Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7883))

  • 3088 Accesses

Abstract

In this paper we present a keypoint detector based on the bimodality of the histograms of oriented gradients (HOGs). We compute the bimodality of each HOG, and a bimodality image is constructed from the result of this bimodality test. The maxima with highest dynamics of the image obtained are selected as robust keypoints. The bimodality test of HOGs used is also based on dynamics. We compare the results obtained using this method with a set of well-known keypoint detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-Up Robust Features (SURF). Computer Vision and Image UnderstandingĀ 110(3), 346ā€“359 (2008)

    ArticleĀ  Google ScholarĀ 

  2. Beaudet, P.R.: Rotationally invariant image operators. In: Proceedings of the International Joint Conference on Pattern Recognition, vol.Ā 579, pp. 579ā€“583 (1978)

    Google ScholarĀ 

  3. Bertrand, G.: On the dynamics. Image Vision Comput.Ā 25(4), 447ā€“454 (2007)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  4. CataƱo, M.A., Climent, J.: Keypoint detection based on the unimodality test of hogs. In: Bebis, G., et al. (eds.) ISVC 2012, Part I. LNCS, vol.Ā 7431, pp. 189ā€“198. Springer, Heidelberg (2012)

    ChapterĀ  Google ScholarĀ 

  5. CataƱo, M.A., Climent, J.: A new morphological measure of histogram bimodality. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol.Ā 7441, pp. 390ā€“397. Springer, Heidelberg (2012)

    ChapterĀ  Google ScholarĀ 

  6. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol.Ā 1, pp. 886ā€“893 (June 2005)

    Google ScholarĀ 

  7. DeCarlo, L.T.: On the meaning and use of kurtosis. Psychological MethodsĀ 2(3), 292ā€“307 (1997)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  8. Grimaud, M.: New measure of contrast: the dynamics, vol.Ā 1769, pp. 292ā€“305. SPIE (1992)

    Google ScholarĀ 

  9. Harris, C., Stephens, M.: A combined corner and edge detector, Manchester, UK, vol.Ā 15, pp. 147ā€“151 (1988)

    Google ScholarĀ 

  10. Hartigan, J.A., Hartigan, P.M.: The dip test of unimodality. The Annals of StatisticsĀ 13(1), 70ā€“84

    Google ScholarĀ 

  11. Hellwig, B., Hengstler, J., Schmidt, M., Gehrmann, M., Schormann, W., Rahnenfuhrer, J.: Comparison of scores for bimodality of gene expression distributions and genome-wide evaluation of the prognostic relevance of high-scoring genes. BMC BioinformaticsĀ (1), 276+

    Google ScholarĀ 

  12. Jones, R.: Connected filtering and segmentation using component trees. Comput. Vis. Image Und.Ā 75(3), 215ā€“228 (1999)

    ArticleĀ  Google ScholarĀ 

  13. Juan, L., Gwun, O.: A comparison of sift, pca-sift and surf. Image ProcessingĀ 3(4), 143ā€“152 (2009)

    Google ScholarĀ 

  14. Kadir, T., Brady, M.: Saliency, Scale and Image Description. International Journal of Computer VisionĀ 45(2), 83ā€“105 (2001)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  15. Lindeberg, T.: Scale-space theory: A basic tool for analysing structures at different scales. J. of Applied StatisticsĀ 21(2), 224ā€“270 (1994)

    Google ScholarĀ 

  16. Lindeberg, T.: Feature detection with automatic scale selection. International Journal of Computer VisionĀ 30, 79ā€“116

    Google ScholarĀ 

  17. Lowe, D.G.: Object Recognition from Local Scale-Invariant Features. In: IEEE International Conference on Computer Vision, vol.Ā 2, pp. 1150ā€“1157 (August 1999)

    Google ScholarĀ 

  18. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. VisionĀ 60(2), 91ā€“110 (2004)

    ArticleĀ  Google ScholarĀ 

  19. Mattes, J., Richard, M., Demongeot, J.: Tree representation for image matching and object recognition. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol.Ā 1568, pp. 298ā€“312. Springer, Heidelberg (1999)

    ChapterĀ  Google ScholarĀ 

  20. Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: Proceedings. Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol.Ā 1, pp. 525ā€“531 (2001)

    Google ScholarĀ 

  21. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine IntelligenceĀ 27(10), 1615ā€“1630 (2005)

    ArticleĀ  Google ScholarĀ 

  22. Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. International Journal of Computer VisionĀ 60, 63ā€“86

    Google ScholarĀ 

  23. Moravec, H.P.: Obstacle avoidance and navigation in the real world by a seeing robot rover. Ph.D. thesis, Stanford, CA, USA, aAI8024717 (1980)

    Google ScholarĀ 

  24. Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE T. Image Process.Ā 15(11), 3531ā€“3539 (2006)

    ArticleĀ  Google ScholarĀ 

  25. Porikli, F.: Integral histogram: A fast way to extract histograms in cartesian spaces. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 829ā€“836 (2005)

    Google ScholarĀ 

  26. Quinlan, J.R.: Induction of Decision Trees. Machine LearningĀ 1(1), 81ā€“106 (1986)

    Google ScholarĀ 

  27. Rosten, E., Porter, R., Drummond, T.: Faster and better: A machine learning approach to corner detection. IEEE Transactions on Pattern Analysis and Machine IntelligenceĀ 32(1), 105ā€“119 (2010)

    ArticleĀ  Google ScholarĀ 

  28. Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol.Ā 3951, pp. 430ā€“443. Springer, Heidelberg (2006)

    ChapterĀ  Google ScholarĀ 

  29. Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for image and sequence processing. IEEE T. Image Process.Ā 7(4), 555ā€“570 (1998)

    ArticleĀ  Google ScholarĀ 

  30. Schmid, C., Mohr, R., Bauckhage, C.: Comparing and evaluating interest points. In: Sixth International Conference on Computer Vision, pp. 230ā€“235 (January 1998)

    Google ScholarĀ 

  31. Silva, A.G., de Alencar Lotufo, R.: Efficient computation of new extinction values from extended component tree. Pattern Recogn. Lett.Ā 32(1), 79ā€“90 (2011)

    ArticleĀ  Google ScholarĀ 

  32. Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: A survey. Foundations and Trends in Computer Graphics and VisionĀ 3(3), 177ā€“280 (2007)

    ArticleĀ  Google ScholarĀ 

  33. Vachier, C., Meyer, F.: Extinction value: a new measurement of persistence. In: IEEE Workshop on Nonlinear Signal and Image Processing, vol.Ā 1, pp. 254ā€“257 (1995)

    Google ScholarĀ 

  34. Vincent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE T. Pattern Anal.Ā 13(6), 583ā€“598 (1991)

    ArticleĀ  Google ScholarĀ 

  35. Wang, J., Wen, S., Symmans, W.F., Pusztai, L., Coombes, K.R.: The bimodality index: a criterion for discovering and ranking bimodal signatures from cancer gene expression profiling data. Cancer InformaticsĀ 7, 199ā€“216 (2009)

    Google ScholarĀ 

  36. Wolfe, J.H.: Pattern Clustering by Multivariate Mixture Analysis. Multivariate Behavioral ResearchĀ 5, 329ā€“350 (1970)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

CataƱo, M.A., Climent, J. (2013). Robust Keypoint Detection Using Dynamics. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2013. Lecture Notes in Computer Science, vol 7883. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38294-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38294-9_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38293-2

  • Online ISBN: 978-3-642-38294-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics