresponds to its gray level. An image may be modelled by a
graph, the nodes being the pixels and the edges connecting neighboring
pixels. A first weight distribution f represents the ground level.
For a flooded surface, the nodes hold a second weight τ ≥ f equal to the
flooding level.
The edges are not weighted.
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Representation of a flooded RAG as an edge weighted
graph

A physical interpretation of a flooded RAG: the nodes are tanks with
infinite height and depth, their weight represent the height of the flooding
in the tank. If two nodes are connected by a weighted edge, the
corresponding tanks are linked by a pipe at an altitude of the weight. The
pipes allow the water to pass from tank to tank, according the laws of
hydrostatics.We call such a graph tank network (TN). The level in each
tank is indicated in blue.

A B C D E F

Figure: Tank and pipe network:
- A and B form a regional minimum with τA = τB = λ ; eAB ≤ λ ; eBC > λ
- B and C have unequal levels but are separated by a higher pipe.
- D and E form a full lake, reaching the level of its lowest exhaust pipe eCD
- E and F have the same level ; however they do not form a lake, as they are
linked by a pipe which is higher
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Flooding a topographic surface of its region adjacency
graph

a       b       c           d      e      f

a      b      c       d      e       f

Figure: Flooding a topographic surface or flooding its region adjacency graph.

The flooding of a topographic surface is perfectly defined if one knows the
flooding level in or above each catchment basin. The same flooding may
be represented on the region adjacency graph by assigning to each node
the flooding level in the corresponding basin.
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Modelling the laws of hydrostatics in node and edge
weighted tanks

As flooding a topographic surface and flooding its RAG represent the same
phenomenon, we have to find two models, one for node weighted graphs,

the other for edge weighted graphs, expressing this same phenomenon
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Flooding a topographic surface or nodes weighted graph
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Definition of a flooding of a function

Definition

A function g is a flooding of a function f if and only if g ≥ f and for any
couple of neighboring pixels (p, q) : gp > gq ⇒ gp = fp

Fig. 4A presents a physically possible flooding. On the contrary the
flooding in fig. 4B is impossible, as the lake containing the pixel p where
gp > fp is not limited by solid ground since gp > gq.

Figure: A possible and an impossible flooding
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Flooding a node weighted graph

Images are particular node weighted graphs, the pixels being the nodes.
Neighboring pixels are linked by an unweighted edge.
We now consider arbitrary node weighted graphs. The node weights fi
indicate the ground level. The edges are not weighted.
Such a topographic graph is flooded if the nodes are assigned a second
family of weights indicating the level of the flooding at each node.
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Flooding a node weighted graph

A distribution τ of node weights will represent an effective flooding if it
verifies a number of conditions of equilibrium:

A flooding being always above the ground level: τi ≥ fi .

As there is nothing to prevent the water to flow from a higher to a
lower position, an inequal level of water at two neighboring nodes p
and q is impossible, except when the highest node is dry ; hence
τp > τq ⇒ τp = fp indicating that the highest level is dry, without
water.

Consequence 1: in a lake, the level of all nodes is the same.

Consequence 2: floodings are connected operators :
fp = fq ⇒ τp = τq
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Flooding an edge weighted graph
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Flooding an edge weighted graph

G = [E , N ] : a node and edge weighted graph, E = edges, N = nodes.
The edges are weighted: the weight eij of the edge (i , j) represents the
altitude at which a flood coming from one extremity may reach the other
extremity of the edge.
The nodes also are weighted; τi represents the altitude of the flood at
node i .
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Flooding an edge weighted graph

A B C D E F

Figure:

We consider the nodes as vertical tanks of infinite height and depth :
there is no ground level.
The weight τi represents the level of water in the tank i .
Two neighboring tanks i and j are linked by a pipe at an altitude eij equal
to the weight of the edge.
We call such an edge weighted graph a tank network.
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Flooding an edge weighted graph

A B C D E F

Laws of hydrostatics:

if the level τi in the tank i is higher than the pipe eij , then the levels
is the same in both tanks i and j : τi = τj .

the level τi in the tank i cannot be higher than the level τj , unless
eij ≥ τi .
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Flooding an edge weighted graph

A B C D E F

Figure: Tank and pipe network:
- A and B form a regional minimum with τA = τB = λ ; eAB ≤ λ ; eBC > λ
- B and C have unequal levels but are separated by a higher pipe.
- D and E form a full lake, reaching the level of its lowest exhaust pipe eCD
- E and F have the same level ; however they do not form a lake, as they are
linked by a pipe which is higher
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Flooding an edge weighted graph

Definition

The distribution τ of water in the pipes of the graph [E , N ] is a flooding
of this graph, i.e. is a stable distribution of fluid if it verifies the criterion:
for any couple of neighboring nodes (p, q) we have:
(τp > τq ⇒ epq ≥ τp) (criterion 1)

OK OK OK OK OK

Figure: The water distribution marked OK are compatible with the laws of
physics ; the others are not.
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Criteria

(τp > τq ⇒ epq ≥ τp)⇔ (not (τp > τq) or epq ≥ τp)⇔ (τp ≤ τq or
τp ≤ epq)⇔
(τp ≤ τq ∨ epq) (criterion 2)
⇔ (τp ≤ τq ∨

∧
(p,q) neighbors

(τq ∨ epq) (criterion 3)

Remark

The criterion (τp > τq ⇒ epq ≥ τp) is equivalent with
(epq < τp ⇒ τp ≤ τq). Hence if epq < τp, we have τp ≤ τq ; so we also
have epq < τq implying τq ≤ τp ; finally τp = τq.
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Flooding a topographic graph is the same as flooding an
associated edge weighted graph
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Flooding a TG is the same as flooding a TN

Gn = [E , N ] : a topographic graph. Ground level = f . The edges are not
weighted.
The lowest level of flood covering two neighboring nodes p and q is equal
to fp ∨ fq.
Consider now a second graph Ge with the same structure but with edge
weights epq = fp ∨ fq.
Any flooding τ ≥ f of Ge verifies: for (p, q) neighbors
(τp ≤ τq ∨ epq)⇔ (τp ≤ τq ∨ fq ∨ fp)⇔ (τp ≤ τq ∨ fp) as τq ≥ fq
But this last criterion characterizes a flooding of Gn.

Theorem

There is an equivalence between the floodings τ ≥ f of Ge of Gn and the
floodings τ ≥ f of Ge , with edge weights epq = fp ∨ fq .
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Lakes of edge weighted graphs
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Lakes of edge weighted graphs

If a node p has no neighboring node q such that τp = τq, then p is an
isolated node and isolated lake.
Consider now two neighboring nodes p and q verifying τp = τq. Adding a
drop of water at the node p has no impact on node q, if there exists no
path linking p and q with edge weights ≤ τp, τq.
We define a binary relation between neighboring pixels
p, q : p ∼ q ⇔ τp = τq and epq ≤ τp, τq.

Lemma

If we cut all edges which do not verify p ∼ q, we get a partial graph G̃ ;
the connected components of G̃ are the lakes of the graph G .
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Lakes of node weighted graphs
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Lakes of node weighted graphs

Consider now a topographic graph Gn with a ground level f and its derived
tank network Ge with edge weights epq = fp ∨ fq. Any flooding of Gn also
is a flooding of Ge . Applying the definition of lakes given above we
distinguish two cases:

p is an isolated node : it has no neighboring node q such that τp = τq

p is not isolated, and has at least one neighbor q such that
τp = τq. As τ ≥ f , we have τp = τq = τp ∨ τq ≥ fp ∨ fq = epq. This
shows that τp = τq ⇒ p ∼ q. This shows that the lakes of Gn simply
are its flat zones.

Definition

The lakes of a TG are its flat zones, that is maximal connected
components of nodes with the same altitude.
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Lakes of node weighted graphs

A lake on a topographic graph is dry if it has a uniform altitude at the
ground level. It is a wet lake, if it contains at least one pixel p for which
τp > fp. The two following lemmas concern wet lakes. The first is a
reinterpretation of a lemma established for TN.

Lemma

If two neighboring nodes p and q verify τp > epq = fp ∨ fq, then τp = τq.

The second derives from criterion TG-1.

Lemma

If two neighboring nodes p and q verify τp > fp and τq > fq, then τp = τq.

Proof: {τp > τq ⇒ τp ≤ fp} ⇔ {τp > fp ⇒ τp ≤ τq} . Applying the last
implication to τp > fp and τq > fq yields τp ≤ τq and τp ≥ τq, which
together gives τp = τq.
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Regional minima lakes and full lakes
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Full lakes and regional minimum lakes in a tank network

What happens at the boundary of a lake X in a tank network ? Consider
2 neighboring pixels (p, q), p being inside a lake of altitude λ and q
outside. These pixels do not verify p ∼ q : epq > τp and τp 6= τq :

if epq > τp and one has to climb for going from p to q.
else epq ≤ τp implying τq ≤ τp ∨ epq = τp. As τp 6= τq we have
τq < τp, which implies τp ≤ epq. Thus τp = epq and τq < τp,

indicating the q is an exhaust node of the lake , and the lake X is a
full lake.

In other terms, in a lake without exhaust edges, all outgoing edges are
higher than the level of the lake. Such a lake is called regional minimum
lake. A lake with one or several exhautst edges is called full lake. Adding a
drop of water to a full lake provokes an overflow through the exhaust
edges.

Definition

A regional minimum of a tank network is a lake with all outgoing edges, or
cocycle edges having a higher altitude.
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Full lakes and regional minimum lakes in a tank network

Definition

A lake of level λ of the flooding of a tank network is a full lake, if there
exists an an exhaust edge from an inside node p to an outside node q
verifying τp = epq = λ > τq.

Lemma

Each regional minimum of the flooding of a tank network contains a
regional minimum of the tank network itself or is an isolated regional
minimum. .

Proof: Either X = {p} is an isolated regional minimum node p with all
adjacent edges having a weight > λ. If X contains inside edges, and (p, q)
is the edge for which epq is minimal, then the maximal connected
component containing p with edge weights equal to epq is a regional
minimum of the graph.
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Full lakes and regional minimum lakes in topographic graph

A couple of neighboring nodes belongs to the cocycle of a lake X , p ∈ X
and q /∈ X only if τp 6= τq. Either τp > τq. Or τp > τq implying τp = fp
and the lake is a full lake having an exhaust node p. In the graph Ge we
have epq = fp ∨ fq = τp as fp = τp > τq ≥ fq.
We get the two following definitions.

Definition

A regional minimum is a lake for which the ground level of all outside
neighbors has a higher altitude.

Definition

A lake of the flooding of a topographic surface is a full lake of altitude λ if
there exist two neighboring nodes p inside the lake and q outside, such
that τp < τq = fq.

Each regional minimum of the flooding of a topographic graph contains a
regional minimum of the topographic graph itself.
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Among all possible flooidngs, chosing one
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Specifying a particular flooding among all possible ones

Many floodings of a topographic surface of of an edge weighted graph are
possible. In order to specify a particular flooding we have to add other
criteria. For instance the lowest flooding for which each lake is a full lake
or has a surface area higher than a given threshold specifies the so-called
area flooding. we are interested by the highest flooding under a ceiling
function ω.

Figure: Various flood distribution on the same topographic surface
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The algebra of floodings

Lemma

If τ and ν are two floodings of a node or edge weighted graph G, then
τ ∨ ν and τ ∧ ν also are floodings of G .

Hence the family of floodings of the graph Ge or Gn below the function ω
is closed by supremum. This supremum is itself a flooding and is below
ω. For this reason it is the highest flooding of the graph Ge or Gn below ω.
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Illustration

Full lakes
Regional minima

lakes

Figure: The highest flooding of a topographic surface below a ceiling functino (in
red). The ceiling function on the left and on the right yield the same flooding, as
they constrain the level regional minima lakes at identical levels ; all other lakes
being full lakes.
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Marker driven watershed segmentation

The watershed of the gradient contains the contours of the image. The
regions to segment contain each a marker. A ceiling function equal to the
gradient image on the markers and equal to ∞ everywhere else is
constructed. The highest flooding under this ceiling function has regional
minima lakes at the position of the markers and full lakes everywhere else.
The watershed of the flooded surface gives the result.

Figure: Left: a ceiling function with three minima above a topographic surface
Right: the highest flooding of the topographic surface below the ceiling function.
It contains three regional minima lakes. The watershed partition of this function is
indicated below, each region labeled with a distinct color and contains one
minimum of the ceiling function.
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The regional minimum lakes of dominated floodings
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Regional minima of dominated edge weighted graphs

Consider a flooding τ of a tank network and X , one of its lakes of altitude
λ. Each node p of X verifies τp = λ.
If there exists a pair of nodes, s ∈ X and t /∈ X , such that τt < λ and
est = λ then X is a full lake and the edge (s, t) an exhaust edge for X .
Such a lake cannot have a higher altitude than its exhaust edges, and the
constraining function plays no role in the level of the lake.
On the contrary, if all edges of the cocycle of X have an altitude above λ,
then X is a regional minimum of the flooding τ. If the level λ of the lake
cannot become higher, it is because it is constrained by at least one node
of the ceiling function ω at altitude λ. This node cannot be any node, as
stated now.

Theorem

Any regional minimum lake of the highest flooding of a graph Ge with
edge weights e, below a ceiling function ω, contains a regional minimum
lake of the graph with edge weights δenω ∨ e and node weights ω.
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Regional minima of dominated node weighted graphs

Theorem

Any regional minimum lake of the highest flooding of a graph G with node
weights f , below a ceiling function ω, contains a regional minimum lake of
the function ω.

A regional minimum lake X on a topographic graph has a uniform flooding
level λ and all its neighboring nodes have a flooding level > λ. The level
of X could be higher, were it not constrained by the ceiling function
ω. There exists a node p ∈ X for which ωp = τp = λ. The connected
component Y of nodes for which ω = λ contains p and is included in X ,
as for each outside neighbor q of X , we have ωq ≥ τq > λ. On X we have
ω ≥ τ = λ, showing that Y has no lower neighbor. Thus Y is a regional
minimum of the ceiling function.
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Algorithmic consequences

The highest flooding of f under ω if made of lakes and of dry zones,
where the flooding equals the ground level. The lakes themselves are
divided between full lakes and regional minima lakes. The level of the full
lakes is solely determined by the altitude of the lowest pass point
surounding the lakes. The level of regional minima lakes is determined by
the level of the regional minima of the ceiling function. In fact, the
blocking effect is the same whatever the size of this regional minimum ; a
single point is sufficient.
Replace the ceiling function ω by a function equal to ω on at least one
node of each regional minimum produces the same dominated flooding.
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Considering the flooding process itself
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Observing the progression of a flooding process on an edge
weighted graph.

We place a source pouring water at a node Ω of an edge weighted graph
Ge and flood the graph. We are interested by the level of the flood at each
other node of the graph when it reaches for the first time this node. If p is
a node of the graph, the flood coming from Ω will reach p following the
easiest path: among all paths between Ω and p, it follows the path for
which the highest edge is the lowest. This value constitutes precisely the
ultrametric distance d(Ω, p) between Ω and p.
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The result of a flooding process is a flooding

Consider the shortest path between Ω and p. The value τp is the weight of
the highest edge between Ω and p. The last node on this shortest path is
a node q. If the highest edge on the path is (q, p), then τp = epq. If not
τp = τq ≥ epq as the highest edge between Ω and p of the path π lies
between Ω and q. In all cases we have τp = τq ∨ epq.
Consider now any other neighboring node s of p. The path obtained by
concatenating the shortest path between Ω and s and the edge (s, p) is
not necessarily the shortest path between Ω and p, hence τp ≤ τs ∨ eps .

Theorem

The shortest ultrametric distance of each node p of an edge weighted
graph to a particular node Ω is a flooding of this graph.
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The flooding process produces a dominated flooding

Let I be the subset of nodes for which d(Ω, i) = ωi . If the geodesic path
between Ω and a node p passes through i , then
τp = d(Ω, p) = eΩωi

∨ d(i , p) = ωi ∨ d(i , p).
For any node q we have τq =

∧
i∈I

ωi ∨ d(i , q).

This shows that τ is the highest possible flooding of Ge on all nodes ωi

and also on all other nodes. Suppressing the node Ω and all edges linking
Ω with another node of Ge produces a graph G ′ for which τ is the highest
flooding dominated by ω.
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Inversely, each dominated flooding is produced by a
flooding.

Any dominated flooding verifies τp ≤
∧

q neighbor of p
(τq ∨ epq) and

τp ≤ ωp : τp ≤ ωp ∧
∧

q neighbor of p
(τq ∨ epq) .

The highest of them verifies τp = ωp ∧
∧

q neighbor of p
(τq ∨ epq)

Adding to the graph G a dummy node Ω with a weight τΩ = 0 linked by
a dummy edge (Ω, p) with a weight ωp produces a graph Ĝ . Rewritten as
τp = (τΩ ∨ eΩp) ∧

∧
q neighbor of p

(τq ∨ eqp), this formula is the expression of

the algorithm of Berge for computing the shortest ultrametric distance of
each node to Ω in the augmented graph Ĝ .
The algorithm of Berge expresses that the shortest path between Ω and p
is eΩp = ωp if the path is simply the edge (Ω, p) or it is equal to
(τs ∨ eps) if the path passes through the neighbor s of p, and if (τq ∨ eqp)
takes its smallest value for q = s.
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Inversely, each dominated flooding is produced by a
flooding.

∞ ∞

3 3

3
1 1

1

∞ ∞

∞ ∞
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7 7

6 6

6 6
6 6

5 5

5 5
5 5

4 4

4 4

2 22 2

2 2
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1 1

1 11 1

3 3

X

0

Figure: Adding a dummy node linked to each node x in X by an edge weighted
by the offset at x .
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Inversely, each dominated flooding is produced by a
flooding.

Theorem

The highest flooding of the graph G below a function ω defined on the
nodes is the shortest distance of each node to Ω in augmented graph Ĝ .

If the flooding is not constrained on a node p, i.e. ωp = ∞, then it is not
necessary to link the node p with the dummy node Ω, as the highest
flooding will reach p through one of its neighboring nodes.
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Pruning the graph and getting the same result
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Edge weighted graphs

Each dominated flooding results in a flood distribution verifying criterion
DF-2: τq =

∧
i∈N

ωi ∨ d(i , q).

The ultrametric distance d(i , q) is the weight of the highest edge in a path
π of lowest sup-section between i and q. Consider now each edge (p, q) of
the path π. If it belongs to π we keep it. If not we may replace it in π by
the unique path between p and q contained in T , as all edges along this
path have a weight ≤ epq ; these substitutions produce paths with the
same sup-section. In other words, the edges of the tree T are sufficient for
computing the ultrametric distances of the graph
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The flooding always follows the union of minimum
spanning trees

Illustration :
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Node weighted graphs

Any flooding τ ≥ f on a node weighted graph Gn also is a flooding of the
derived edge weighted graph Ge with edge weights δene. The preceding
results apply. Any flooding τ ≥ f of a MST of Ge also is a flooding of Ge

and of Gn.
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Algorithmic consequences

This result has interesting algorithmic implications. It is possible to
compute highest flooding using a minimum spanning tree of the graph with
a dramatically lower number of edges. However, one has to take in the
balance the time needed for constructing the graph. It may be interesting
if one has to construct several dominated flooding of the same graph.
We will meet later an algorithm which combines the construction of the
MST and of a particular flooding of the graph.
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Flooding with shortest distance algorithms
Many shortest distance algorithms exist. Each of the following has specific

advantages.
Algorithm of Berge

Algorithm of Dijkstra
Algorithm of Prim

Core expanding algorithm
Path algebra
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Algorithms for computing the highest flooding on tank
networks

Fernand Meyer (Centre de Morphologie Mathématique)Flooding edge or node weighted graphs 22 March 2013 65 / 165



The algorithm of Berge
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The algorithm of Berge

Initialisation
The algorithm of Berge is initialised with the function ω. For each node
p : τp = ωp.
This distribution being not a flooding, the algorithm applies until stability
the relation
Repeat until τ

(m)
p = τ

(m−1)
p : τ

(n)
p = ωp ∧

∧
q neighbor of p

(
τ
(n−1)
q ∨ epq

)
Convergence: τ

(m)
p decreases at each iteration. It has a lower ceiling, the

smallest value of ω, therefore it converges.
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The algorithm of Berge

Improved version with less memory accesses:
As τ can only decrease at each iteration, replacing the ceiling function ω
by the value taken by τ at iteration (n− 1) produces an equivalent
algorithm with less memory accesses: the value of ω has only to be
fetched at initialization.
Initialisation: τ

(0)
p = ωp

Repeat until τ
(m)
p = τ

(m−1)
p : τ

(n)
p = τ

(n−1)
p ∧ ∧

q neighbor of p

(
τ
(n−1)
q ∨ epq

)
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Software or hardware implementation of the algorithm of
Berge

Using a local neighborhood, extremely versatile, as the nodes may be
processed in any order, the algorithm of Berge t is well suited for software
or hardware implementation based on a systematic scan of the graph. The
algorithm is parallel or recursive:

τ
(n)
p = τ

(n−1)
p ∧ ∧

q neighbor of p

(
τ
(n−1)
q ∨ epq

)
represents a parallel

implementation of the algorithm : the arguments for computing τ
(n)
p

are all those obtained during the previous scan.
The recursive implementation separates the nodes already met during
the current scanning and the nodes in the future:

τ
(n)
p = τ

(n−1)
p ∧ ∧

q past neighbor of p

(
τ
(n)
q ∨ epq

)
∧∧

q future neighbor of p

(
τ
(n−1)
q ∨ epq

)
Alternating a forward scan and a backward scan for the graph permits
an accelerated convergence of the flooding levels.
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The algorithm of Moore-Dijkstra
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The Moore Dijkstra algorithm

The Dijkstra algorithm is a greedy algorithm. A set S contains all nodes
whose distance is known. For the outside neighbors of S , this distance is
estimated: for p ∈ S and q /∈ S , τq ≤ τp ∨ epq. And we have
τq = τp ∨ epq if the shortest path to q follows the edge (p, q). This is the
case for the node in S with the lowest estimation. This node may be
introduced into S and the estimation of the distance of its neighbors still
in S updated. The nodes introduced in S have increasing values, as the
estimation of all nodes in S is higher than the estimation of the nodes in S .

The edges linking each node with the node through which it has been
flooded in the algorithm form a tree. This tree is rooted at Ω and contains
a never decreasing geodesic path between Ω and each node.
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The Moore Dijkstra algorithm

Initialisation:
S = {Ω} and τΩ = −∞ ; for each node p in N = S : τp = ωp

Flooding:
While S 6= ∅ repeat:

Select j ∈ S for which τj = mini∈S [τi ]
S = S\{j}
For any neighbor i of j in S do τi = min [τi , τj ∨ eji ]

End While
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The Moore Dijkstra algorithm without the dummy node
and edges

The dummy node Ω and the dummy edges linking Ω with the nodes of N
is useless in practice:
Initialization:

S = ∅ ; S = N ; for each node p in N : τp = ωp

Flooding:
While S 6= ∅ repeat:

Select j ∈ S for which τj = mini∈S [τi ]
S = S\{j}
For any neighbor i of j in S do τi = min [τi , τj ∨ eji ]

End While
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Simplification of the algorithm of Dijkstra

When the node j is introduced into S , it has the highest value in S . The
instruction
<For any neighbor i of j in S do τi = min [τi , τj ∨ eji ]>
may be simplified in:
<For any neighbor i of j verifying τj ∨ eji < τi do τi = τj ∨ eji>
as a node i verifying τi > τj cannot belong to S . Checking whether i
belongs to S is not necessary, leading to the following algorithm.
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Simplification of the algorithm of Dijkstra

Initialization:
S = ∅ ; S = N ; for each node p in N : τp = ωp

Flooding:
While S 6= ∅ repeat:

Select j ∈ S for which τj = mini∈S [τi ]
S = S\{j}
For any neighbor i of j verifying τj ∨ eji < τi do τi = τj ∨ eji

End While
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The algorithm of Dijkstra with a funnel structure

Fetching the node with the smallest value τj within S is made easy by
using an adequate data structure such as a ”funnel” structure: nodes with
any order of priority may be stored in the funnel ; but only one of the
nodes with the smallest priority is extracted at any time.
Possible implementation: an ordered bucket structure. A node is
introduced in the bucket corresponding to its priority. Each extracted node
is chosen among the nodes in the bucket with highest priority.
If the buckets have the structure of a queue, we speak about hierarchical
queues.
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The algorithm of Dijkstra with a funnel structure

Before being introduced into S , the distance of each node has to be
estimated anew every time one of its neighbor is introduced into S . If we
use a ”singel occupancy funnel”, a node occupies only one location and its
priority is updated if needed. In a multiple occupancy funnel (MOF), a
node may occupy more than one location, with distinct priority. When a
node is extracted for the first time, its value is correct. When it is
extracted another time one has to discard it.
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The algorithm of Dijkstra with a funnel structure

Consider a flooding of the following graph. Initially the node p is in Φ
with a value 3 and a yellow colour. The two other nodes are not in
Φ. When p is extracted from Φ, both its neighbors are introduced in Φ
with estimates equal to 5 and 9 (yellow colour). The node q is then
extracted from Φ and its neighbor r is introduced in Φ with a new
estimate 7.; at the same time, the node r of the graph gets this same
value. When r is extracted from Φ for the first time, there is an identity
between its priority and the flooding level of r in the graph. The second
time it is extracted, its priority is 9, higher than the value in the graph and
has to be discarded from further processing.

3 9 33 3 77

55 55 577 77 7

99 99 9

µ

µ

555

p

q

r

Figure: Propagation of the flooding on an edge weighted graph using the Dijkstra
algorithm.
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The algorithm of Dijkstra with a funnel structure

Initialization:
create Φ, a multi occupancy funnel ; τ = ∞
for each node p verifying ωp < ∞

introduce p into Φ with a priority ωp ; τp = ωp

Flooding
While Φ is not empty repeat:

Extract from Φ the node j with the lowest prioriy λ
If τj = λ

For any neighbor i of j such that τj ∨ eji < τi
τi = τj ∨ eji
introduce i into Φ with the priority τi

End While
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Marker based segmentation

In the case of marker based segmentation a number of nodes are markers.
The aim is to produce a Voronoi tessellation of the graph: each node is
assigned to the marker which is closest for the ultrametric distance.
Several solutions exist for breaking the ties, if a node is at the same
distance of distinct markers.
The preceding algorithm may be used, the reduced set Ŝ of ceiling
minima, being the set of nodes belonging to the markers. In the context of
segmentation, a distinct label is assigned to each marker. This label will be
assigned to the total region flooded through this marker.
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Marker based segmentation

Initialization:
create a HQ Φ
create an image ζ which will hold the labels
assign to each marker node p a distinct label ζp, a flooding value

τp = 0 and introduce p into Φ with a priority 0
for all other nodes τ = ∞

Flooding
While Φ is not empty repeat:

Extract from Φ the node j with the lowest prioriy λ
If τi = λ

For any neighbor i of j such that τj ∨ eji < τi
τi = τj ∨ eji
ζi = ζj
introduce i into Φ with the priority τi

End While

Fernand Meyer (Centre de Morphologie Mathématique)Flooding edge or node weighted graphs 22 March 2013 81 / 165



Advantages of a hierarchical queue

A hierarchical queue are governed by a double hierarchical order. A
hierarchical queue is a series of first first out queues, having each a
priority. A node is introduced in the queue corresponding to its priority.
The node which is extracted at any time of the HQ is the node which has
been introduced first in the queue with the highest priority. The priorities
among the queues organize that the flooding progresses in an order of
increasing altitudes. The FIFO structure of the queue ensures that a node
inside a plateau is flooded in an order proportional to its distance to the
lower border of the plateau.
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The algorithm of Prim
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Constructing the MST

On a graph, from a node p to a node q, the flood always follows the paths
of lowest sup-section linking p and q. All such paths belong to the MST of
the graph. Hence, it is possible to combine the flooding with the
construction of the MST. The algorithm of PRIM constructs the MST
rooted in Ω.
Initialisation
Initially, the tree T spans only the node Ω.
Expansion
As long as the tree does not contain all nodes of the graph:

Chose the lowest edge (q, s) in the cocycle of T , such that q ∈ T
and s /∈ T . Append the node s to the tree: T = T ∪ {s}
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Flooding an edge weighted graph following its MST

Flooding with the algorithm of PRIM
The result of the preceding algorithm is a tree rooted at Ω. Each other
node p is linked with Ω through a unique path. The flood coming from Ω
necessarily follows this path. The flooding of the nodes and the
construction of the tree may be done simultaneously.
Initialisation
Initially, the tree T spans only the node Ω : T = {Ω}. τΩ = 0.
Expansion
As long the tree does not contain all nodes of the graph:

Chose the lowest edge (q, s) in the cocycle of T , such that q ∈ T
and s /∈ T .

Append the edge (q, s) and the node s to the tree: T = T ∪ {s}
τs = τq ∨ eqs

Fernand Meyer (Centre de Morphologie Mathématique)Flooding edge or node weighted graphs 22 March 2013 85 / 165



Flooding an edge weighted graph following its MST

Analysis of the algorithm
The nodes are introduced with a never decreasing flood level. A node with
a flood level λ first floods its neighbors appended through an edge which
is lower or equal to the current flooding level: these neighbors get the
current flood level λ and are appended to the tree. If this is not possible
anymode, the smallest edge in the cocycle of the tree with a weight > λ is
followed, introducing the first node with a weight > λ into the tree.
The PRIM algorithm is a particular avatar of Dijkstra’s algorithm. Among
all neighboring nodes of T for which the estimated flooding level is the
smallest, the algorithm of PRIM first considers those linked with the tree
through the lowest edge.
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Scheduling with a HQ

Initialization:
create Φ, a multi occupancy funnel.
τ = ∞
for each node p verifying ωp < ∞, introduce p into Φ with a priority

ωp

λ = −∞
Flooding

While Φ is not empty repeat:
Extract from Φ the node p with the lowest prioriy µ
if τp = ∞

If µ > λ : λ = µ
τp = λ
For any neighbor q of p such that τq = ∞

introduce q into Φ with the priority epq
Remark: Replacing the last instruction with <introduce i into the funnel
with the priority λ ∨ eji> produces the algorithm of Dijkstra.
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Marker based segmentation with the algorithm of Prim

Initialisation
T = {∅}
For each marker p :

τp = 0
T = T ∪ {p}
assign a new label ζp

Expansion
As long the tree does not contain all nodes of the graph:

Chose the lowest edge (q, s) in the cocycle of T , such that q ∈ T
and s /∈ T .

Append the edge (q, s) and the node s to the tree: T = T ∪ {s}
τs = τq ∨ eqs
ζs = ζq

Fernand Meyer (Centre de Morphologie Mathématique)Flooding edge or node weighted graphs 22 March 2013 88 / 165



Marker based segmentation with the algorithm of Prim

If we are not interested by the flooding level but only by the Voronoi
partition associated to the markers:
Initialisation
For each marker p, assign a new label ζp
For all other nodes q : ζq = −∞
Expansion
As long as there are nodes with a label ζ = −∞

Chose the lowest edge (q, s) verifying ζq > −∞ and ζs = −∞
ζs = ζq
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Shortest path algorithms on node weighted graphs
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From edge weighted floodings to node weighted floodings

Any flooding τ of a node weighted graph Gn, above the ground level f
also is a flooding on an edge weighted graph Ge with edge weights
epq = fp ∨ fq: -> all results and algorithms established for Ge are
applicable to r Gn simply by replacing epq by fp ∨ fq and remembering that
τ ≥ f , they get simpler.
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The algorithm of Berge
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The algorithm of Berge

Initialisation: τ
(0)
p = ωp

Repeat until τ
(m)
p = τ

(m−1)
p : τ

(n)
p =

ωp ∧
∧

q neighbor of p

(
τ
(n−1)
q ∨ fp ∨ fq

)
= ωp ∧

∧
q neighbor of p

(
τ
(n−1)
q ∨ fp

)
A variant of the algorithm
Replacing the ceiling function ω by the value taken by τ at iteration
(n− 1) since τ can only decrease at each iteration. The algorithm
becomes:
Initialisation: τ

(0)
p = ωp

Repeat until τ
(m)
p = τ

(m−1)
p : τ

(n)
p = τ

(n−1)
p ∧ ∧

q neighbor of p

(
τ
(n−1)
q ∨ fp

)
We recognize the classical algorithm. Repeat until stability τ = f ∨ ετ
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The algorithm of Prim
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The algorithm of Prim

The algorithm of PRIM remains exactly the same as for pipe networks. By
replacing eqs by its value fq ∨ fs , and since τq ≥ fq, we get
τq ∨ fq ∨ fs = τq ∨ fs . The flooding of the nodes and the construction of
the tree may be done simultaneously.
Initialisation
Initially, the tree T has only the node Ω and no edge:
T = {Ω,∅}. τΩ = 0.
Expansion
As long the tree does not contain all nodes of the graph:

Chose the edge (q, s) with the lowest weight fq ∨ fs in the cocycle of
T , such that q ∈ T and s /∈ T .

Assign the node s to the tree: T = T ∪ {s}
τs = τq ∨ fq ∨ fs = τq ∨ fs
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The algorithm of Dijkstra
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The algorithm of Dijkstra

Initialization:
S = ∅ ; for each node p in N : τp = ωp

Flooding:
While S 6= N repeat:

Select j ∈ S for which τj = mini∈S [τi ]
S = S ∪ {j}
For any neighbor i of j verifying τi > τj ∨ fi do τi = τj ∨ fi

End While
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Avoiding unnecessary work

j is the smallest neighbor of i . If i is flooded through one of its neighbors,
this neighbor can only be j and as soon the value τi is computed once, this
value is correct and final : τi = τj ∨ fi . For this reason, we may use an
image of binary flags ζ, in order to flag all nodes for which the flooding
value is known
Initialization:

S = ∅ ; for each node p in N : τp = ωp and ζp = 0
Flooding:
While S 6= N repeat:

Select j ∈ S for which τj = mini∈S [τi ]
S = S ∪ {j}
For any neighbor i of j such that ζi = 0 and τi > τj ∨ fi

ζi = 1
τi = τj ∨ fi

End While
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The regional minima of the ceiling function are sufficient,
and any overset of them...
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Finding an overset of the regional minima nodes of the
ceiling function

Each regional minimum of a flooding contains a regional minimum of the
ceiling function ω. If it were not constrained at this level, the level of the
flooding would be higher in this regional minimum. Outside the regional
minima, the level of the flooding not constrained by ω.
Ideally, the algorithm of Dijkstra should be initialized using one node and
only one node in each regional minimum of ω. As the regional minima are
costly to compute, a cheap overset of these nodes offers a better
compromise.
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A first overset of the ceiling minima

The regional minima of ω are plateaus of uniform altitude, without lower
neighbors. During a forward raster scan of the image, the pixels are
detected which have only higher neighbors in the past and no lower
neighbor in the future. The set X is obained in a forward scan through the
image (for a 2D image, from left to rights and from top to bottom).

X =

{
p | τp <

∧
q∈past(p)

τq

}
∧
{

p | τp ≤
∧

q∈future(p)
τq

}
This algorithm finds the entry points in the regional minima and in a
certain number of plateaus. We may reduce the plateaus as follows.
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Reducing the number of candidates

A classical algorithm for constructing regional minima. The flooding of ω
with ω + 1 as ceiling function produces a new function ω̂. The regional
minima of ω are all nodes verifying ω̂. For the sake of economy only a
partial flooding is done, suppressing a number of plateaus which are not
regional minima:

using geodesic erosions defined as:
εω(g) = εg ∨ω

ε
(n)
ω (g) = εω(ε

(n)
ω (g))

The set of nodes Y verifying ε
(n)
ω (g) > ω is an overset of the regional

minima, decreasing with the number of iterations n.

Using one pass of a recursive geodesic erosion of ω above g with a
backward scanning order
←−ε ω(g)(p) = ωp ∨

∧
q∈past(p)

gq,

The set Z verifying ←−ε ω(g) > ω is an overset of the regional minima

CEILING MINIMA is one of the following sets : X , X ∧ Y or X ∧ Z .
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The Dijkstra algorithm with a reduced initialisation set of
ceiling minima.

A binary tag ζ : ζ = 0 for nodes with an unknown flooding level; ζ = 1
after the first time the flooding level is computed.
Initialization:

create a HQ Φ ; τ = ∞ ; ζ = 0
for each node p belonging to Ŝ =”ceiling minima”,

introduce p into Φ with a priority ωp

τp = ωp

Flooding
While Φ is not empty repeat:

Extract from Φ the node j with the lowest prioriy λ
If τi = λ

For any neighbor i of j such that ζi = 0 and τj ∨ eji < τi
τi = τj ∨ eji ; ζi = 1 ; introduce i into Φ with the

priority τi
End While
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An equivalent algorithm with a 3 state tag

The following algorithm is equivalent and uses a 3 state flag: (”unknown”,
”final”, ”in S”) = (”u” , ”f”, ”s”) = (0, 1, 2) with the following meanings:
a) ”unknown”=”u”= 0 are the nodes whose flooding value has not been
computed yet; b) ”final”=”f”=1 computed nodes, not yet in S ; c) ”in
S”= ”s”= 2 for pixels introduced into S
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Flooding algorithm
Initialization:

create a HQ Φ ; τ = ∞ ; ζ = 0
for each node p belonging to Ŝ =”ceiling minima”,

introduce p into Φ with a priority ωp

τp = ωp

Flooding
While Φ is not empty repeat:

Extract from Φ the node j with the lowest prioriy
if ζj < 2

ζj = 2
For any neighbor i of j such that ζi = 0

if τj ∨ eji < τi then τi = τj ∨ eji
ζi = 1 ; introduce i into Φ with the priority τi

End While
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Illustration

The figure presents in red a topographic surface and in green a ceiling
function. The successive lines below the figure present the evolution of the
algorithm. The algorithm is illustrated step by step. In each group of 3
lines
- the first represent the status of the node, ”u”=unknow, ”f” = flooded,
”s” in S
- the second represent the current estimated flooding value of the nodes
- the third represent the nodes in Φ
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Speeding up the flooding

In the Dijkstra algorithm, S contains all nodes with a known flooding ; at
each iteration, the node with the smallest estimated flooding value is
introduced into S . One node is introduced at each iteration of the
algorithm. Faster floodings are possible if one remarks:

1 if fp = fq, then τp = τq, as the flooding is a connected operator.

2 If fp = ωp, then ground and ceiling levels are identical, hence
τp = fp = ωp

3 if fp ∨ fq < τp then τq = fq. The proof is the following.
{fp ∨ fq < τp} ⇔ {fp < τp and fq < τp}. On the other hand the
criterion for floodings {τp > τq} ⇒ {fp = τp} is equivalent with
{fp < τp} ⇒ {τp ≤ τq}. On the other hand
τq ≤ τp ∨ fq = τp ∨ fp ∨ fq = τp which shows that τp = τq

4 if fq < τp then τq ≤ fq ∨ τp = τp. .

Fernand Meyer (Centre de Morphologie Mathématique)Flooding edge or node weighted graphs 22 March 2013 108 / 165



Speeding up the algorithm of Dijkstra

The two following rules permit to speed up the algorithm of Dijkstra.

1 if fq ≥ τp then τq = fq. The proof is the following. For any
neighboring nodes p and q the flooding levels verify
τq ≤ τp ∨ fq = fq. But as τq ≥ fq we get τq = fq.

2 suppose that (p, q) are neighbors and p is the node of ∂−S for which
the flooding level τp is the lowest. If fq < τp, and if q is to be flooded
by a node in S , this node necessarily is p and the estimated flooding
level of q is τq = τp ∨ fq = τp.
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The core expanding algorithm

We may now derive a fast algorithm from these remarks. Suppose that
during the flooding, the set S represents all flooded nodes and p is the
node of ∂−S for which the flooding level τp is the lowest. If fq ≥ τp then
τq = fq. If on the contrary fq < τp, we apply Dijkstra’s algorithm and
introduce into S the node with the smallest estimate. If there exists in S a
node j with a smaller ceiling value ωj as τp : S = S ∪ {j}. If not, τq = τp
is the flooding estimation of a node in S which is the lowest and
S = S ∪ {q}.
This shows that in the case where ωj ≥ τp, all neighbors of p may be
introduced at once into the set S , yielding the following algorithm:
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The core expanding algorithm

Initialization:
S = ∅ ;

Flooding:
While S 6= N repeat:

Set λ = mini∈S [ωi ] ; if j does not exist λ = ∞
Set µ = τp for p ∈ ∂−S for which τp = mini∈∂−S [τi ]

if λ < µ : S = S ∪ {j} and τj = ωj

else
For each neighbor q of p in S do:

τq = τp ∨ fq
S = S ∪ {q}

End While
At each iteration, the algorithm has to fetch the node p with the smallest
flooding value in ∂−S which is easily done with a HQ ; the node j with the
smallest ceiling value ωj . can be easily done if the nodes are ordered with
increasing values in a FIFO.
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Illustration of the core expanding algorithm

The topographic surface is in red and the ceiling function in green. At
initialisation, the nodes with a label ”i” are the nodes of the ceiling
minima. The smallest of them is introduced into S and immediately
expanded, introducing both its neighbors into S . In line 5, another ceiling
minima is introduced into S and immediately expanded.
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Figure: expanding algorithm
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The lakes of an ultrametric distance function form a
dendrogram
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Distance on a graph based on the maximal edge weight
along the chain

The weights are assigned to the edges, and represent their altitudes.
Altitude of a chain: The altitude of a chain is equal to the highest
weight of the edges along the chain.
Flooding distance between two nodes: The flooding distance
fldist(x , y) between nodes x and y is equal to the minimal altitude of all
chains between x and y . During a flooding process, in which a source is
placed at location x , the flood would proceed along this chain of minimal
highest altitude to reach the pixel y . If there is no chain between them,
the level distance is equal to ∞.
Triangular inequality : For (x , y , z) : d(x , z) ≤ d(x , y) ∨ d(y , z) :
ultrametric inequality
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The flooding distance is an ultrametric distance

An ultrametric distance verifies
* reflexivity : d(x , x) = 0
* symmetry: d(x , y) = d(y , x)
* ultrametric inequality: for all x , y , z : d(x , y) ≤ max{d(x , z), d(z , y)} :
the lowest lake containing both x and y is lower or equal than the lowest
lake containing x , y and z .
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The balls of an ultrametric distance

For p ∈ E the closed ball of centre p and radius ρ is defined by
Ball(p, ρ) = {q ∈ E | d(p, q) ≤ ρ} . The open ball of centre p and radius

ρ is defined by
◦

Ball(p, ρ) = {q ∈ E | d(p, q) < ρ} .
Every triangle is isosceles. Let us consider three distinct points p, q, r and
suppose that the largest edge of this triangle is pq. Then
d(p, q) ≤ d(p, r) ∨ d(r , q), showing that the two larges edges of the
triangle have the same length.

Lemma

Each element of a closed ball Ball(p, ρ) is centre of this ball

Proof: Suppose that q is an element of Ball(p, ρ). Let us show that then
q also is centre of this ball. If r ∈ Ball(p, ρ) :
d(q, r) ≤ max {d(q, p), d(p, r)} = ρ, hence r ∈ Ball(q, ρ), showing that
Ball(p, ρ) ⊂ Ball(q, ρ). Exchanging the roles of p and q shows that
Ball(p, ρ) = Ball(q, ρ)
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The balls of an ultrametric distance

Lemma

Two closed balls Ball(p, ρ) and Ball(q, ρ) with the same radius are either
disjoint or identical.

Proof: If Ball(p, ρ) and Ball(q, ρ) are not disjoint, then they contain at
least one common point r . According to the preceding lemma, r is then
centre of both balls Ball(p, ρ) and Ball(q, ρ), showing that they are
identical.

Lemma

The radius of a ball is equal to its diameter.

Proof: Let Ball(p, ρ) be a ball of radius ρ. Let q and r be two nodes with
the largest distance in Ball(p, ρ). This distance λ is called diameter of the
ball and verifies : λ = d(q, r) ≤ d(q, p) ∨ d(p, r) ≤ ρ. Hence λ ≤ ρ. If
there exists two nodes in Ball(p, ρ) with a distance equal to ρ, then
λ ≥ ρ. In this case λ = ρ.
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Reminders on dendrograms
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The structure associated to an order relation

E : a domain with a finite number of elements called points
X : a subset of P(E ), with the order relation ⊂
supp(X ) : union of all sets belonging to X is called support of X :
supp(X ).
The subsets of X may be structured into:
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the summits : Sum(X ) = {A ∈ X | ∀B ∈ X : A ⊂ B ⇒ A = B}
the leaves : Leav(X ) = {A ∈ X | ∀B ∈ X : B ⊂ A ⇒ A = B}
the predecessors : Pred(A) = {B ∈ X | A ⊂ B}
the immediate predecessors :
ImPred(A) = {B ∈ X | {U | U ∈ X , A ⊂ U and U ⊂ B} = (A, B)}
the successors : Succ(A) = {B ∈ X | B ⊂ A}
the immediate successors :
ImSucc(A) = {B ∈ X | {U | U ∈ X , B ⊂ U and U ⊂ A} = (A, B)}
the uncles : uncle(A) = {B ∈ X | ImPred(B) ∈ Pred(A), B /∈
Pred(A), ImPred(B) 6= ImPred(A)}
the brothers : brother(A) = {B ∈ X | ImPred(B) ∈ Pred(A), B /∈
Pred(A), ImPred(B) = ImPred(A)}
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Dendrograms

Definition

X is a dendrogram if and only if the set Pred(A) of the predecessors of A,
with the order relation induced by ⊂ is a total order.

The maximal element of this family is a summit, which is the unique
summit containing A. The smallest element is ImPred(A), the father of A,
which is unique.
The arcs point from each element of the dendrogram to its immediate
successor.

A

B C

D E F

J G
IH

Figure: A dendrogram
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Characterizations of a dendrogram

The following properties are equivalent:
1)X is a dendrogram
2) U, V , A ∈ X : A ⊂ U and A ⊂ V ⇒ U ⊂ V or V ⊂ U
3) U, V ∈ X : U " V and V " U ⇒ U ∩ V = ∅
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A dendrogram of lakes

Due to their particular properties, the closed balls of an ultrametric
distance function form a dendrogram. Consider a particular closed ball
A = Ball(p, ρ). We have to show that Pred(A) is completely ordered for
⊂ . Consider two predecessors of A, a ball B = Ball(q, λ) and a ball
C = Ball(s, µ). As the node p belongs to both balls B and C , it is also
center of these balls. Thus B and C are two balls with the same center p,
and Ball(p, λ ∧ µ) ⊂ Ball(p, λ ∨ µ).
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Creation of a dendrogram of lakes
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The creation of lakes

If the shortest path between Ω and p passes through q we have
τp = τq ∨ d(p, q) if not τp < τq ∨ d(p, q).

Lemma

Any two nodes of an edge weighted graph verify τp ≤ τq ∨ d(p, q).

Suppose that if d(p, q) < τp. Then d(p, q) < τp ≤ τq ∨ d(p, q) implies
τp ≤ τq. So d(p, q) < τp ≤ τq which similarly implies τq ≤ τp. Hence
τp = τq which is compatible with the laws of hydrostatics.

Lemma

If two nodes p and q of an edge weighted graph verify d(p, q) < τp or
d(p, q) < τq, then τp = τq.
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The creation of lakes

Lemma

If an open ball
◦

Ball(p, λ) has one node with a flooding level µ ≥ λ, then
its flooding level is uniform and equal to µ.

Proof: Suppose that the node s in
◦

Ball(p, λ) verifies τs ≥ λ. The node s

as any node of an open ball is center of this ball. If q ∈
◦

Ball(s, λ), we
have d(s, q) < λ ≤ τs . Applying the preceding lemma yields τs = τq. As

this is true for each node of
◦

Ball(p, λ), we have shown that the flooding

level is constant and equal to τs on the entire ball
◦

Ball(p, λ).

In particular if τp = λ, then the flooding level in
◦

Ball(p, λ) is equal to λ.
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The extension of the lakes

Define εe(X ) : the lowest edge of the cocycle of X .

For τp = λ, the flooding level on
◦

Ball(p, λ) is constant and equal to λ. As

long as τp < εe(
◦

Ball(p, λ)), the extension of
◦

Ball(p, τp) remains the same,

the flooding is uniform and equal to τp ;
◦

Ball(p, τp) is a regional
minimum, as all its nodes have the same weight, its the distance between
its nodes is smaller than τp, and its cocycle edges are higher than τp..

For τp = εe(
◦

Ball(p, λ)) = µ there exists an edge in the cocycle of
◦

Ball(p, λ) with a weight µ. The closed ball Ball(p, µ) strictly contains
◦

Ball(p, λ). As τp = µ, then for any other node s in Ball(p, µ) we have

τs ≤ τp ∨ d(p, s) ≤ µ. However on
◦

Ball(p, µ) ⊂ Ball(p, µ) the flood is
constant and equal to τp = µ.
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The extension of the lakes

For any value σ > µ, we have Ball(p, µ) ⊂
◦

Ball(p, σ) ; if τp = σ the flood

is constant on
◦

Ball(p, σ) and as Ball(p, µ) ⊆
◦

Ball(p, σ) the flood also is
constant on Ball(p, µ).

In fact as long as σ < εe(Ball(p, µ)), Ball(p, µ) =
◦

Ball(p, σ).

Lemma

If there is at least one node with a weight µ in a closed ball Ball(p, µ) of
level µ, all other nodes in this ball have a flooding level ≤ µ.

The diameter of Y is λ. Such a closed ball is called lake zone of level λ, as
the level of flooding inside is ≤ λ.
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The growing extension of a lake containing a particular
node

The extension of the lakes containing a node p as its flooding level η
increases is:
- for η < εnep, the lake X0 = {p} is a regional minimum lake.
- for η = εnep, the lake X1 = Ball(p, εnep) is a lake zone. The flood level
is equal to η on X0 and ≤ η everywhere else on X1. We have
diam(X1) = εnep = εeX0.
- for diam(X1) < η < εeX1, the lake X2 = Ball(p, η) is a regional
minimum lake with the extension X1.
- for η = εeX1, the lake X2 = Ball(p, εeX1) is a lake zone. The flood level
is equal to η on X1 and ≤ η everywhere else on X2. We have
diam(X2) = εeX1

- ...
- the alternating series of regional minima lakes and lake zones goes on
until all nodes of N are flooded.
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Dominated flooding on a dendrogram

We now define the level of the dominated flooding under ω on the
dendrogram of the lakes. Define ω(X ) the smallest value taken by the
ceiling function ω on X . The lakes containing the node p form an
increasing series of nested sets κ(n){p}, the smallest being {p}, the largest
being the root κ(m){p} of the dendrogram.
The operator ω(X ) is decreasing and the operator diam(X ) increasing
with X . As the series κ(n){p} is increasing with n, we get a series of
decreasing values ω(κ(n){p}) and a series of increasing values
diam(κ(n){p}) :
a) as the set {p} has no inside edge, we have
diam(κ(0){p}) = diam{p} = −∞. Hence ω{p} > diam{p} = −∞

b) if κ(m){p} is the root of the dendrogram and at the root we still have
ω(κ(m){p}) > diam(κ(m){p}), i.e. the ceiling of p is higher than the root
of the dendrogram, then τp = ω(κ(m){p})
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Figure: Left: Dendrogram associated to a MST. All nodes have a ceiling function
equal to ∞ excepting the nodes c and h, with values 6 and 1.
Right: Each node of the dendrogram is assigned a ceiling value equal to the
minimum ceiling value of all leaves it contains
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Dominated flooding on a dendrogram

c) In the other cases, there exists an index k < m such that:
ω(κ(m){p}) ≤ diam(κ(m){p}), let k ≤ m be the smallest index for which
ω(κ(k){p}) ≤ diam(κ(k){p}) (rel. 1)
diam(κ(k−1){p}) < ω(κ(k−1){p}) ≤ diam(κ(k){p}) = εe(κ(k−1){p})
The previous relation implies that τκ(k−1){p} = ω(κ(k−1){p} and on

κ(k){p} the maximal flooding level is diam(κ(k){p}.
In particular if Y is a brother of κ(k−1){p} then Y is the root of a
sub-dendrogram which may be processed independently, with
ω(Y ) = diam(κ(k){p} ∧ω(Y )
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Dominated flooding on a dendrogram

Each uncle Yi of κ(k){p} with a father κ(l){p}, l > k becomes the root of
sub-dendrogram which may be processed independently, and with a ceiling
level ω(Yi ) = diam(κ(l){p} ∧ω(Yi ).
This process cuts the upstream of κ(k){p} in a number of
sub-dendrograms which may then be processed independently one from
another.
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Illustration
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What about the lake containing the node c ?The smallest index for which
ω(κ(k){c}) ≤ diam(κ(k){c}), is k = 3, with κ(3){c} = [b, c , d , e, f ]
having a diameter 7, whereas ω(κ(3){c}) = 6. For k = 2, we get
κ(2){c} = [b, c, d , e] having a diameter 4, whereas ω(κ(2){c}) = 6.
Hence: κ(2){c} = [b, c, d , e] is τc = τκ(2){c} = ω(κ(2){c}) = 6
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All ancestors of κ(2){c} may be pruned. For k > 2, κ(k){c} is an ancestor
of c , the flooding level of all its immediate successors which are not
ancestors of c , that is, brothers of κ(k−1){c} is lower or equal than
diam(κ(k){c}). The edge linking each brother Y of κ(k−1){c} with its
father κ(k){c} is cut ; like that Y becomes the root of a sub-dendrogram ;
as its flooding level is lower or equal than diam(κ(k){c}), one sets
ω(Y ) = ω(Y ) ∧ diam(κ(k){c}). On the same time all ancestors of
κ(2){c} and the edges linking them are suppressed.
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The set κ(2){c} = [b, c , d , e] got its flooding level 6 and its upstream is
pruned:
- κ(3){c} = [b, c , d , e, f ] is suppressed and the node {f } becomes the
root of sub-dendrogram, with a ceiling value
ω({f }) = ω({f }) ∧ diam(κ(3){c}) = 7. As the sub-dendrogram is
reduced to a node, its ceiling value is its flooding value, 7.
- κ(4){c} = [a, b, c , d , e, f ] is suppressed and the node {a} becomes the
root of sub-dendrogram, with a ceiling value
ω({a}) = ω({a}) ∧ diam(κ(4){c}) = 9. As the sub-dendrogram is
reduced to a node, its ceiling value is its flooding value, 9.
- κ(5){c} = N is suppressed and the node [g , h, i , j , k ] becomes the root
of sub-dendrogram, with a ceiling value
ω([g , h, i , j , k ]) = ω([g , h, i , j , k ]) ∧ diam(κ(5){c}) = 1. The ceiling value
ω([g , h, i , j , k ]) of the root being known, flooding this subdendrogram
becomes completely independent from the rest of the processing.
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The smallest index for which ω(κ(k){h}) ≤ diam(κ(k){h}), is k = 1, with
κ(1){h} = [g , h]. The flooding level of κ(0){h} = [h] is
τc = τκ(0){c} = ω(κ(0){h}) = 1 and the upstream of h can be pruned.

- κ(1){h} = [g , h] is suppressed and the node {g} becomes the root of
sub-dendrogram, with a ceiling value
ω({g}) = ω({g}) ∧ diam(κ(1){h}) = 1. As the sub-dendrogram is
reduced to a node, its ceiling value is its flooding value: 1.
- κ(2){h} = [g , h, i ] is suppressed and the node {i} becomes the root of
sub-dendrogram, with a ceiling value
ω({i}) = ω({i}) ∧ diam(κ(2){h}) = 6. As the sub-dendrogram is
reduced to a node, its ceiling value is its flooding value, 6.
- κ(3){h} = [g , h, i , j , k ] is suppressed and the node [j , k ] becomes the
root of sub-dendrogram, with a ceiling value
ω([j , k ]) = ω([j , k ]) ∧ diam(κ(3){h}) = 8. The node [j , k ] being the root
of a dendrogram with a ceiling value higher than its diameter gets flooded
at the level of the ceiling value : 8. This achieves the process since there
are no more sub-dendrograms to process.
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Contraction/expansion of flat zones and dendrogram
flooding
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Contracting inside edges of flat zones of node weighted
graphs.

Gn : a node weighted graph with a ground level f and a ceiling function ω.
Consider an edge (p, q) such that fp = fq. Contracting this edge =
- suppressing the edge (p, q)
- merging both nodes into a new node s, with a ground value fs = fp = fq
and a ceiling value ωs = ωp ∧ωq

- suppress the edge linking a node t with p or q and replace it with an
edge (t, s).
After contraction we get a new graph G ′n with a ground level f ′ and a
ceiling function ω′
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Contracting inside edges of flat zones does not modify the
dominated flooding

τ : the highest flooding of Gn under ω
τ′ : the highest flooding of Gn under ω′

We show that on all common nodes τ = τ′ and that τp = τq = τs
We first remark that replacing ωp and ωq by ωp ∧ωq does not change τ.
The shortest path linking s in G ′n with Ω is the same as the shortest path
linking Ω with p or q in G ′n.

Corollary

All inside edges of flat zones may be contracted and produce each a
unique node without changing the highest flooding of the graph.
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Combining contractions and flooding on a dendrogram

In the following figure A we want to construct the highest flooding of the
red function under the green one. The contraction of the flat zones
produces in fig.B a graph G ′ with 5 nodes (a, b, c, d , e) with ground levels
(0, 4, 1, 2, 0) and ceiling levels (0, 5, 3, 3, 1). The edges are then weighted
with δenn, yielding the weights indicated in blue in fig.B. Fig.C presents
the associated dendrogram. We first flood the node e. κ(0)(e) = {e}. As
diam(κ(0){e}) < ω(κ(0){e}) ≤ diam(κ(1){e}), the flooding level of e is
ω(κ(0){e} = 1.
e has two brothers, the nodes c and d , roots of subdendrograms reduced
to 1 node. Having the same ceiling value, we have
τd = τc = diam(κ(1){e} ∧ω(c) = 2∧ 3 = 2.
e has two uncles, the nodes a and b, roots of subdendrograms reduced to
1 node. Their flooding value is τa = diam(κ(1){a} ∧ω(a) = 4∧ 0 = 0
and τb = diam(κ(1){b} ∧ω(b) = 4∧ 5 = 4
During the expansion, each node of the graph G ′ is replaced by the flat
zone of the graph G it represents, with identical flooding values, as
illustrated in fig.F.
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0

1

0 0

2
0
a

0

0

0

5

4 4

4 4

5
5
b

5

4

51

5

1 1

3
3
c

3

2

32 2

2 2

3
3
d

3

2

30 0 0 0

3

0

2
1
e

1

1

1 1
0

0

1

0

1

2

0

2

4

A

D

B

E

C

F

4 4 2 2

Figure: Creation of flat zones and flooding of the edge associated graph
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Construction of the MST while contracting the edges in
the flat zones.

Given a node weighted graph Gn we assign to the edges weights equal to
δenn. It is beneficial to combine the construction of the MST of this and
simultaneously contract the edges.
Initialisation
Create a tree with one node p of the graph.
Expansion
As long as the tree does not contain all nodes of the graph:

Chose the lowest edge (q, s) in the cocycle of T , such that q ∈ T
and s /∈ T .

If fq = fs : contract the edge (q, s) on q and link q with the
neighbors of s not yet in T

Else : append the node s to the tree: T = T ∪ {s}
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Relations between floodings on edge and node weighted
graphs.
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Flooding a node weighted graph = flooding an edge
weighted graph

Ge = edge weighted graph, Gn = node weighted graph, Gn
e = node and

edge weighted graph
For Ge : ηp = (εnee)p , i.e. the weight of the lowest edge adjacent to the
node p.

Theorem

Consider Gn, a node weighted graph, and Ge , the derived edge weighted
graph with edge weights e = δenn. We then have the following
equivalences: {τ ≥ n e-flooding of Ge} ⇔ {τ n-flooding of Gn}(eq-1)

This theorem has important algorithmic consequences. For constructing
the highest flooding on the node weighted graph under a ceiling function
ω we may construct the highest flooding of the edge weighted graph Ge

under ω.
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The waterfall flooding of an edge weighted graph

Consider an edge weighted graph Ge . The waterfall flooding consists in
assigning to each node of the graph a flooding level equal to the lowest
adjacent edge: η = εnee. The function η is a particular flooding of Ge .

Lemma

In an edge weighted graph Ge , a function τ on the nodes is a valid
flooding if and only if τ ∨ η is a valid flooding: {τ e-flooding of
Ge} ⇔ {τ ∨ η e-flooding of Gn}

This equivalence has the following consequence:

by replacing τp < ηp by ηp, τ remains an e-flooding of Ge

by replacing τp = ηp by τ′p < ηp, τ′ remains an e-flooding of Ge

Fernand Meyer (Centre de Morphologie Mathématique)Flooding edge or node weighted graphs 22 March 2013 150 / 165



Edge weighted graph invariant by γe .

Given Ge : an edge weighted graph verifying e = γee = δenεnee. We
create a node weighted graph G η with node weights η = εnee.
As the edge weights verify e = δenεnee = δenη we have the equivalence 1:
{τ ∨ η ≥ η e-flooding of Ge} ⇔ {τ ∨ η n-flooding of G η}.
Equivalence eq-2 : {τ e-flooding of Ge} ⇔ {τ ∨ η e-flooding of
Ge}. Thus:

Theorem

Consider Ge , an edge weighted graph where each edge is the lowest edge
of one of its extremities (invariant by γe), and G η, the derived node
weighted graph with node weights η = εnee, we then have the following
equivalences: {τ e-flooding of Ge} ⇔ {τ ∨ η e-flooding of Ge} ⇔ {τ ∨ η
n-flooding of G η}.
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Edge weighted graph invariant by γe .

Consider now τ′ ≥ η an e-flooding of Ge which is also a n-flooding of
Gη. Consider a subset of nodes A of N. We define a new node distribution
as follows:

on A : τ ≤ η

on N/A : τ = τ′

This distribution verifies τ′ = τ ∨ η. Hence, as stated in the preceding
theorem, τ and τ′ are both e-floodings of Ge .
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Case of a node weighted graph

Given a node weighted graph Gn, we define ϕnn = εneδenn = η. On the
other hand we assign to the edges the weights
e = δenn = δenεneδenn = δenϕnn = δenη.
The graph G η is a flooding graph as η = εnee and e = δenη. The
preceding results apply to the graphs Ge , G η and G e .
{τ n-flooding of Gn} ⇔ {τ ≥ n e-flooding of Ge} ⇔ {τ ∨ η e-flooding of
Ge} ⇔ {τ ∨ η n-flooding of G η}.
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Case of dominated floodings

Theorem

A flooding τ is the highest flooding of an edge weighted graph Ge under a
ceiling function ω if and only if τ ∨ η is the largest flooding of Ge under
the ceiling function ω ∨ η.

Theorem

If χ is the largest flooding of Ge under the ceiling function ω ∨ η, then
χ ∧ω is the largest flooding of Ge under the ceiling function ω.
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Combining contraction.expansion of flat zones and closing
of the isolated regional minima

Fernand Meyer (Centre de Morphologie Mathématique)Flooding edge or node weighted graphs 22 March 2013 155 / 165



Case of a node weighted graph

Gn : a node weighted graph with ground level f and ceiling level ω.
Contracting its flat zones produces a graph G ′ = KG with ground level f
and ceiling level ω1. Each regional minimum of f becomes an isolated
regional minimum.
The closing ϕn in the graph G ′ fills each regional minimum to the level of
its lowest neighbor.
{τ n-flooding of G ′n dominated by ω1} ⇔ {τ1 = τ ∨ η n-flooding of G ′η

dominated by ω1 ∨ η}.
If we expand the nodes of G ′, replacing each node by the flat zone it
represents, with the flood distribution τ1 ∧ω, we get the flooding of G
dominated by ω.
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Contraction and closing of the isolated regional minima

A commutative diagram illustrates the process.
G , f , ω → KG , f , ω1 → KG , ϕnf , ω1 ∨ ϕnf
↓ ↓
Λ Λ
↓ ↓

EKG ←− [KG , τ1 ∧ω1] ←− τ1 = Λ (KG , ϕnf , ω1 ∨ ϕnf )
with
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Contraction and closing of the isolated regional minima :
illustration
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Contraction and closing of the isolated regional minima :
illustration

Fig.A: presents a topographic surface f and a ceiling function equal to ∞
everywhere except at the position of the red arrow.
Fig.B: is obtained by contracting the flat zones with the associated ceiling
function ω1, giving a graph KG
Fig.C: is obtained by the closing ϕn, which closes the isolated regional
minima with a new ceiling function ϕnf ∨ω
Fig.D: is the flooding τ of ϕnf under ϕnf ∨ω
Fig.E: the minimum τ1 ∧ω1 (which is also the flooding of the function in
fig.B under the ceiling ω1)
Fig.F: the expansion of fig.E yields the flooding of f under ω.

Fernand Meyer (Centre de Morphologie Mathématique)Flooding edge or node weighted graphs 22 March 2013 159 / 165



Cascading the preceding sequence

The preceding sequence of transformations constructs a dominated
flooding of a complex function thanks to the flooding of a simpler function.
The same sequence may be applied for flooding this simpler function. And
so on, producing a sequence of simpler and simpler functions to flood.
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Constructing a local flooding on a topographic graph
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Fast and local flooding of a topographic surface.

Using all results established above we propose an algorithm for local
floodings.
Gn a topographic graph, f the ground level. We want to know the flooding
at a given node p.for the dominated flooding of f under ω. Assigning to
the edges the weights δenf produces a flooding graph: the lowest adjacent
edge of each node has the same level than this node.
If p belongs to an isolated regional minimum and ωp ≤ (ϕnf )p , then
τp = ωp

If not, we flood the function ϕnf under the ceiling function ω ∨ ϕnf and
get a flooding τ′. The desired flooding is τ = τ′ ∧ω.
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Constructing the lake containing p

For X = Ball(p, fp) : if ω(X ) ≤ fp, then p is in the upstream of a lake and
is dry: τp = fp
If ω(X ) > fp, we search the lake containing p :

Until diam(X ) < ω(X ) ≤ εe(X ) do X = κ(X ) = Ball(p, fp)

The lake containing p is X at a level ω(X ).
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Procedure ”up hill”

If X is lake of the flooding, its uphill up to a level µ is constructed with
the procedure ”up hill(X , µ)”

While εe(X ) ≤ µ
λ = εe(X )
Y = Ball(X , εe(X ))
For each connected component Zi of Y /X for which λ > fZi

:
if ω(Zi ) ≥ λ : τZi

= λ
else if ω is minimal at q in Zi : apply ”up-hill(Ball(q, ωq), λ)”

For each p ∈ Y /X verifying fp = λ : τp = λ
X = Y

End While
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Conclusion

The comparison between floodings on edge weighted graphs and on node
weighted graphs has given a better insight in both of them.
New algorithms have been derived allowing to chose the one is best suited
for each application (type or processor, hardware, parallel processing, etc.)
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