Skip to main content

Characterizing Intermediate Conformations in Protein Conformational Space

  • Conference paper
Book cover Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2012)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7845))

  • 885 Accesses

Abstract

In this paper we present a novel parallel coordinate based clustering method using Gaussian mixture distribution models to characterize the conformational space of proteins. We detect highly populated regions which may correspond to intermediate states that are difficult to detect experimentally. The data is represented as feature vectors of N dimensions, which are lower-dimension projections of the protein conformations. Parallel coordinates are a visualization technique that lays out coordinate axes in parallel rather than orthogonal to each other, thereby allowing patterns between pairs of axis as well as outliers to be visually identified in multi-dimensional data. We believe that the size of the resulting clusters may provide information about the likelihood of the corresponding conformations to exist as important intermediates. We tested our method on the conformational space for the enzyme Adenylate Kinase (AdK) which undergoes large scale conformational changes and used our method to detect clusters which may correspond to experimentally known intermediates. Finally, we compare our clusters with the ones generated by the K-Means clustering algorithm and discuss the advantages of our method for the problem of characterizing proteins conformational space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Perutz, M.F.: Mechanisms of cooperativity and allosteric regulation in proteins. Quart. Rev. Biophys. 22, 139–236 (1989)

    Article  Google Scholar 

  2. Case, D.A., Cheatham, T., Darden, T., Gohlke, H., Luo, R., Merz Jr., K.M., Onufriev, A., Simmerling, C., Wang, B., Woods, R.: The Amber biomolecular simulation programs. J. Computat. Chem. 26, 1668–1688 (2005)

    Article  Google Scholar 

  3. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Haspel, N., Moll, M., Baker, M., Chiu, W., Kavraki, L.E.: Tracing conformational changes in proteins. BMC Structural Biology (2010) (in press)

    Google Scholar 

  5. Thomas, S., Tang, X., Tapia, L., Amato, N.M.: Simulating protein motions with rigidity analysis. J. Comp. Biol. 14(6), 839–855 (2007)

    Article  Google Scholar 

  6. Chiang, T.H., Apaydin, M.S., Brutlag, D.L., Hsu, D., Latombe, J.-C.: Using stochastic roadmap simulation to predict experimental quantities in protein folding kinetics. J. Comp. Biol. 14(5), 578–593 (2007)

    Article  MathSciNet  Google Scholar 

  7. Raveh, B., Enosh, A., Furman-Schueler, O., Halperin, D.: Rapid sampling of molecular motions with prior information constraints. Plos Comp. Biol. (2009) (in press)

    Google Scholar 

  8. Zheng, W., Brooks, B.: Identification of dynamical correlations within the myosin motor domain by the normal mode analysis of an elastic network model. J. Mol. Biol. 346(3), 745–759 (2005)

    Article  Google Scholar 

  9. Schroeder, G., Brunger, A.T., Levitt, M.: Combining efficient conformational sampling with a deformable elastic network model facilitates structure refinement at low resolution. Structure 15, 1630–1641 (2007)

    Article  Google Scholar 

  10. Weiss, D.R., Levitt, M.: Can morphing methods predict intermediate structures? J. Mol. Biol. 385, 665–674 (2009)

    Article  Google Scholar 

  11. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall (1988)

    Google Scholar 

  12. McQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–296 (1967)

    Google Scholar 

  13. Shehu, A., Kavraki, L.E., Clementi, C.: Multiscale characterization of protein conformational ensembles. Proteins: Structure, Function and Bioinformatics (2009)

    Google Scholar 

  14. Ladd, A.M.: Motion Planning for Physical Simulation. PhD thesis, Dept. of Computer Science, Rice University, Houston, TX (December 2006)

    Google Scholar 

  15. Inselberg, A.: Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: Proceedings of the First IEEE Conference on Visualization, California, USA, pp. 361–378 (1990)

    Google Scholar 

  16. McLachlan, G., Peel, D.: Finite Mixture Models. John Wiley and Sons (2000)

    Google Scholar 

  17. Inselberg, A.: Visual data mining with parallel coordinates. Computational Statistics 13 (1998)

    Google Scholar 

  18. Fraley, C., Raftery, A.E.: Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association, 611–631 (June 2002)

    Google Scholar 

  19. Baudry, J., Raftery, A.E., Celeux, G., Lo, K., Gottardo, R.: Combining mixture components for clustering. Journal of Computational and Graphical Statistics 19(2), 332–353 (2010)

    Article  MathSciNet  Google Scholar 

  20. Biernacki, C., Celeux, G., Govaert, G.: Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 719–725 (2000)

    Article  Google Scholar 

  21. Celis, M.R., Dennis, J.E., Tapia, R.A.: A trust region strategy for nonlinear equality constrained optimization. In: Proceedings of the SIAM Conference on Numerical Optimization, pp. 71–82 (1984)

    Google Scholar 

  22. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. SIAM, PA (2000)

    Book  MATH  Google Scholar 

  23. Feng, Y., Yang, L., Kloczkowski, A., Jernigan, R.L.: The energy profiles of atomic conformational transition intermediates of adenylate kinase. Proteins 77(3), 551–558 (2009)

    Article  Google Scholar 

  24. Henzler-Wildman, K.A., Thai, V., Lei, M., Ott, M., Wolf-Watz, M., Fenn, T., Pozharski, E., Wilson, M.A., Petsko, G.A., Karplus, M., Hübner, C.G., Kern, D.: Intrinsic motions along an enzymatic reaction trajectory. Nature 450(7171), 838–844 (2007)

    Article  Google Scholar 

  25. Schlauderer, G.J., Proba, K., Schulz, G.E.: Intrinsic motions along an enzymatic reaction trajectory. J. Mol. Biol. 256, 223–227 (1996)

    Article  Google Scholar 

  26. Holmes, G., Donkin, A., Witten, I.H.: Weka: a machine learning workbench. In: Proceedings of the 1994 Second Australian and New Zealand Conference on Intelligent Information Systems, pp. 357–361 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vetro, R., Haspel, N., Simovici, D. (2013). Characterizing Intermediate Conformations in Protein Conformational Space. In: Peterson, L.E., Masulli, F., Russo, G. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2012. Lecture Notes in Computer Science(), vol 7845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38342-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38342-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38341-0

  • Online ISBN: 978-3-642-38342-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics