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Abstract. We study the (non-uniform) quantified constraint satisfac-
tion problem QCSP(H) as H ranges over partially reflexive cycles. We
obtain a complexity-theoretic dichotomy: QCSP(H) is either in NL or
is NP-hard. The separating conditions are somewhat esoteric hence the
epithet “wavy line of tractability” (see Figure 5 at end).

1 Introduction

The quantified constraint satisfaction problem QCSP(B), for a fixed template
(structure) B, is a popular generalisation of the constraint satisfaction problem
CSP(B). In the latter, one asks if a primitive positive sentence (the existential
quantification of a conjunction of atoms) Φ is true on B, while in the former this
sentence may be positive Horn (where universal quantification is also permitted).
Much of the theoretical research into CSPs is in respect of a large complexity
classification project – it is conjectured that CSP(B) is always either in P or NP-
complete [11]. This dichotomy conjecture remains unsettled, although dichotomy
is now known on substantial classes (e.g. structures of size ≤ 3 [20, 3] and smooth
digraphs [12, 1]). Various methods, combinatorial (graph-theoretic), logical and
universal-algebraic have been brought to bear on this classification project, with
many remarkable consequences. A conjectured delineation for the dichotomy was
given in the algebraic language in [4].

Complexity classifications for QCSPs appear to be harder than for CSPs.
Indeed, a classification for QCSPs will give a fortiori a classification for CSPs (if
B ] K1 is the disjoint union of B with an isolated element, then QCSP(B ] K1)
and CSP(B) are polynomially equivalent). Just as CSP(B) is always in NP, so
QCSP(B) is always in Pspace. However, no overarching polychotomy has been
conjectured for the complexities of QCSP(B), as B ranges over finite structures,
but the only known complexities are P, NP-complete and Pspace-complete (see
[2, 17] for some trichotomies). It seems plausible that these complexities are the
only ones that can be so obtained (for more in this see [6]).

In this paper we study the complexity of QCSP(H), where H is a partially
reflexive cycle. In this respect, our paper is a companion to the similar classifica-
tion for partially reflexive forests in [16]. We derive a classification between those
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cases that are in NL and those that are NP-hard. For some of the NP-hard cases
we are able to demonstrate Pspace-completeness. The dichotomy, as depicted
in Figure 5 at the end, is quite esoteric and deviates somewhat from similar
classifications (e.g. for retraction as given in [10]). To our minds, this makes it
interesting in its own right. Some of our hardness proofs come from judicious
amendments to the techniques used in [16]. Several others use different elaborate
encodings of retraction problems, known to be hard from [10]. All but one of our
NL-membership results follow from a majority polymorphism in an equivalent
template (indeed – the so-called Q-core of [14]), as they did in [10]. However,
C0111 is special. It has no QCSP-equivalent that admits a majority (indeed, it
omits majority and is a Q-core), so we have to give a specialised algorithm, based
on ideas from [13], to demonstrate that QCSP(C0111) is in L. Indeed, and in light
of the observations in [14], this is the principal news from the partially reflexive
cycles classification that removes it from being simply a sequel to partially re-
flexive forests: for a partially reflexive forest H, either the Q-core of H admits a
majority polymorphism and QCSP(H) is in NL, or QCSP(C) is NP-hard. The
same can not be said for partially reflexive cycles, due to the odd case of C0111.

This paper is organised as follows. After the preliminaries, we address small
cycles in Section 3. Then we deal with reflexive cycles, cycles whose loops induce
a path and cycles with disconnected loops in Sections 4, 5 and 6, respectively.
Finally we give our classification in Section 7 and our conclusions in Section 8.
For reasons of space, many proofs are deferred to the appendix.

2 Definitions and preliminaries

Let [n] := {1, . . . , n}. A graph G has vertex set G, of cardinality |G|, and edge set
E(G). For a sequence α ∈ {0, 1}∗, of length |α|, let Pα be the undirected path on
|α| vertices such that the ith vertex has a loop iff the ith entry of α is 1 (we may
say that the path P is of the form α). We will usually envisage the domain of
a path with n vertices to be [n], where the vertices appear in the natural order.
Similarly, for α ∈ {0, 1}∗, let Cα be the |α| cycle with domain [n] and edge set
{(i, j) : |j− i| = 1 mod n}∪ {(i, i) : α[i] = 1} (note |n− 1| = |1−n| = 1 mod n).
If α and α′ are sequences in {0, 1}n such that α[i] = α′[i+1 mod n] then Cα and
Cα′ are isomorphic.

A partially reflexive cycle is one that may include some self-loops. For such
an m-cycle C, whose vertices we will imagine to be v1, . . . , vm in their natural
mod m adjacencies, let [vi ⇒ vj ] be shorthand for a conjunction specifying a
path, whichever is the fastest way mod m, from vi to vj . For example, if m = 5,
then 1.) [v1 ⇒ v3] is E(v1, v2) ∧ E(v2, v3), 2.) [v3 ⇒ v1] is E(v3, v2) ∧ E(v2, v1),
and 3.) [v4 ⇒ v1] is E(v4, v5) ∧ E(v5, v1). We ask the reader to endure the
following relaxation of this notation; [vi, vi+1 ⇒ vj ] indicates an edge from vi to
vi+1 then a path to vj (which may not be the same as [vi ⇒ vj ] as the latter
may take the other path around the cycle). Finally, let Ref(vi, . . . , vj) indicate
E(vi, vi)∧. . .∧E(vj , vj), whichever is the quickest way around the cycle mod m.



All graphs in this paper are undirected, so edge statements of the form E(x, y)
should be read as asserting E(x, y) ∧ E(y, x).

The problems CSP(T ) and QCSP(T ) each take as input a sentence Φ, and
ask whether this sentence is true on T . For the former, the sentence involves the
existential quantification of a conjunction of atoms – primitive positive logic. For
the latter, the sentence involves the arbitrary quantification of a conjunction of
atoms – positive Horn logic. By convention equalities are permitted in both
of these, but these may be propagated out by substitution in all but trivial
degenerate cases. The retraction problem Ret(B) takes as input some G, with
H an induced substructure of G, and asks whether there is a homomorphism
h : G → H such that h is the identity on H. It is important that the copy of H
is specified in G; it can be that H appears twice as an induced substructure and
there is a retraction from one of these instances but not to the other. The problem
Ret(H) is easily seen to be logspace equivalent with the problem CSP(Hc), where
Hc is H expanded with all constants (one identifies all elements assigned to the
same constant and enforces the structure H on those constants).

The direct product G × H of two graphs G and H has vertex set {(x, y) :
x ∈ G, y ∈ H} and edge set {((x, u), (y, v)) : x, y ∈ G, u, v ∈ H, (x, y) ∈
E(G), (u, v) ∈ E(H)}. Direct products are (up to isomorphism) associative and
commutative. The kth power Gk of a graph G is G × . . . × G (k times). A ho-
momorphism from a graph G to a graph H is a function h : G → H such that,
if (x, y) ∈ E(G), then (h(x), h(y)) ∈ E(G). A k-ary polymorphism of a graph is
a homomorphism from Gk to G. A ternary function f : G3 → G is designated a
majority operation if f(x, x, y) = f(x, y, x) = f(y, x, x) = x, for all x, y ∈ G.

A positive Horn sentence Φ in the language of graphs induces naturally a
graph GΦ whose vertices are the variables of Φ and whose edges are the atoms of
Φ. In the case of primitive positive Φ one would call GΦ the canonical database
and Φ its canonical query. With positive Horn Φ there is additional extra struc-
ture and one may talk of a vertex-variable as being existential/ universal and
as coming before/ after (earlier/ later), in line with the quantifier block and
its order in Φ. Variables in the same quantifier block will not need their orders
considered (there is commutativity within a block anyway). A typical reduction
from a retraction problem Ret(C), where |C| = m, builds a positive Horn Φ sen-
tence involving variables v1, . . . , vm where we want GΦ restricted to {v1, . . . , vm}
(itself a copy of C) to map automorphically to C. Typically, we can force this
with some evaluation of the variables (some of which might be universally quan-
tified). The other valuations are degenerate and we must ensure at least that
they map GΦ restricted to {v1, . . . , vm} homomorphically to C.

3 Small cycles

The classification for QCSP for cycles of length ≤ 4 is slightly esoteric, although
it does match the analogous classification for Retraction (the former is a di-
chotomy between NL and Pspace-complete; the latter is a dichotomy between P
and NP-complete). The following has appeared in [15], where it was given as an



application of counting quantifiers in QCSPs. We review it now because we will
need to generalise it later in Section 4.

Proposition 1 ([15]). QCSP(C1111) is Pspace-complete.

Proof. We will reduce from the problem QCSP(K4) (known to be Pspace-complete
from, e.g., [2]). We will borrow heavily from the reduction of CSP(K4) to Ret(C1111)
in [9]. We introduce the following shorthands (x′, x′′ must appear nowhere else
in ϕ, which may contain more free variables than just x).

∃≥1x ϕ(x) := ∃x ϕ(x)
∃≥2x ϕ(x) := ∀x′∃x E(x′, x) ∧ ϕ(x)
∃≥3x ϕ(x) := ∀x′′∀x′∃x E(x′′, x) ∧ E(x′, x) ∧ ϕ(x)

On C1111, it is easy to verify that, for each i ∈ [4], ∃≥ix ϕ(x) holds iff there exist
at least i elements x satisfying ϕ. Thus our borrowing the notation of counting
quantifiers is justified.

We now reduce an instance Φ of QCSP(K4) to an instance Ψ of QCSP(C1111).
We begin with a cycle C1111 on vertices 1, 2, 3 and 4, which we realise through

their canonical query (without quantification) as θ(v1, v2, v3, v4) := E(v1, v2) ∧
E(v2, v3) ∧ E(v3, v4) ∧ E(v4, v1) (recall that the canonical query is in fact the
reflexive closure of this, but this will not be important in this case or many future
cases – when it is important it will be stated explicitly). If Φ contains an atom
E(x, y), then this gives rise to a series of atoms in Ψ as dictated by the gadget
in Figure 1 (for each atom we add many new vertex-variables, corresponding to
the vertices in the gadget that are not x, y, 1, 2, 3, 4). These atoms can be seen
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Fig. 1. Edge gadget in reduction from QCSP(K4) to QCSP(C1111)

to join up with the atoms of θ as in the right end of the figure. Build Ψ ′′′ from Φ
by this process and conjunction with θ. Then make Ψ ′′ from Ψ ′′′ by existentially
quantifying all of the variables other than those associated to atoms of Φ (x, y in
the figure) and v1, v2, v3, v4 (1, . . . , 4 in the figure). Now, we build Ψ ′ from Ψ ′′, by
copying the quantifier order of Φ on the outside of the existential quantifiers that
we already have. Thus Ψ ′(v1, v2, v3, v4) is a positive Horn formula with precisely
four free variables.

It is not hard to see that when v1, v2, v3, v4 are evaluated as (an automorphism
of) 1, 2, 3, 4, then we have a faithful simulation of QCSP(K4). This is because



x and y, as in the gadget drawn, may evaluate precisely to distinct vertices on
C1111. Finally, we build Ψ := ∃v1∃≥2v2∃≥3v3∃≥2v4 Ψ ′(v1, v2, v3, v4). It is not
hard to see that Ψ forces on some evaluation of v1, v2, v3, v4 that these map
isomorphically to 1, 2, 3, 4 in C1111. Further, a rudimentary case analysis shows
us that when they do not, we can still evaluate the remainder of Ψ ′, if we could
have done when they did. In fact, if v1, v2, v3, v4 are not mapped isomorphically
(but still homomorphically, of course) to 1, 2, 3, 4 then we can extend each of the
edge gadgets to homomorphism under all maps of vertices x and y to 1, 2, 3, 4
(not just ones in which x and y are evaluated differently).

Proposition 2. QCSP(C0111) is in L.

Proof. Recall C0111 has vertices {1, 2, 3, 4} in cyclic order and 1 is the only non-
loop. Consider an input Φ for QCSP(C0111), w.l.o.g. without any equalities, and
its evaluation on C0111 as a game on Φ between Prover, playing (evaluating on
C0111) existential variables, and Adversary, playing universal variables. Adver-
sary never gains by playing 3, as any existential edge witness to anything from
{4, 1, 2} is already an edge-witness to 3. That is, if E(x, 3) then already each of
E(x, 4), E(x, 1) and E(x, 2). Similarly, Prover never gains by playing 1. Thus, Φ
is true on C0111 iff it is true with all universal variables relativised to {4, 1, 2}
and all existential variables relativised to {2, 3, 4}. (This intuition is formalised
in the notion of U -X-surjective hyper-endomorphism in [13]. What we are say-

ing is that
1 13
2 2
3 3
4 4

is a surjective hyper-endomorphism of C0111.) Henceforth, we will

make this assumption of relativisation in our inputs.
Given an input Φ we will describe a procedure to establish whether it is true

on C0111 based around a list of forbidden subinstances.

(i.) An edge E(x, y) in GΦ with the later of x and y being universal.
(ii.) A 3-star E(x1, y), E(x2, y), E(x3, y) where x1, x2, x3 are universal variables

coming before y existential.
(iii.) A path y1, . . . , ym of existential variables, where: both y1 and ym have edges

to two earlier universal variables, and y2, . . . , ym−1 have edges each to one
earlier universal variable.

(iv.) A path y1, . . . , ym of existential variables, where y1 comes before ym, and
y1 has an edge to an earlier universal variable. ym has edges to two earlier
universal variables at least one of which comes after y1. Finally, y2, . . . , ym−1
each have edges to an earlier universal variable.

These cases are illustrated in Figure 2. Using the celebrated result of [19] it
can be seen that one may recognise in logspace whether or not Φ contains any
of these forbidden subinstances. It is not hard to see that if Φ contains such
a subinstance then Φ is false on C0111 (the universal variables adjacent and
before ym can be played as either 1, 2 or 1, 4 to force ym to be either 2 or 4).
We now claim all other instances Φ are true on C0111 and we demonstrate this
by giving a winning strategy for Prover on such an instance. Owing to Case
(i) being omitted, Adversary has no trivial win. Prover will now always play 3



if she can. Owing to the omission of Case (ii), Prover never has to answer a
variable adjacent to more than two elements. It can be seen that there are few
circumstances in which she can not play 3. Indeed, the only one is if she is forced
at some point to play 2 or 4 as a neighbour to Adversary’s having played 1. In
this case, Adversary can force this response to be propagated as in the chain of
cases (iii) and (iv), but because these cases are forbidden, Adversary will never
succeed here in winning the game.
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Fig. 2. Cases from proof of Proposition 2.

4 The reflexive cycles
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Fig. 3. Left ends of the edge gadgets in reductions from QCSP(K5) to QCSP(C15) and
QCSP(K6) to QCSP(C16). In the former case, the full gadget contains a chain of five
copies of C15 ; in the latter case it is a chain of six copies of C16

We will use similar edge gadgets to those of Figure 1 to prove NP-hardness
of QCSP(C1m), for m ≥ 4. If m ≥ 4 is even, then the edge gadget Em consists
of m copies of C1m where each copy – with vertices 1, . . . ,m, is connected to its
successor by edges joining vertex k with vertices k and k + 1 (mod m). In the
first of the copies, the vertex m

2 + 1 is labelled y and a reflexive path of length



m
2 − 1 is added to the vertex labelled 1, which culminates in a vertex labelled x.
The last of the copies of C1m retains the vertex labelling 1, . . . ,m – we consider
the other vertices (except for x and y) to become unlabelled. Of course, E4 is
already drawn in Figure 1. The left end of E6 is drawn in Figure 3 (to the right).
If m ≥ 4 is odd, then the edge gadget Em is drawn in a similar manner, except
vertex m+1

2 + 1 becomes y and the reflexive path of length m−3
2 that culminates

in x at one end and at the other end a vertex that makes a triangle with vertices
1 and 2, respectively. The left end of E5 is drawn in Figure 3 (to the left). These
gadgets are borrowed from [9] and have the property that when the right-hand
cycle C1m is evaluated automorphically to itself then the rest of the cycles are
also evaluated automorphically (but may twist 1

m th each turn – this is why we
have m copies; m is a minimum number, more copies would still work). Finally,
in the left-hand cycle it can be seen that x can be evaluated anywhere except y.

Just as in Proposition 1, we want to try to force vertex-variables v1, . . . , vm,
corresponding to 1, . . . ,m, to be evaluated (up to isomorphism) around C1m .

Proposition 3. QCSP(C1m), for any m ≥ 4 is NP-hard.

5 Cycles whose loops induce a path

We begin by recalling the result for QCSP(P101) from [16], on which our proof
for Propositions 5 and Corollary 1 will be based. In this proof we introduce the
notions of pattern and ∀-selector that will recur in the sequel.
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Fig. 4. Variable and clause gadgets in reduction to QCSP(P101).

Proposition 4. QCSP(P101) is Pspace-complete.

Proof. For hardness, we reduce from quantified not-all-equal 3-satisfiability, whose
Pspace-completeness is well known [18], where we will ask for the extra condition
that no clause has three universal variables (of course, any such instance would
be trivially false). From an instance Φ of QNAESAT we will build an instance
Ψ of QCSP(P101) such that Φ is in QNAE3SAT iff Ψ in QCSP(P101). We will
consider the quantifier-free part of Ψ , itself a conjunction of atoms, as a graph,
and use the language of homomorphisms.



We begin by describing a graph GΦ, whose vertices will give rise to the vari-
ables of Ψ , and whose edges will give rise to the atoms listed in the quantifier-free
part of Ψ . Most of these variables will be existentially quantified, but a small
handful will be universally quantified. GΦ consists of two reflexive paths, labelled
> and ⊥ which contain inbetween them gadgets for the clauses and variables
of Φ. We begin by assuming that the paths > and ⊥ are evaluated to vertices
1 and 3 in P101, respectively (the two ends of P101); later on we will show how
we can effectively enforce this. Of course, once one vertex of one of the paths
is evaluated to, say, 1, then that whole path must also be so evaluated – as the
only looped neighbour of 1 in P101 is 1. The gadgets are drawn in Figure 4. The
pattern is the path P101, that forms the edges of the diamonds in the clause
gadgets as well as the tops and bottoms of the variable gadgets. The diamonds
are braced by two horizontal edges, one joining the centres of the top patterns
and the other joining the centres of the bottom patterns. The ∀-selector is the
path P10, which travels between the universal variable node v2 and the labelled
vertex ∀. (The remainder of this proof is deferred to the appendix.)

Proposition 5. Let C0d1e be a cycle in which e > d+ 3 (d odd) or e > d+ 2 (d
even). Then QCSP(C0d1e) is Pspace-complete.

Proof. The reduction is similar to that employed for Proposition 4. We use the
pattern P10d1 and ∀-selector P

0b
e
2
c1

. The key part to the reduction is how we
get v> and v⊥ to evaluate suitably. Let x1, . . . , y1, . . . , z1, . . . be variables not
appearing in Ψ ′(v>, v⊥) (cf. proof of Proposition 4). In the following, interpret
b e−d−52 c to be 0, if e−d−5

2 < 0. For d odd, set Ψ := ∀x1∃x2, . . . , x d+1
2

∃x d+3
2
, . . . , x d+3

2 +b e−d−5
2 c,∃v>∀y1∃y2, . . . , y d+1

2
∃y d+3

2
, . . . , y d+3

2 +b e−d−5
2 c,∃v⊥

∃z1, . . . , zd
[x1 ⇒ x d+3

2 +b e−d−5
2 c, v>] ∧ [y1 ⇒ y d+3

2 +b e−d−5
2 c, v⊥] ∧ [v>, z1, . . . , zd, v⊥]∧

Ref(x d+3
2
, . . . , x d+3

2 +b e−d−5
2 c) ∧ Ref(y d+3

2
, . . . , y d+3

2 +b e−d−5
2 c) ∧ Ψ ′(v>, v⊥)

For d even, set Ψ := ∀x1∃x2, . . . , x d
2

∃x d+2
2
, . . . , x d

2+b
e−d−5

2 c,∃v>∀y1∃y2, . . . , y d
2
∃y d+2

2
, . . . , y d

2+b
e−d−5

2 c,∃v⊥
∃z1, . . . , zd
[x1 ⇒ x d

2+b
e−d−5

2 c, v>] ∧ [y1 ⇒ y d
2+b

e−d−5
2 c, v⊥] ∧ [v>, z1, . . . , zd, v⊥]∧

Ref(x d+2
2
, . . . , x d

2+b
e−d−5

2 c) ∧ Ref(y d+2
2
, . . . , y d

2+b
e−d−5

2 c) ∧ Ψ ′(v>, v⊥)

Note how the previous proof breaks down in boundary cases, for example on the
cycle C0213 .

The following proofs make use of reductions from Ret(C), where |C| = m.
It is ultimately intended that the variables v1, . . . , vm in the created instance
map automorphically to the cycle. The cycle will be found when the universally
quantified v1 is mapped to a non-looped vertex at maximal distance from the
looped vertices (sometimes this is unique, other times there are two). We then
require that the universally quantified x1 be mapped to a neighbour of v1 at



maximal distance from the loops (given v1’s evaluation, this will either be unique
or there will be two). All other maps of v1 and x1 lead to degenerate cases.

Proposition 6. Let C be an odd m-cycle which contains an induced P11100 (or
is C0213). Then QCSP(C) is NP-hard.

Proposition 7. Let C be an even m-cycle which contains an induced P11100.
Then QCSP(C) is NP-hard.

We note that the previous two propositions do not quite use the same techniques
as one another. All cases of Proposition 5 involving more than one non-loop are
weakly subsumed by Propositions 6 and 7 in the sense that Pspace-completeness
only becomes NP-hardness.

It is interesting to note that the Proposition 7 breaks down on even cycles
with two consecutive loops only. It is no longer possible to ensure to encircle the
cycle. For these cases we will need yet another specialised construction.

Proposition 8. For m ≥ 6, let C be an even m-cycle which contains only two
consecutive loops. Then QCSP(C) is NP-hard.

6 Cycles in which the loops induce a disconnected graph

Let DC := {{dd12 e, . . . , d
dm
2 e}} be the multiset (of two or more elements), where

d1, . . . , dm are the maximal non-looped induced sections (paths) of a cycle C in
which the loops induce a disconnected graph. E.g. a single non-loop between two
loops contributes a value d1/2e = 1 to DC . We need to split into three cases.

Proposition 9. Let C be a partially reflexive m-cycle in which the loops in-
duce a disconnected graph. If DC contains a unique maximal element dd2e, then
QCSP(C) is Pspace-complete.

Proposition 10. Let C be a partially reflexive m-cycle in which the loops induce
a disconnected graph. If DC contains only one value, then QCSP(C) is Pspace-
complete.

Corollary 1. Let C be a partially reflexive m-cycle in which the loops induce a
disconnected graph. Then QCSP(C) is Pspace-complete.

7 Classification

Theorem 1. Let m = d + e ≥ 5. Then QCSP(C0d1e) is in NL if I.) m is odd
and e = 1 or 2, or II.) m is even and e = 0 or 1. Otherwise, QCSP(C0d1e) is
NP-hard.

Proof. Pspace-hardness for irreflexive odd cycles is well-known (see [17]). Hard-
ness for cycles with disconnected loops follows from Corollary 1. Otherwise, for
most cycles hardness follows from Propositions 6 and 7. For reflexive cycles see



Proposition 3 and for cycles with a single non-loop see Proposition 5. Finally, the
outstanding cases of even cycles with two loops are taken care of in Proposition 8.

Now we address the NL cases. For even cycles with no loops, we are equivalent
to QCSP(K2) (in NL – see [17]). For even cycles C02i+11, QCSP(C02i+11) is equiv-
alent to QCSP(P0i+11) (in NL – see [16]). This is because there are surjective
homomorphisms from both (P0i+11)2 to C02i+11 and C02i+11 to P0i+11 (see [7]). For
odd cycles, there are surjective homomorphisms from (P0i1)2 to C02i1 and from
(P0i1)2 to C02i−111. Thus, QCSP(C02i1) is equivalent to both QCSP(C02i−111) and
QCSP(P0i1) and the result follows from [16].

Theorem 2. For C a partially reflexive cycle, either QCSP(C) is in NL or it is
NP-hard.

Proof. Owing to Theorem 1, it remains only to consider partially reflexive cycles
on four or fewer vertices.

Firstly, we consider NL-membership. Each of C := C001, C011, C111, C0000, C0001
and C0011 admits a majority polymorphism. It follows form [5] that QCSP(C)
reduces to the verification of a polynomial number of instances of CSP(Cc), each
of which is in NL by [8]. Finally, the case C0111 is taken care of in Proposition 2.

For hardness, it is well-known that quantified 3-colouring QCSP(K3) is Pspace-
complete [18]. And the like result for C1111 appears as Proposition 1.
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Fig. 5. The wavy line of tractability.



8 Conclusion

We have given a systematic classification for the QCSP of partially reflexive
cycles. Many of the tractable cases can be explained by the notion of Q-core –
a minimal equivalent QCSP template (see [14]) – and this is done implicitly in
Theorem 1. All NP-hard cases we have seen in this paper have templates that
are already Q-cores, with the sole exception of C0101, whose Q-core is P101. By
contrast, all of the tractable cases are not Q-cores, except C0011 and C0111.

Since finding an algorithm for QCSP(C0111) we became aware of a polymor-
phism enjoyed by this structure. C0111 has a ternary polymorphism f so that
there is c ∈ C0111 such that each of the three binary functions f(c, u, v), f(u, c, v)
and f(u, v, c) is surjective. The code from Figure 6 will verify such a polymor-
phism and is intended to run on the excellent program of Miklós Maróti3. The

naming of the vertices has been altered according to the bijection
1 3
2 0
3 1
4 4

(vertices are

numbered from 0 for the computer). If follows from [5] that C0111 is 2-collapsible,

arity 3; size 4; idempotent; preserves 01 10 12 21 23 32 30 03 00 11 22;

value 302=0; value 320=2; value 311=1; value 123=1; value 223=2;

value 003=0; value 032=0; value 030=1; value 230=2

Fig. 6. Code for Maróti’s program (semicolons indicate new line).

and hence QCSP(C0111) may be placed in NL by other means.
We would like to improve the lower bound from NP-hardness to Pspace-

hardness in the cases of Propositions 3, 6, 7 and 8. This might be quite messy in
the last three cases, involving careful consideration of the hardness proof for the
retraction problem. For the reflexive cycles, though, it just requires more careful
analysis of the degenerate cases. This is because we may only have a homomor-
phic image under f of the cycle for v1, . . . , vm, but the universal variables may
be evaluated outside of the image of f({v1, . . . , vm}). We will require something
of the following form (Em is defined at the beginning of Section 4).

Conjecture 1. Let f be a function from {1, . . . ,m} in Em to C1m that is a non-
surjective homomorphism. Let fij , for some i, j ∈ {1, . . . ,m}, be the partial
function that extends f from {1, . . . ,m, x, y} in Em to C1m , by mapping x 7→ i
and y 7→ j. Then fij can be extended to a homomorphism from Em to C1m .

The proof of this seems to be rather technical. For those who doubt it, let us
remind ourselves that the length of the chain in Em may be any fixed function
of m, and the reduction of Propositions 1 and 3 will still work. The conjecture
is surely easier to prove if we make the chains much longer (say exponential in
m).

3 See: http://www.math.u-szeged.hu∼maroti/applets/GraphPoly.html



Finally, we conjecture that none of the NL cases are NL-hard, and that most
likely our dichotomy can be perfected to L/ Pspace-complete.
Acknowledgements. The authors thank the referees and are grateful to St.
Catherine.
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Appendix

8.1 Proposition 3 in full

Proposition 3. QCSP(C1m), for any m ≥ 4 is NP-hard.

Proof. We will reduce from the problem CSP(Km) in essentially the same man-
ner, for m > 4, as we did for m := 4 and QCSP(Km) in Proposition 1. The
salient points remain unchanged, except that we use the gadgets Em for edges in
the graph input of QCSP(Km), instead of E4, and we may assume that all vari-
ables in our reduction instance are existential. So it is that we build a formula
Ψ ′(v1, . . . , vm) in place of the formula Ψ ′(v1, . . . , v4) that we built in Proposi-
tion 1. For m > 4, let us define the shorthands (the variables x′ and x1, . . . , xm

2 −2
are new and must not appear in ϕ).

♦x ϕ(x) := ∀x′∃x1, . . . , xdm2 e−2∃x E(x′, x1) ∧ . . . ∧ E(xdm2 e−2, x) ∧ ϕ(x)

Recalling that C1m is reflexive, it is not hard to verify that ♦x may be satisfied on
C1m iff x takes at least 2 values (m even) or iff x takes at least two non-adjacent
values (m odd). To elucidate, let us consider the two examples, when m := 6, 5.

♦x ϕ(x) := ∀x′∃x1∃x E(x′, x1) ∧ E(x1, x) ∧ ϕ(x) if m := 6
♦x ϕ(x) := ∀x′∃x E(x′, x) ∧ ϕ(x) if m := 5

For m even, we set Ψ :=

∃v1∀vm
2 +1∃v2, . . . , vm

2
[v1 ⇒ vm

2 +1] ∧ ♦vm
2 +2∃vm

2 +3, . . . , vm[vm
2 +1, vm

2 +2 ⇒ v1]∧
Ψ ′(v1, . . . , vm)

For m odd, note that ∃x♦y E(x, y) selects adjacent pairs (but x and y distinct!).
For m odd, we set Ψ :=

∃v1♦v2 E(v1, v2) ∧ ∀vm+3
2
∃v3, . . . , vm+1

2
, vm+5

2
, . . . , vm [v2 ⇒ vm+3

2
] ∧ [vm+3

2
⇒ v1]∧

Ψ ′(v1, . . . , vm)

It is not hard to see that Ψ forces on some evaluation of v1, . . . , vm that these
map isomorphically to 1, . . . ,m in C1m . If they do not, then they instead map
according to a homomorphism f , and we are in a degenerate case. If they had
mapped according to the identity, then a yes-instance (all other variables are
existential) extends to homomorphism (from the graph associated with Ψ) by,
say, g. But now f ◦ g extends to homomorphism in the degenerate case, and we
are done.

8.2 Conclusion of proof of Proposition 4

For each existential variable v1 in Φ we add the gadget on the far left, and for
each universal variable v2 we add the gadget immediately to its right. There is
a single vertex in that gadget that will eventually give rise to a variable in Ψ



that is universally quantified, and it is labelled ∀ (however, it is the vertex at the
other end, labelled v2 in Figure 4, that actually corresponds to the universally
quantified variable) . For each clause of Φ we introduce a copy of the clause
gadget drawn on the right. We then introduce an edge between a variable v and
literal li (i ∈ {1, 2, 3}) if v = li (note that all literals in QNAE3SAT are positive).
We reorder the literals in each clause, if necessary, to ensure that literal l2 of
any clause is never a variable in Φ that is universally quantified. It is not hard to
verify that homomorphisms from GΦ to P101 (such that the paths > and ⊥ are
evaluated to 1 and 3, respectively) correspond exactly to satisfying not-all-equal
assignments of Φ. The looped vertices must map to either 1 or 3 – > or ⊥ – and
the clause gadgets forbid exactly the all-equal assignments. Now we will consider
the graph GΦ realised as a formula Ψ ′′, in which we will existentially quantify
innermost all of the variables of Ψ ′′ except:

– one variable each, v> and v⊥, corresponding respectively to some vertex from
the paths > and ⊥, and

– all variables corresponding to the centre vertex of an existential variable
gadget, and

– all variables corresponding to the ∀-selector (the centre vertex of a universal
variable gadget and the vertex labelled ∀).

We now build Ψ ′ by quantifying, adding outermost and in the order of the
quantifiers of Φ:

– existentially, the variable corresponding to the centre vertex of an existential
variable gadget,

– universally, the variable corresponding to the extra vertex labelled ∀ of a
universal variable gadget, and then existentially, the remaining vertices of
the ∀-selector.

The reason we do not directly universally quantify the vertex associated with
a universal variable is because we want it to be forced to range over only the
looped vertices 1 and 3 (which it does as its unlooped neighbour ∀ is forced
to range over all {1, 2, 3}). Ψ ′(v>, v⊥) is therefore a positive Horn formula with
two free variables, v> and v⊥, such that, Φ is QNAE3SAT iff P101 |= Ψ ′(1, 3).
Finally, we construct Ψ from Ψ ′ with the help of two ∀-selectors, adding new
variables v′> and v′⊥, and setting

Ψ := ∀v′>, v′⊥∃v>, v⊥ E(v′>, v>) ∧ E(v′⊥, v⊥) ∧ Ψ ′(v>, v⊥).

The purpose of universally quantifying the new variables v′> and v′⊥, instead of
directly quantifying v> and v⊥, is to force v′> and v′⊥ to range over {1, 3} (recall
that E(v>, v>) and E(v⊥, v⊥) are both atoms of Ψ). This is the same reason we
add the vertex ∀ to the universal variable gadget.

We claim that P101 |= Ψ ′(1, 3) iff P101 |= Ψ . It suffices to prove that P101 |=
Ψ ′(1, 3) implies P101 |= Ψ ′(3, 1), Ψ ′(1, 1), Ψ ′(3, 3). The first of these follows by
symmetry. The second two are easy to verify, and follow because the second
literal in any clause is forbidden to be universally quantified in Φ. If both paths
> and ⊥ are w.l.o.g. evaluated to 1, then, even if some l1- or l3-literals are forced
to evaluate to 3, we can still extend this to a homomorphism from GΦ to P101.



8.3 Latter part of Section 5 in full

The following proofs make use of reductions from Ret(C), where |C| = m. It
is ultimately intended that the variables v1, . . . , vm in the created instance map
automorphically to the cycle. The cycle will be found when the universally quan-
tified v1 is mapped to a non-looped vertex at maximal distance from the looped
vertices (sometimes this is unique, other times there are two). We then require
that the universally quantified x1 be mapped to a neighbour of v1 at maximal
distance from the loops (given v1’s evaluation, this will either be unique or there
will be two). All other maps of v1 and x1 lead to degenerate cases.

Proposition 6. Let C be an odd m-cycle which contains an induced P11100 (or
is C0213). Then QCSP(C) is NP-hard.

Proof. We reduce from the problem of Ret(C), known to be NP-complete from
[10]. Let C be of the form C0d1e . We find a copy of C with the variables v1, . . . , vm
in the following fashion.

∀v1∃v2, . . . , vm−1
2

∀x1∃x2, . . . , xm+1
2
∃vm+1

2
[v1 ⇒ vm+1

2
] ∧ [x1 ⇒ xm+1

2
] ∧ Ref(vd d+2

2 e
, . . . , vm+1

2
)∧

Ref(xd d+2
2 e

, . . . , xm+1
2

) ∧ xm+1
2

= vm+1
2
∧

∃vm, . . . , vm+3
2

xm−1
2

= vm+3
2
∧ [v1, vm ⇒ vm+1

2
] ∧ Ref(vm+3

2
, . . . , vdm+2

2 e
) ∧ . . .

It is interesting to see where the previous proof breaks down cycles in which
there are less than three loops or a single non-loop. Let us consider the sentence
obtained in the case for C104 .

∀v1∃v2, v3∀x1∃x2, x3 [v1 ⇒ v3] ∧ [x1 ⇒ x3] ∧ E(v3, v3) ∧ x3 = v3∧
∃v5, v4 x2 = v4 ∧ [v1, v5 ⇒ v3] ∧ E(v3, v3) ∧ . . .

The problem with C104 occurs when v1 and x1 are both evaluated as, say, vertex
3 (there can be no v5 between v1 and x2).

Proposition 7. Let C be an even m-cycle which contains an induced P11100.
Then QCSP(C) is NP-hard.

Proof. We reduce from the problem Ret(C), known to be NP-complete from [10].
Let C be of the form C0d1e . We find a copy of C with the variables v1, . . . , vm in
the following fashion.

∀v1∃v2, . . . , vdm−d+2
2 e

∀x1∃x2, . . . , xdm−d+2
2 e[v1 ⇒ vdm−d+2

2 e] ∧ [x1 ⇒ xdm−d+2
2 e] ∧ Ref(vdm−d+2

2 e, xdm−d+2
2 e)∧

∃vdm−d+2
2 e+1, . . . , vdm−d+2

2 e+d−1
vdm−d+2

2 e+d−1 = xdm−d+2
2 e ∧ [vdm−d+2

2 e+1 ⇒ vdm−d+2
2 e+d−1] ∧ Ref(vdm−d+2

2 e+1, vdm−d+2
2 e+d−1)∧

∃vdm−d+2
2 e+d, . . . , vm[vdm−d+2

2 e+d−1 ⇒ vm]



We note that the previous two propositions do not quite use the same techniques
as one another. All cases of Proposition 5 involving more than one non-loop are
weakly subsumed by Propositions 6 and 7 in the sense that Pspace-completeness
only becomes NP-hardness.

It is interesting to see where the Proposition 7 breaks down on even cycles
with two consecutive loops only. It is no longer possible to ensure to encircle the
cycle. For these cases we will need yet another specialised construction.

Proposition 8. For m ≥ 6, let C be an even m-cycle which contains only two
consecutive loops. Then QCSP(C) is NP-hard.

Proof. Let us label the vertices of the cycle 1 to m s.t. the loops are at positions
m
2 and m

2 + 1. We introduce the following shorthand (u′ does not appear in ϕ).

♥u ϕ(u) := ∀u′∃u E(u′, u) ∧ ϕ(u)

The ♥ quantifier is some kind of weak universal quantifier, with the following
important property: if ϕ(2) and ϕ(m−1) are false then ϕ(1) and ϕ(m) are true.

Unlike the previous proofs, which used just v1, . . . , vm, we will need also
w1, . . . , wn and we will be able to say that at least one of them maps automor-
phically to C. We begin with

∀v1∃v2, . . . , vm
2

[v1 ⇒ vm
2

] ∧ E(vm
2
, vm

2
)∧

∀w1∃w2, . . . , wm
2

[w1 ⇒ wm
2

] ∧ E(wm
2
, wm

2
)∧

If v1 and w1 are evaluated on 1 and m, respectively, then vm
2

and wm
2

will be on
m
2 and m

2 + 1, respectively. In the past, we did not care about degenerate cases,
so long as they extend to homomorphism, but here we will use the fact that some
degenerate cases could not extend to homomorphism, if we had used a universal
quantifier. Assuming v1, w1 is mapped to 1,m, these degenerate cases would
come about with z mapped to either 2 or m − 1. Thus, using the ♥ quantifier
we can force z to be mapped to both 1 and m− 1. We complete with

♥z ∃x2, . . . , xm
2
∃vm

2 +1, vm
2 +2 E(vm

2 +1, vm
2 +1) ∧ E(vm

2 +1, vm
2 +2)∧

[z, x2 ⇒ xm
2
, vm

2 +1, vm
2 +2] ∧ vm

2 +1 = xm
2
∧ vm

2 +2 = xm
2 −1∧

∃y2, . . . , ym
2
∃wm

2 +1, wm
2 +2 E(wm

2 +1, wm
2 +1) ∧ E(wm

2 +1, wm
2 +2)∧

[z, y2 ⇒ ym
2
, wm

2 +1, wm
2 +2] ∧ wm

2 +1 = ym
2
∧ wm

2 +2 = ym
2 −1∧

∃vm
2 +3, . . . , vm[vm

2 +2 ⇒ vm, v1]∧
∃wm

2 +3, . . . , wm[wm
2 +2 ⇒ wm, w1].

The key observation is that the statements vm
2 +2 = xm

2 −1 and wm
2 +2 = ym

2 −1
are impossible to satisfy if v1, w1, z is mapped to 1,m, 2 or 1,m,m − 1. This
is why a universal quantifier can not be used for z and why we can not add
vm

2 +2 = xm
2 −1 to the construction from the previous proposition.

8.4 Section 6 in full

Let DC := {{dd12 e, . . . , d
dm
2 e}} be the multiset (of two or more elements), where

d1, . . . , dm are the maximal non-looped induced sections (paths) of a cycle C in



which the loops induce a disconnected graph. E.g. a single non-loop between two
loops contributes a value d1/2e = 1 to DC . We need to split into three cases.
In the following, as in [16], we refer to paths involving loops and non-loops
according to words {0, 1}∗ – where 0 indicates a non-loop and 1 a loop.

Proposition 9 Let C be a partially reflexive m-cycle in which the loops in-
duce a disconnected graph. If DC contains a unique maximal element dd2e, then
QCSP(C) is Pspace-complete.

Proof. Let P be the partially reflexive path, obtained by removing the middle
(or middle two) vertices in the unique section of non-loops of maximal length in
C. It follows from inspection of the proofs from [16] that QCSP(P) is Pspace-
complete even when the universal variables are restricted to range over some
subset of P that contains at least each of the two end-most loops. We reduce
from this problem. The ∀-selector will be P
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. It remains to show how to

relativise the existential variables so they range over precisely P ⊆ C. In order
to do this, we ensure that each existential variable is at distance dd2e − 1 from

its nearest loop, by adding a path of length dd2e − 1 to a loop. The reduction is
clear and the result follows.

Proposition 10 Let C be a partially reflexive m-cycle in which the loops induce
a disconnected graph. If DC contains only one value, then QCSP(C) is Pspace-
complete.

Proof. Let C be over n vertices, and suppose DC contains k instances of its
maximal element f . These may be produced by sections of non-loops of length
2f or 2f − 1. Let g+ be the maximal such length of non-loops. The reduction
is similar to that employed in Proposition 4. The pattern will be P10g+1, while
the ∀-selector will be P0f1. It remains to explain how to evaluate v> and v⊥.
We begin with a universal variable followed by a path of f non-loops and then a
loop (0f1)– just as in the ∀-selector. We then have a sequence of alternations of
1n02f followed finally by 1n. The number of these alternations is d(bk2 c − 1)/2e
from v> and b(bk2 c− 1)/2c from v⊥. The point is that when the initial universal
variables are evaluated at opposite sides of C, with respect to the k large gaps,
then some evaluation forces v> and v⊥ to be at distance exactly distance g+,
across non-loops.

Corollary 1 Let C be a partially reflexive m-cycle in which the loops induce a
disconnected graph. Then QCSP(C) is Pspace-complete.

Proof. Taking into consideration the results of Propositions 9 and 10, the only
remaining case is where DC has multiple – k – copies of its maximal element, and
some other smaller elements also. But, this case can be handled very similarly to
Proposition 10. Simply amend the alternating motif 1n02f to 1n(02f−21n)n02f –
thereby allowing any section of 2f − 2 or fewer non-loops to be crossed for free.


