
Sieving for Shortest Vectors in Ideal Lattices

Michael Schneider

Technische Universität Darmstadt, Germany
mischnei@cdc.informatik.tu-darmstadt.de

Abstract. Lattice based cryptography is gaining more and more impor-
tance in the cryptographic community. It is a common approach to use
a special class of lattices, so-called ideal lattices, as the basis of lattice
based crypto systems. This speeds up computations and saves storage
space for cryptographic keys. The most important underlying hard prob-
lem is the shortest vector problem. So far there is no algorithm known
that solves the shortest vector problem in ideal lattices faster than in reg-
ular lattices. Therefore, crypto systems using ideal lattices are considered
to be as secure as their regular counterparts.
In this paper we present IdealListSieve, a variant of the ListSieve algo-
rithm, that is a randomized, exponential time sieving algorithm solving
the shortest vector problem in lattices. Our variant makes use of the spe-
cial structure of ideal lattices. We show that it is indeed possible to find
a shortest vector in ideal lattices faster than in regular lattices without
special structure. The practical speedup of our algorithm is linear in the
degree of the field polynomial. We also propose an ideal lattice variant
of the heuristic GaussSieve algorithm that allows for the same speedup.

Keywords. Ideal Lattices, Shortest Vector Problem, Sieving Algorithms

1 Introduction

Lattices are discrete additive subgroups of Rm. Their elements can be considered
to be vectors in the Euclidean vector space. One of the most important com-
putational problems in lattices is the shortest vector problem (SVP). Roughly
speaking, given a representation of a lattice, it asks to output a shortest non-zero
element of the lattice.

In 2001, Ajtai, Kumar, and Sivakumar presented a randomized algorithm to
solve the shortest vector problem in lattices. Unfortunately, the space require-
ment of the AKS sieving algorithm is exponential in the lattice dimension, and
therefore the algorithm was not practical. In 2010, Micciancio and Voulgaris
presented two variants of this sieving algorithm that still require exponential
storage, but with much smaller constants. Their algorithm is the first sieving
approach considered to be competitive to enumeration algorithms that solve
SVP and only require polynomial space.

Lattices are widely used in cryptography. There, in order to save storage for
cryptographic keys, it is common to use structured lattices. The NTRU crypto
system [HPS98] for example uses so-called cyclic lattices, where for each lattice

vector v, its rotations rot(v) consisting of the rotated lattice vectors are also
elements of the lattice. The work of [Mic07] initiated the usage of more general,
structured lattices. These are used in the signature schemes [LM08,Lyu09], for
the encryption systems [SSTX09,LPR10], the SWIFFTX hash function family
[LMPR08,ADL+08], or the fully homomorphic encryption scheme of [Gen09], for
example. They were called ideal lattices in [LM06]. The theory of ideal lattices
is based on the work of [PR06,LM06]. Cyclic lattices are a special case of ideal
lattices.

Micciancio proved a worst-case to average-case reduction for ideal lattices in
[Mic07], where he showed that inverting his one-way function is as hard as solving
ideal lattice problems in the worst case. Lattice problems are even considered
unbroken in the presence of quantum computers, and so far they withstand
sub-exponential attacks. Thus cryptographic schemes based on hard problems
in ideal lattices are good candidates for security requirements in the near and
far future.

So far there is no SVP algorithm making use of the special structure of ideal
lattices. It is widely believed that solving SVP (and all other lattice problems) in
ideal lattices is as hard as in regular lattices. Our intention is to show how sieving
algorithms can be strengthened in ideal lattices using their circular structure.
The idea was already presented in [MV10b]. There, the authors assume that the
amount of storage required by their algorithm decreases with a factor of n, where
n is the degree of the field polynomial. We show that even more not only the
storage but as well the running time of sieving algorithms decreases by a factor
of n. This is an important starting point for assessing the hardness of problems
in ideal lattices.

1.1 Related Work

There are basically three approaches to solve the SVP in lattices: Voronoi-cell
based algorithms, enumeration algorithms, and probabilistic sieving algorithms.
The Voronoi cell based algorithms were presented in [MV10a]. It is the first
deterministic single exponential algorithm for the shortest vector problem. So far,
this type of algorithms is more of theoretical interest. Enumeration algorithms
solve the SVP deterministically in asymptotic time 2O(m log(m)), where m is the
lattice dimension [HS07,PS08]. They perform exhaustive search by exploring
all lattice vectors of a bounded search region. Enumeration algorithms can be
rendered probabilistic using an extreme pruning strategy [GNR10], which allows
for an exponential speedup and makes enumeration the fastest algorithm for
solving SVP in practice. Enumeration algorithms only require polynomial space.

Sieving algorithms were first presented by Ajtai, Kumar, and Sivakumar
[AKS01] in 2001. The runtime and space requirements were proven to be in
2O(m). Nguyen and Vidick [NV08] carefully analyzed this algorithm and pre-
sented the first competitive timings and results. They show that the runtime of
AKS sieve is 25.90m+o(m) and the space required is 22.95m+o(m). The authors also
presented a heuristic variant of AKS sieve without perturbations. Their runtime

2

is 20.41m+o(m) and they require space 20.21m+o(m). In 2010, Micciancio and Voul-
garis [MV10b] presented a provable sieving variant called ListSieve and a more
practical, heuristic variant called GaussSieve. ListSieve runs in time 23.199m+o(m)

and requires space 21.325m+o(m). For GaussSieve, the maximum list size can be
bounded by the kissing number τm, whereas, due to collisions, a runtime bound
can not be proven. The practical runtime is 20.48m seconds, the space require-
ments is expected to be less than 20.18m and turns out to be even smaller in
practice.

Pujol and Stehlé [PS09] improve the theoretical bounds of ListSieve [MV10b]
using the birthday paradox to runtime 22.465m+o(m) and space 21.233m+o(m).
Wang et at. [WLTB10] present a heuristic variant of the Nguyen-Vidick sieve
running in 20.3836m+o(m) with space complexity of 20.2557m. The work of [BN09]
deals with all `p norms, generalizing the AKS sieve. There is only one public im-
plementation of a sieving algorithm, namely gsieve [Vou10], which implements
the GaussSieve algorithm of [MV10b].

Using heuristics like extreme pruning [GNR10], enumeration algorithms out-
perform sieving algorithms, as the SVP challenge [GS10] shows. We hope that it
is possible to integrate heuristics such as extreme pruning to sieving algorithms,
which would make them competitive to enumeration techniques again.

1.2 Our Contribution

Micciancio and Voulgaris already mention the possibility to speed up the sieving
for ideal lattices [MV10b]. They propose to use the cyclic rotations of each
sampled vector to reduce the size of the vectors. For ideal lattices, the “rotation”
of each lattice vector is still an element of the lattice. Therefore, it can be used
in the sieving process. The authors of [MV10b] expect a reduction of the list
size linear in the degree of the field polynomial for ListSieve, and a substantial
impact on the practical behaviour of the GaussSieve algorithm. In this paper,
we present experimental results using this approach. We implement ListSieve
and IdealListSieve without perturbations. Our experiments show that indeed
the storage requirements decrease as expected. But even more, sieving in ideal
lattices can find a shortest lattice vector much faster, with a speedup factor
linear in the degree of the field polynomial in practice. To explain the results,
we use the assumption that the number of reductions used in the sieving process
stays the same in both the original and the ideal cases. We will show that this
assumption conforms with our experiments.

To give an example from our experiments, the measured and fitted runtime
of IdealListSieve in cyclic lattices is 20.52m−21.9 seconds, compared to 20.67m−26.3

seconds for ListSieve, where m is the lattice dimension. In dimension m = 60, the
runtime difference is about 4 hours, which corresponds to a time advantage of
95%. The worst-case runtime of IdealListSieve remains the same as for ListSieve,
since considering all rotations cancels out the linear factor in theory.

To our knowledge, this is the first exact SVP algorithm that can use the
special structure of ideal lattices. (For cyclic NTRU lattices, there is a LLL-
variant using the cyclic rotations [MS01], but this algorithm only finds vectors

3

of size exponential in m, not shortest vectors.) It is often stated that solving
problems in ideal lattices is as hard as in the general case, among others in
[MR08,ADL+08,Lyu09]. Since the runtime of sieving algorithms is exponential,
this linear speedup does not effect the asymptotic runtime of sieving algorithms.
It only helps to speed up sieving in ideal lattices in practice noticeably. For the
fully homomorphic encryption challenges for example, n is bigger than 210, which
would result in a speedup of more than 1000 for sieving. [Lyu09] uses n ≥ 512.
These numbers show that, if one could run sieving in such high dimensions
m > 1000, even linear speedup might lead to huge improvements in practice.

1.3 Organization of this Paper

In Section 2 we present some basic notation and facts on (ideal) lattices. In
Section 3 we show the IdealListSieve algorithm. In Section 4 we give some theo-
retical analysis, and Section 5 shows experimental results of our implementation.
Finally we give a conclusion, including some ideas for enumeration in ideal lat-
tices.

2 Preliminaries

Define the index set [n] = {0, 1, . . . , n − 1}. Im is the identity matrix in di-
mension m, 0m and 1m are m-dimensional column vectors consisting of 0 and
1 entries only. The scalar product of two vector elements x and y is written
〈x | y〉. Throughout this paper, n denotes the degree of polynomials and m is
the dimension of lattices.

Let m, d ∈ N, m ≤ d, and let b1, . . . ,bm ∈ Rd be linearly independent. Then
the set L(B) = {

∑m
i=1 xibi : xi ∈ Z} is the lattice spanned by the basis column

matrix B = [b1, . . . ,bm] ∈ Zd×m. L(B) is called m-dimensional. The basis B
is not unique, unimodular transformations lead to a different basis of the same
lattice. The first successive minimum λ1(L(B)) is the length of a shortest vector
of L(B). The (search) shortest vector problem (SVP) is formulated as follows.
Given a basis B, compute a vector v ∈ L(B)\{0} subject to ‖v‖ = λ1(L). It can
be formulated in every norm, we will consider the Euclidean norm (‖·‖ = ‖·‖2)
in the remainder of this paper.

The lattice determinant det(L(B)) is defined as
√
det(BtB). It is invari-

ant under basis changes. For full-dimensional lattices, where m = d, there is
det(L(B)) = |det(B)| for every basis B. In the remainder of this paper we will
only be concerned with full-dimensional lattices (m = d).

2.1 Ideal Lattices

Ideal lattices are lattices with special structure. Let f = xn + fnx
n−1 + . . .+ f1 ∈

Z[x] be a monic polynomial of degree n, and consider the ring R = Z[x]/〈f(x)〉.
Elements in R are polynomials of maximum degree n − 1. If I ⊆ R is an ideal
in R, each element v =

∑n
i=1 vix

i−1 ∈ I naturally corresponds to its coefficient

4

vector (v1, . . . ,vn) ∈ Zn. Since ideals are additive subgroups, the set of all
coefficient vectors corresponding to the ideal I forms a so-called ideal lattice. For
the sake of simplicity we can switch between the vector and the ideal notations
and use the one that is more suitable in each case.

For each v ∈ R, the elements xi ·v for i ∈ [n] form a basis of an ideal lattice.
We call this multiplication with x a rotation, since for special polynomials the
vector x · v consists of the rotated coefficients of v. In vector notation, the
multiplication of an element with x can be performed by multiplication with the
matrix

rot =

(
0n−1 −f̄
In−1

)
, (1)

where f̄ consists of the coefficients of the polynomial f . If f ∈ R is a monic,
irreducible polynomial of degree n, then for any element v ∈ R, the elements
v,vx, . . . ,vxn−1 are linearly independent (see for example the proof of Lemma
2.12 in [Lyu08]). For f(x) = xn − 1, which is not irreducible over Z, it is easy
to see that the vectors vxi are also linearly independent, unless the vector has
very special form.

The row matrices of the bases used in practice are of the form(
qIn 0

(roti(v))i∈[n] In

)
. (2)

Here the lower part consists of the n rotations of v, which correspond to the
multiplications of the ring element v with xi for i ∈ [n]. The upper part is
necessary to make sure that every element in the lattice can be reduced modulo
q. Bases for higher dimensional lattices can be generated using multiple points
vi and their rotations. The dimension m of the lattice is then a multiple of the
field polynomial degree n.

The usage of ideal lattices reduces the storage amount for a basis matrix
from nm elements to m elements, because every block of the basis matrix is
determined by its first row. In addition, for an ideal basis B, the computation
B · y can be sped up using Fast Fourier transformation from O(mn) to Õ(m).

In this paper we are concerned with three types of ideal lattices, defined by
the choice of f :

– Cyclic lattices: Let f1(x) = xn − 1, i.e., f̄ = (−1, 0, . . . , 0). We call the
ideal lattices of the ring R1 = Z[x]/〈f1(x)〉 cyclic lattices. f1(x) is never
irreducible over Z (x − 1 is always a divisor), therefore cyclic lattices do
not guarantee worst-case collision resistance. The rotation of v is rot(v) =
(vn−1,v0, . . . ,vn−2).

– Anti-cyclic lattices: Let f2(x) = xn + 1, i.e., f̄ = (1, 0, . . . , 0). We call
the ideal lattices of the ring R2 = Z[x]/〈f2(x)〉 anti-cyclic lattices. f2(x)
is irreducible over Z if n is a power of 2. The rotation of v is rot(v) =
(−vn−1,v0, . . . ,vn−2). Anti-cyclic lattices are the ones used most in cryp-
tography.

5

– Prime cyclotomic lattices: Let f3(x) = xn+xn−1+ . . .+1, i.e., f̄ = (1, . . . , 1).
We call the ideal lattices of the ring R3 = Z[x]/〈f3(x)〉 prime cyclotomic
lattices. f3(x) is irreducible over Z if n + 1 is prime. The rotation of v is
rot(v) = (−vn−1,v0−vn−1, . . . ,vn−2−vn−1). We only consider cyclotomic
polynomials of degree n where n+ 1 is prime.1

A nice and more detailed overview about ideal lattices is shown in [Lyu08].

3 IdealListSieve Algorithm

In this section we will present the ListSieve algorithm of [MV10b] and introduce
the ideal lattice variant IdealListSieve. More details about the implementation
will follow in Section 5.

3.1 ListSieve

Recall that the goal is to solve the shortest vector problem, i.e., given a basis
B of a lattice find a non-zero vector v ∈ L(B) with norm equal to λ1(L(B)).
The idea of ListSieve is the following. A list L of lattice vectors is stored. In
each iteration of the algorithm, a new random vector p is sampled uniformly at
random from a set of bounded vectors. This vector p is then reduced using the
list L in the following manner. If a list vector l ∈ L can be subtracted from p
lowering its norm more than a factor δ < 1, p is replaced by p− l. With this, p
gets smaller every time. When the vector has passed the list it is appended to L.
It can be shown that in the end, L will contain a vector of minimal length with
high probability. When the sampled vector p is a linear combination of smaller
list vectors it will be reduced to 0 and not be appended. This rare case is called
a collision. Collisions are important for runtime proofs (they avert a runtime
proof for GaussSieve, for example). For practical issues, they are negligible, since
they occur very seldom. Algorithm 1 shows a pseudo-code of ListSieve without
perturbations.

Originally, ListSieve does not work with lattice points p, but with a perturbed
point p+e with a small error e. The use of perturbations is necessary in order to
upper bound the probability of collisions, which is essential for proving runtime
bounds for the algorithm. Since in practice collisions play a minor role we will
skip perturbations in our implementation. For the sampling of random vectors
in Line 3, [MV10b] use Kleins randomized rounding algorithm [Kle00], which we
will also apply for all our implementations.

3.2 IdealListSieve

One of the properties of ideal lattices is that for each lattice vector v, rotations
of this vector are also contained in the lattice. This is due to the property

1 Other cyclotomic polynomials, where n + 1 is not prime, have different structure,
the rotations are hard to implement, and they are seldom used in practice.

6

Algorithm 1: ListSieve(B, targetNorm)

1 List L← LLL(B) B Pre-reduction with the LLL algorithm
2 while currentBestNorm > targetNorm do
3 p ← sampleRandomLatticeVector(B) B Sampling step
4 ListReduce(p, L, δ = 1− 1/m) B Reduction step
5 if p 6= 0 then
6 L.append(p) B Append step
7 end

8 end
9 return lbest

of the ideal I corresponding to the ideal lattice. Ideals in R are closed under
multiplication with elements from R, and since vectors in ideal lattices are the
same as elements of the ideal, multiplications of these vectors are also elements
of the lattice.

To compute the rotation of a vector v one has to rotate each block of length
n of v. If m = 2n, the first half of v (which belongs to the qIn part in the
first rows of the basis matrix (2)) is rotated and so is the second half. So when
ListSieve tries to reduce the sample p with a vector l = (l1, . . . , ln, ln+1, . . . , lm),
we can also use the vectors

l(j) =
(
rotj((l1, . . . , ln)), rotj((ln+1, . . . , lm))

)
, for j = 1 . . . n− 1 ,

where the first and the second half of the vector is rotated. Therefore, the sample
p can be more reduced in each iteration. Instead of reducing with one single
vector l per entry in the list L, n vectors can be used.

Function IdealListReduce shows a pseudo-code of the function that is
responsible for the reduction part. Compared to the ListSieve algorithm of
[MV10b], this function replaces the ListReduce function. Unfortunately, only
the case where m is a multiple of n allows the usage of rotations of lattice vec-
tors. For the case where n - m, it is not possible to apply the rotation to the last
block of a lattice vector v.

Func. ListReduce(p, L, δ)

1 while
(∃l′ ∈ L : ‖p− l′‖ ≤ δ ‖p‖) do

2 p←p− round(
〈p | l′〉
〈l′ | l′〉) · l

′

3 end
4 return p

Func. IdealListReduce(p, L, δ)

1 while (∃j ∈ [n] , l ∈ L, l′ = rotj(l) :
‖p− l′‖ ≤ δ ‖p‖) do

2 p←p− round(
〈p | l′〉
〈l′ | l′〉) · l

′

3 end
4 return p

The while loop condition in Line 1 introduces the rotation step (for all types
of ideal lattices). The reduction step in Line 2 differs from the original ListSieve
description in [MV10b]. It uses the reduction step known from the Gauss (re-
spectively Lagrange) algorithm (an orthogonal projection), that is also used in
the LLL algorithm [LLL82]. The step is not explained in [MV10b], whereas their

7

implementation [Vou10] already uses this improvement. The slackness parame-
ter δ = 1 − 1/m is used to ensure that the norm decrease is sufficient for each
reduction in order to guarantee polynomial runtime in the list size.

3.3 IdealGaussSieve

For ListSieve, when a vector joined the list once it remains unchanged forever.
GaussSieve introduces the possibility to remove vectors from the list if they can
be more reduced by a newly sampled vector. The reduction process is twofold
in GaussSieve. First, the new vector p is reduced as in ListSieve. Second, all list
vectors are reduced using p. If a vector from the list is shortened, it will leave
the list and pass it again in one of the next iterations. Therefore the list will
consist of less and shorter vectors than in the ListSieve case.

It is easy to include the rotations into GaussSieve in the same manner as
for ListSieve. We can replace the function GaussReduce of [MV10b] by a new
function IdealGaussReduce, which uses the rotations twice. First it is used for
the reduction of p, second for the reduction of list vectors. The rest of GaussSieve
remains unchanged. IdealGaussSieve is also included in our implementation.

4 Predicted Advantage of IdealListSieve

In this section we theoretically analyze the IdealSieve algorithm and try to pre-
dict the results concerning number of iterations I, the total number of reductions
R, and the maximum size L of the list L. For comparison of an algorithm and
its ideal lattice variant we will always use the quotient of a characteristic of the
non-ideal variant divided by the ideal variant. We will always denote it with
speedup. For example, the speedup in terms of reductions is Rorig/Rideal.

Recall that the only change we made in the algorithm is that in the reduction
step, all rotations rotj(l) (for j ∈ [n]) of a vector l in the list L are considered,
instead of only considering l. The runtime proof for ListSieve in [MV10b] uses the
fact that the number of vectors of bounded norm can be bounded exponentially
in the lattice dimension. Therefore, the list size L cannot grow unregulated.
All list vectors have norm less than or equal m ‖B‖. For cyclic and anti-cyclic
lattices, the norm of a vector remains unchanged when rotated. Therefore each
list vector corresponds to n vectors of the same size, which results in a proven list
size of factor n smaller. For prime cyclotomic lattices, the norm might increase
when rotated (the expansion factor is > 1 in that case), therefore it is a bit
harder to prove bounds on the size of the list.

Iterations. We assume that for finding a shortest vector in the lattice, the total
number of reductions is the same. Our experiments show that this assumption
is reasonable (cf. Section 5). In this case we predict the number of iterations
of IdealListSieve compared to ListSieve. When ListSieve performs t iterations
(sampling - reducing - appending), our assumption predicts that IdealListSieve
takes t/n iterations, since in t/n steps it can use the same number of list vectors

8

for reduction, namely n · t/n. Therefore, we expect the number of iterations for
IdealListSieve to be an n-th fraction of ListSieve.

Maximum List Size. Since in every iteration one single vector is sampled and
appended to the list, the maximum list size will be in the order of magnitude as
the number of iterations.

Runtime. The runtime of the whole algorithm grows linearly in the number of
iterations. The runtime of ListReduce is quadratic in the size of the list |L|. As
the list size is smaller by factor n for IdealListReduce, the IdealSieve algorithm
saves a factor n2 in each iteration here. In each call of IdealListReduce, n ro-
tations instead of a single one are used for reduction, therefore the ideal lattice
variant is factor n slower here. In total, each run of IdealListReduce is factor n
faster than ListReduce. Overall we derive a speedup factor of n2 for the ideal
lattice variant concerning the runtime.

Recall that the speedups predicted in this section are asymptotical. They
do not necessarily hold in practice, since we can only run experiments in small
dimensions m ≤ 80. In the next section, we present experimental results com-
paring the ListSieve and IdealListSieve, in order to show if our predictions hold
in practice.

5 Experiments

The public implementation of [Vou10] (called gsieve) allows for running the
GaussSieve algorithm. Based on this, we implemented ListSieve, IdealListSieve,
and IdealGaussSieve. ListSieve is essentially the gsieve implementation without
stack functionality. IdealListSieve uses the subroutine function IdealListReduce

of Section 3 in addition. Both algorithms do not use perturbations. The Ideal-
GaussSieve implements GaussSieve with the additional function. All three im-
plemented algorithms are published online.2

Since we are using the NTL-library [Sho11], it would be possible to im-
plement a generic function IdealReduce for all polynomials f . However, spe-
cializing on a special class of polynomials allows some code improvements and
leads to a huge speed-up in practice. Therefore, we have implemented three dif-
ferent functions for reduction, namely AntiCyclicReduce, CyclicReduce, and
CyclotomicReduce. These functions can be used for sieving in anti-cyclic, cyclic,
or prime cyclotomic lattices, respectively. Here we present experimental results
for cyclic and prime cyclotomic lattices.

All experiments were performed on an AMD Opteron (2.3 GHz) quad core
processor, using one single core, with 64 GB of RAM available. We only apply
LLL as pre-reduction, not BKZ. This is due to the fact that BKZ-reduction is too
strong in small dimensions, and the sieving algorithms are not doing any work
if BKZ already finds the shortest vector. Interestingly, we encountered in our

2 https://www.cdc.informatik.tu-darmstadt.de/de/cdc/personen/

michael-schneider

9

experiments that the effect of pre-reduction for sieving is much less noticeable
as in the enumeration case.

The results shown in this section are average values of 10 randomly generated
lattices in each dimension. Since we do not know the length of a shortest vector in
these lattices, we ran an SVP algorithm first to assess the norm. So we can stop
our sieving algorithms as soon as we have found a vector below that bound. For
cyclic and prime cyclotomic lattice we chose n ∈ {10, 12, 16, 18, 20, 22, 28, 30, 32}
and m = 2n. These are the values where n+ 1 is prime, which is important for
prime cyclotomic lattices. We chose these values for cyclic lattices as well in order
to have results for both lattice types in the same dimensions. The generator of
the ideal lattices is included in Sage [S+10] since version 4.5.2. The modulus q
was fixed as 257. Naturally, the determinant of the lattices is qn, i.e., 257n. For
a second series of experiments, we generate cyclic and prime cyclotomic lattices
with m = 4n. We choose n ∈ {6 . . . 15} (cyclic) and n ∈ {6, 10, 12, 16} (prime
cyclotomic), q is again 257.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 20 30 40 50 60 70

N
um

be
r

of
 R

ed
uc

tio
ns

 /
Ite

ra
tio

ns

Dimension m

Reductions ListSieve
Reductions IdealListSieve

Iterations ListSieve
Iterations IdealListSieve

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 20 30 40 50 60 70

T
im

e
[s

] /
 M

ax
. L

is
t S

iz
e

Dimension m

List Size ListSieve
List Size IdealListSieve

Time ListSieve
Time IdealListSieve

Fig. 1. Results for cyclic lattices. Left: The number of reductions is comparable for
ListSieve and IdealListSieve, whereas the number of iterations differs. Right: The max-
imum list size as well as the runtime decrease for IdealListSieve.

Figure 1 shows the results concerning R, I, L, and the runtime for cyclic
lattices. The speedups for cyclic lattices are shown in Figure 2 and for prime
cyclotomic lattices in Figure 3. Figure 2(a) shows the speedups of IdealListSieve
compared to ListSieve. More exactly it shows the values for the number of itera-
tions I, the maximum list size L, the runtime, and the total number of reductions
R of ListSieve divided by the same values for IdealListSieve in the same lattices.
Figure 2(b) shows the same data for m = 4n. Figures 3(a) and (b) show the
same data using cyclotomic lattices. All graphs contain a line for the identity
function f(m) = m, and a line for f(m) = m/2 or f(m) = m/4, in order to ease
comparison with the prediction of Section 4.

10

 0

 20

 40

 60

 80

 100

 20 30 40 50 60 70

S
pe

ed
up

Dimension m

max. list size
iterations

runtime
reductions

(a) ListSieve, cyclic lattices m = 2n

 0

 20

 40

 60

 80

 100

 20 30 40 50 60 70

S
pe

ed
up

Dimension m

max. list size
iterations

runtime
reductions

(b) ListSieve, cyclic lattices m = 4n

Fig. 2. Speedup of IdealListSieve compared to ListSieve, for cyclic lattices.

 0

 5

 10

 15

 20

 20 30 40 50 60 70

S
pe

ed
up

Dimension m

max. list size
iterations

runtime
reductions

(a) ListSieve, cyclotomic lattices m = 2n

 0

 5

 10

 15

 20

 20 30 40 50 60 70

S
pe

ed
up

Dimension m

max. list size
iterations

runtime
reductions

(b) ListSieve, cyclotomic lattices m = 4n

Fig. 3. Speedup of IdealListSieve compared to ListSieve, for cyclotomic lattices.

5.1 Interpretation

In small dimensions, the results are kind of abnormal. Sometimes one of the ideal
lattice variants finds shortest vectors very fast, which results in speedups of more
than 100, e.g. in dimension m = 36 in Figure 2(b). Therefore, small dimensions
of (say) less than 40 should be taken into account only carefully. Testing higher
dimensions failed due to time reasons. Neither better pre-reduction nor searching
for longer vectors helped decreasing the runtime noticeably.

A first thing that is apparent is that the number of reductions R stays nearly
the same in all cases. With increasing dimension the speedup tends to 1 in all
cases. Therefore our assumption was reasonable, namely that the number of
reductions required to find a shortest vector is the same for the ideal and the
non-ideal variant of ListSieve.

The higher the dimension gets, the closer the list size L and the iteration
counter I get. Again this is how we expected the algorithms to behave. The
runtime grows slower than the number of iterations. In dimension m = 64 for
example, IdealListSieve finds a shortest vector 53 times faster than ListSieve.

11

Considering the number of iterations I, we see that our prediction was not
perfect. For cyclic lattices, the speedups of IdealListSieve are higher than the
predicted factor n; the factor is between n and m (for both m = 2n and m =
4n). This implies that compared to the non-ideal variant, the same number of
reductions is reached in less iterations. In other words, rotating a list vector
l is better than sampling new vectors, for cyclic lattices. Unfortunately, it is
not possible from our experiments to predict the asymptotic behaviour. Testing
higher dimension is not possible due to time restrictions.

In case of prime cyclotomic lattices, the situation is different. The speedup of
iterations is much smaller than for cyclic lattices (≤ 10 in all dimensions). The
only difference between both experiments is the type of lattices. The rotations of
prime cyclotomic lattices are less useful than those of cyclic lattices. A possible
explanation for this is that rotating a vector of a cyclic lattice does not change
the norm of the vector, whereas the rotations of prime cyclotomic lattice vectors
have increased norms. The expansion factor of a ring R denotes the maximum
“blow up” factor of a ring element when multiplied with a second one. More
exactly, the expansion factor θ2(f) of a polynomial f ∈ R in the Euclidean norm
is defined as

θ2(f) = min
{
c :
∥∥axi∥∥

2
≤ c ‖a‖2 ∀a ∈ Z[x]/〈f〉 for 0 ≤ i ≤ n− 1

}
.

The expansion factor in the Euclidean norm is considered in [SSTX09]. For cyclic
(and anti-cyclic) lattices it is easy to see that this factor is 1. For prime cyclotomic

lattices, it is

√
n+1
2 +

√(
n+1
2

)2 − 1 ≈
√
n (for a proof see Appendix A). So when

the norm of the rotated list vectors l increases, this lowers the probability of a
vector to be useful for reduction of the new sample. Therefore, compared to
cyclic lattices, the speedup for iterations decreases. But still, sieving in prime
cyclotomic lattices using the IdealListSieve is up to 10 times faster than in the
original case. In order to check if the expansion factor really is that crucial, it is
necessary to start experiments with different ideal lattices equipped with higher
expansion factor.

5.2 IdealGaussSieve

We also performed experiments using the GaussSieve implementation of Voul-
garis and our IdealGaussSieve version. The results are shown in Figure 4. The
speedup factors are comparable to those of IdealListSieve.

5.3 Anti-Cyclic Lattices

Lattices corresponding to ideals in the ring factored with f(x) = xn + 1 behave
exactly as cyclic lattices. The algebra of both rings differs, but the algorithmic
behaviour is exactly the same. In order to have the polynomial f irreducible, we
choose n ∈ {2, 4, 8, 16, 32} and m = 2n.

12

 0

 20

 40

 60

 80

 100

 20 30 40 50 60 70

S
pe

ed
up

Dimension m

max. list size
iterations

runtime
reductions

stackpoints

(a) GaussSieve, cyclic lattices m = 2n

 0

 20

 40

 60

 80

 100

 20 30 40 50 60 70

S
pe

ed
up

Dimension m

max. list size
iterations

runtime
reductions

stackpoints

(b) GaussSieve, cyclic lattices m = 4n

Fig. 4. Speedup of IdealGaussSieve compared to GaussSieve, for cyclic lattices.

6 Conclusion and Further Work

We have shown that it is indeed possible to make use of the special structure
of ideal lattices when searching for shortest vectors. The gained speedup does
not affect the asymptotic runtime of the SVP algorithms, but it allows for some
improvements in practice. Our experiments show that runtime speedups of up
to 60 are possible in suitable lattice dimensions. With this we also propose the
fastest sieving implementation for ideal lattices.

Unfortunately, the projection of an ideal lattice is not an ideal lattice any
more. This prevents the usage of IdealSieve in block-wise reduction algorithms
like the BKZ algorithm.

6.1 Ideal Enumeration

The enumeration algorithm for exhaustive search for shortest lattice vectors
can also exploit the special structure of cyclic lattices. In the enumeration tree,
linear combinations

∑n
i=1 xibi in a specified search region are considered. For

cyclic (and also anti-cyclic) lattices, a coefficient vector x = (x1, . . . ,xn) and
its rotations roti · x for i ∈ [n] specify the same vector. Therefore it is sufficient
to enumerate the subtree predefined by one of the rotations. It is for example
possible to choose only the coefficient vectors where the top coordinate xn is the
biggest entry, i.e., xn = maxi(xi). This would decrease the number of subtrees
in the enumeration tree with a factor of up to n.

Unfortunately, this approach is only applicable if the input matrix has circu-
lar structure. When LLL-reducing the basis, usually the special structure of the
matrix is destroyed. Therefore, when applying enumeration for ideal lattices one
would lose the possibility of pre-reducing the lattice. Even the symplectic LLL
[GHGN06] does not maintain the circulant structure of the basis.

A second flaw of the ideal enumeration is that it is not applicable to ideal,
non-cyclic lattices. For cyclic lattices it is easy to specify which rotations prede-
fine the same vector, which does not work in the non-cyclic case. As a conclusion

13

we state that ideal sieving is much more practical than ideal enumeration would
be.

References

[ADL+08] Yuriy Arbitman, Gil Dogon, Vadim Lyubashevsky, Daniele Micciancio,
Chris Peikert, and Alon Rosen. SWIFFTX: A proposal for the SHA-3 stan-
dard, 2008. In The First SHA-3 Candidate Conference.

[AKS01] Miklos Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the
shortest lattice vector problem. In STOC, pages 601–610. ACM, 2001.

[BN09] Johannes Blömer and Stefanie Naewe. Sampling methods for shortest
vectors, closest vectors and successive minima. Theor. Comput. Sci.,
410(18):1648–1665, 2009.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC,
pages 169–178. ACM, 2009.

[GHGN06] Nicolas Gama, Nick Howgrave-Graham, and Phong Q. Nguyen. Symplectic
lattice reduction and NTRU. In EUROCRYPT, volume 4004 of LNCS,
pages 233–253. Springer, 2006.

[GNR10] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enumeration
using extreme pruning. In EUROCRYPT, volume 6110 of LNCS, pages
257–278. Springer, 2010.

[GS10] Nicolas Gama and Michael Schneider. SVP Challenge, 2010. available at
http://www.latticechallenge.org/svp-challenge.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based
public key cryptosystem. In ANTS, volume 1423 of LNCS, pages 267–288.
Springer, 1998.

[HS07] Guillaume Hanrot and Damien Stehlé. Improved analysis of Kannan’s short-
est lattice vector algorithm. In CRYPTO, volume 4622 of LNCS, pages
170–186. Springer, 2007.

[Kle00] Philip N. Klein. Finding the closest lattice vector when it’s unusually close.
In SODA 2000, pages 937–941. ACM, 2000.

[LLL82] Arjen Lenstra, Hendrik Lenstra, and László Lovász. Factoring polynomials
with rational coefficients. Mathematische Annalen, 4:515–534, 1982.

[LM06] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knap-
sacks are collision resistant. In ICALP, volume 4052 of LNCS, pages 144–
155. Springer, 2006.

[LM08] Vadim Lyubashevsky and Daniele Micciancio. Asymptotically efficient
lattice-based digital signatures. In TCC, volume 4948 of LNCS, pages 37–54.
Springer, 2008.

[LMPR08] Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen.
Swifft: A modest proposal for FFT hashing. In FSE, volume 5086 of LNCS,
pages 54–72. Springer, 2008.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In EUROCRYPT, volume 6110 of LNCS,
pages 1–23. Springer, 2010.

[Lyu08] Vadim Lyubashevsky. Towards practical lattice-based cryptography. Phd
thesis, University of California, San Diego, 2008.

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and
factoring-based signatures. In ASIACRYPT, volume 5912 of LNCS, pages
598–616. Springer, 2009.

14

[Mic07] Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and
efficient one-way functions. Computational Complexity, 16(4):365–411, 2007.
Preliminary version in FOCS 2002.

[MR08] Daniele Micciancio and Oded Regev. Lattice-based cryptography. In
Daniel J. Bernstein, Johannes A. Buchmann, and Erik Dahmen, editors,
Post-Quantum Cryptography, pages 147–191. Springer, 2008.

[MS01] Alexander May and Joseph H. Silverman. Dimension reduction methods
for convolution modular lattices. In CaLC, volume 2146 of LNCS, pages
110–125. Springer, 2001.

[MV10a] Daniele Micciancio and Panagiotis Voulgaris. A deterministic single ex-
ponential time algorithm for most lattice problems based on Voronoi cell
computations. In STOC, pages 351–358. ACM, 2010.

[MV10b] Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time al-
gorithms for the shortest vector problem. In SODA, pages 1468–1480.
ACM/SIAM, 2010.

[NV08] Phong Q. Nguyen and Thomas Vidick. Sieve algorithms for the shortest
vector problem are practical. J. of Mathematical Cryptology, 2(2), 2008.

[PR06] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from
worst-case assumptions on cyclic lattices. In TCC, volume 3876 of LNCS,
pages 145–166. Springer, 2006.

[PS08] Xavier Pujol and Damien Stehlé. Rigorous and efficient short lattice vectors
enumeration. In Asiacrypt 2008, volume 5350 of LNCS, pages 390–405.
Springer, 2008.

[PS09] Xavier Pujol and Damien Stehlé. Solving the shortest lattice vector problem
in time 22.465n. Cryptology ePrint Archive, Report 2009/605, 2009.

[S+10] W. A. Stein et al. Sage Mathematics Software (Version 4.5.2). The Sage
Development Team, 2010. http://www.sagemath.org.

[Sho11] Victor Shoup. Number theory library (NTL) for C++, 2011. http://www.

shoup.net/ntl/.
[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient

public key encryption based on ideal lattices. In ASIACRYPT, volume 5912
of LNCS. Springer, 2009.

[Vou10] Panagiotis Voulgaris. Gauss Sieve alpha V. 0.1, 2010. Available at http:

//cseweb.ucsd.edu/~pvoulgar/impl.html.
[WLTB10] Xiaoyun Wang, Mingjie Liu, Chengliang Tian, and Jingguo Bi. Improved

Nguyen-Vidick heuristic sieve algorithm for shortest vector problem. Cryp-
tology ePrint Archive, Report 2010/647, 2010. http://eprint.iacr.org/.

A Expansion Factor in the Euclidean Norm

The expansion factor θ2(f) of a polynomial f ∈ R = Z[x]/〈f〉 in the Euclidean
norm is defined as

θ2(f) = min
{
c :
∥∥axi∥∥

2
≤ c ‖a‖2 ∀a ∈ Z[x]/〈f〉 for i ∈ [n]

}
.

It is easy to see that θ2(xn − 1) = θ2(xn + 1) = 1 . It is an easy adaption of
the proof of [Lyu08, Lemma 2.6], already mentioned in [SSTX09]. Here, we will
present the expansion factor of f = xn−1 + xn−2 + . . .+ x+ 1 in the Euclidean
norm.

15

Let λi be the eigenvalues of the matrix M ∈ Rn×n, for i ∈ [n]. The spectral
radius of M is the maximum of the absolute values of the eigenvalues of the
matrix M, i.e. ρ(M) = maxi∈[n]{|λi|}.

The rotation matrix is A =

(
0T
n−1 −1nIn−1

)
. Lemma 1 will help us later in the

proof of the expansion factor of f .

Lemma 1. For every i ∈ [m], the spectral radius of the matrix (Ai)T (Ai) is

ρ = m+1
2 +

√(
m+1
2

)2 − 1.

Proof. We are looking for the eigenvalues of the matrix (Ai)T (Ai), i.e. the values
λ where (Ai)T (Ai) · x = λx for an x ∈ Rn. It is

Ai =

 0 Ii−1
In−i

−1n 0

 ⇒ (Ai)
T · (Ai) =

 In−i −1n−i 0
−1T

n−i n −1T
i−1

0 −1i−1 Ii−1

 .

The equation system
(
(Ai)T (Ai)− λIn

)
· x = 0 is equal to (1− λ)In−i −1n−i 0

−1T
n−i n− λ −1T

i−1
0 −1i−1 (1− λ)Ii−1

 · x = 0 .

We consider two different cases for the value of λ.
Case 1 (λ 6= 1): Dividing the first n− 1 and the last i− 1 rows by 1− λ leads to In−i −1n−i/(1− λ) 0

−1T
n−i n− λ −1T

i−1
0 −1i−1/(1− λ) Ii−1

 · x = 0 .

The sum of all rows leads to 0 in the first n− i and in the last i− 1 columns. In
the (n− i+ 1)th column, we compute(

(n− 1) · (−1)

1− λ
+ n− λ

)
· xn−i+1 = 0 ⇔ λ2 − (n+ 1)λ+ 1

1− λ
= 0.

Therefore we derive the first two eigenvalues λ1,2 = n+1
2 ±

√(
n+1
2

)2 − 1 .

Case 2 (λ = 1): The equation system is in this case −1n−i
−1T

n−i n− 1 −1T
i−1

−1i−1

 · x = 0

which is equivalent to xn−i+1 = 0 ∧
∑n

j=1,j 6=n−i+1 xj = 0. This defines
an eigenspace of dimension n − 2. Therefore, the eigenvalue 1 has geometric
multiplicity n − 2. Since the geometric multiplicity is smaller or equal to the
algebraic multiplicity, and we have already found 2 eigenvalues, the algebraic
multiplicity of the eigenvalue 1 is also n− 2. Since we have found all eigenvalues
we can compute the maximum max(1, λ1, λ2), which is always λ1 = n+1

2 +√(
n+1
2

)2 − 1.

16

Now we can proof the expansion factor of prime cyclotomic polynomials in
the Euclidean norm.

Lemma 2. If f = xn−1 + xn−2 + . . .+ x+ 1, then the expansion factor of f is

θ2(f) =

√
n+1
2 +

√(
n+1
2

)2 − 1.

Proof. The operator norm of an operator between normed vector spaces X and
Y over the same base field, A : X → Y , is defined as

‖A‖ = sup

{
‖Ax‖
‖x‖

: x ∈ X, ‖x‖ 6= 0

}
= inf {c : ‖Ax‖ ≤ c ‖x‖ ∀x ∈ X} .

This can be defined for every norm of the base field of the vector spaces. The
expansion factor defined for the ring Z/〈f〉 is the maximum of the operator norms
of the operators that perform multiplication with xi, for i ∈ [n]. Using the usual
embedding from the ring to a vector space, the operators can be described by
the matrices Ai.

For the Euclidean norm the operator norm of a matrix M is equal to the
square root of the spectral radius of the matrix MTM. In our case, we have to
compute the spectral radius of the matrix (Ai)T (Ai). Therefore, the expansion
factor equals the square root of the value computed in Lemma 1.

17

