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Abstract. This paper presents first results of the Networking and Cryp-
tography library (NaCl) on the 8-bit AVR family of microcontrollers. We
show that NaCl, which has so far been optimized mainly for different
desktop and server platforms, is feasible on resource-constrained devices
while being very fast and memory efficient. Our implementation shows
that encryption using Salsa20 requires 277 cycles/byte, authentication
using Poly1305 needs 211 cycles/byte, a Curve25519 scalar multiplication
needs 22 954 657 cycles, signing of data using Ed25519 needs 23 211 611
cycles, and verification can be done within 32 937 940 cycles. All imple-
mented primitives provide at least 128-bit security, run in constant time,
do not use secret-data-dependent branch conditions, and are open to the
public domain (no usage restrictions).

Keywords: Elliptic-curve cryptography, Edwards curves, Curve25519,
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1 Introduction

This paper describes implementations of the Networking and Cryptography li-
brary (NaCl) [4] on 8-bit AVR microcontrollers. More specifically, we describe
two different approaches, one aiming at higher speed, one aiming at smaller
memory requirements, of porting NaCl to the AVR ATmega family of microcon-
trollers. The aim of the high-speed implementation is not to achieve the highest
possible speed at all (memory-)costs for all primitives. Similarly, the aim of
the low-memory implementation is not to obtain the smallest possible footprint
without any performance considerations. The two implementations are rather
two example tradeoffs between speed and memory footprint that we consider
reasonable and useful for various applications and different microcontrollers in
the ATmega family.

⋆ Part of this work was done while Peter Schwabe was employed by the Research
Center for Information Technology Innovation, Academia Sinica, Taiwan. Permanent
ID of this document: cd4aad485407c33ece17e509622eb554. Date: February 20, 2013
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Previous NaCl optimization focused on large general-purpose server and
desktop CPUs; the “smallest” architecture targeted by previous NaCl optimiza-
tion are ARMv7 CPUs with the NEON vector-instruction set [10]. Despite this
focus on large processors, the NaCl designers claim in [4, Section 4] that

“all of the cryptographic primitives in NaCl can fit onto much smaller
CPUs: there are no requirements for large tables or complicated code”

This paper shows that this claim is actually correct.
The cryptographic primitives used by default in NaCl to provide public-key

authenticated encryption are the Curve25519 elliptic-curve Diffie-Hellman key-
exchange protocol [2], the Poly1305 authenticator [5], and the Salsa20 stream
cipher [3]. The designers of NaCl announced, that the next release of NaCl will
use the Ed25519 elliptic-curve signature scheme [7,8] to provide cryptographic
signatures. This signature scheme—as described in the original paper and as
implemented in this paper—uses the SHA-512 hash function [28].

We will put all software described in this paper into the public domain to
maximize reusability of our results. We will furthermore discuss possibilities for
public benchmarking with the editors of eBACS [9] and XBX [35]. Currently
eBACS does not support benchmarking on AVR microcontrollers; XBX only
supports benchmarking of hash functions.

Main contribution. There exists an extensive literature describing implemen-
tations of cryptographic primitives on AVR microcontrollers and other embed-
ded processors. Some of them have been integrated into libraries that offer a set
of cryptographic functionalities, e.g., AVR-Crypto-Lib [15], TinyECC [24], Na-
noECC [32], or the AVR Cryptolibrary from Efton s.r.o. [13]. These libraries are
specifically tailored to match the specific restricted environment of the AVR.

This paper is the first that ports the entire NaCl library to AVR microcon-
trollers. These include the cryptographic primitives of Salsa20 [3], Poly1305 [5],
Curve25519 [2], and Ed25519 [8]. All primitives are based—in contrast to exist-
ing AVR libraries—on at least 128-bit security and provide new speed records
for that level of security. In addition, all functions run in constant time and
do not contain secret-data-dependent branch conditions. This is important to
provide a certain level of security against basic implementation attacks [22,25].
In particular the implementation is protected against remote side-channel at-
tacks. Other cryptographic libraries for AVR do not concern about this issue.
Moreover, the entire library is very small in size and requires only 17 351 bytes
of code, no static RAM, and less than 1 479 bytes of stack memory; it therefore
fits into very resource-constrained devices such as the very small ATmega family
of microcontrollers, e.g., the ATmega32, ATmega328, and ATmega324A. Last
but not least, we present new speed records for Salsa20 on AVRs and give first
results of scalar multiplication for Curve25519 and signing and verifying using
Ed25519 on AVR.

Roadmap. The paper is organized as follows. In Section 2, we briefly describe
the AVR family of microcontrollers. Section 3 describes the NaCl library and
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the general approach to porting it to AVR. In Section 4, we describe the imple-
mentation of Salsa20. In Section 5, we describe the implementation of Poly1305.
Section 6 presents the implementations of Curve25519 and Ed25519 (including
SHA-512). Results, a comparison with previous work, and a discussion are given
in Section 7.

2 The 8-bit Family of AVR Microcontrollers

Atmel offers a wide range of 8-bit microcontrollers that can be mainly separated
into three groups. High-end devices with high performance (ATxmega), mid-
end devices featuring most functionality needed for the majority of applications
(ATmega), and low-end devices with limited memory and processing power (AT-
tiny). Typical use cases of those devices are embedded systems such as motor
control, sensor nodes, smart cards, networking, metering, medical applications,
etc.

All those devices process data on 8-bit words. There are 32 general pur-
pose registers available, R0-R31, which can be freely used by implementations.
Some of them have special features like R26-R31, which are register pairs used
to address 16-bit addresses in SRAM, i.e., X (R27:R26), Y (R29:R28), and Z
(R31:R30). Some of those registers (R0-R15) can also only be accessed by a
limited set of instructions (in fact only those who do not provide an immediate
value as one operand).

The instruction set offers up to 90 instructions which are equal for all AVR
devices. For devices with more memory or enhanced cores, it is extended by more
than 30 additional instructions. The most important instruction for (public-key)
cryptography is multiplication. It is not available for minimal cores such as the
ATtiny or AT90Sxxxx family. But for enhanced cores like most of the ATmega
and also all ATxmega cores, it allows (signed or unsigned) multiplication of two
8-bit words within two clock cycles. The 16-bit result of the multiplication is
always stored in the register pair R1:R0. The software described in this paper
makes use of these multipliers and does therefore not support the low-end ATtiny
and AT90Sxxxx devices.

ATmega example configurations. We perform all benchmarks on an AT-
mega2560 which has a maximal clock frequency of 16MHz, a flash storage of
256KB and 8KB of RAM. Other typical configurations of ATmega microcon-
trollers are, for example, the ATmega128 with a maximal clock frequency of
16MHz, 128KB of flash storage and 4KB of RAM and the ATmega328 with a
maximal clock frequency of 20MHz, 32KB of flash storage and 2KB of RAM.

Radix-28 representation. The typical representation of integers of size larger
than 8 bits on an 8-bit architecture is to split integers into byte arrays using
radix 28. In other words, an m-bit integer x is represented as n = ⌈m/8⌉ bytes
(x0, x1, . . . , xn−1) such that x =

∑n

i=0
xi2

8∗i. We use this representation for all
integers and elements of finite fields.
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3 The NaCl Library

The Networking and Cryptography library (short: NaCl; pronounced: “salt”) is a
cryptographic library for securing Internet communication [4]. It was developed
as one deliverable of the project CACE (Computer Aided Cryptography Engi-
neering) funded by the European Commission. After CACE ended in December
2010, development of NaCl continued within the VAMPIRE virtual lab [23] of
the European Network of Excellence in Cryptology, ECRYPT II [12]. The main
features of the library are the following:

Easy usability. The library provides a high-level API for public-key authen-
ticated encryption through one function call to crypto box. The receiver of
the message verifies the authentication and recovers the message through
one function call to crypto box open. A pair of a public and a private key
is generated through cryto box keypair. A similarly easy-to-use API is
offered for cryptographic signatures: A function call to crypto sign signs
a message, crypto sign open verifies the signature and recovers the mes-
sage, crypto sign keypair generates a keypair for use with this signature
scheme. Implementors of information-security systems obtain high-security
cryptographic protection without having to bother with the details of the
underlying primitives and parameters. Those are chosen by the NaCl design-
ers.

High security. The key sizes are chosen such that the security level of the
primitives is at least 128 bits. Furthermore, NaCl is the only cryptographic
library that systematically protects against timing attacks by avoiding loads
from addresses that depend on secret data and avoiding branch conditions
that depend on secret data. For further security features of NaCl see the
extensive discussion in [4, Section 3].

High speed. The cryptographic primitives chosen for NaCl allow very fast
implementations on a large variety of architectures.

No usage restrictions. The library is free of copyright restrictions. It is in the
public domain. Furthermore the library avoids all patents that the authors
are aware of. NaCl is free for download at http://nacl.cr.yp.to/.

3.1 Porting NaCl to AVRs

Reusing code. Porting a whole cryptographic library to a memory-restricted
and storage-restricted environment such as AVR microcontrollers is different
from porting each primitive in the library separately. To minimize code size we
can use some functionalities (such as big-integer arithmetic) in multiple prim-
itives. Sometimes this requires optimizing algorithm choices across primitives.
For example, the Poly1305 authenticator described in Section 5 needs multiplica-
tion of 130-bit numbers; the Curve25519 key-exchange and Ed25519 signatures
described in Section 6 need fast multiplication of 256-bit (or at least 255-bit)
numbers. With the Karatsuba technique [20] we decompose the 256-bit (32×32-
byte) multiplication into two 16× 16-byte multiplications and one 17× 17-byte

http://nacl.cr.yp.to/
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multiplication. The latter one can directly be used for the Poly1305 authentica-
tor.

Secret load addresses. On all architectures targeted in previous NaCl op-
timization, loading data from an address that depends on secret data causes
timing variation that can be used by an attacker to mount a timing attack.
The reason is that memory access on all these architectures uses a hierarchy of
transparent caches; the time required for a load operation depends on whether
the requested data is in cache (cache hit) or not (cache miss). Memory access
on the AVR microcontroller is not cached, it takes a constant amount of time.
Loading data from a secret position on an AVR will not leak timing information.
Avoiding loads from secret positions incurs performance penalties, we therefore
decided to not avoid loads from secret addresses on the AVR.

Secret branch conditions. Conditional branches are an even more obvious
source for timing variation than data loads. Even if both possible branches take
the same amount of time to execute, branch conditions that depend on secret
data will leak timing information on most architectures. The reason is that
most processors use branch-prediction techniques to avoid pipeline stalls. If a
branch is predicted correctly, the branch will incur only a small or no penalty;
a mispredicted branch typically takes much more time.

AVR microcontrollers do not use any branch-prediction techniques so in prin-
ciple one can write software that does use secret branch conditions and still runs
in constant time. However, it is very tedious to review such code for constant-
time behaviour and the performance benefits are relatively small. We therefore
follow the strategy of all other NaCl optimizations and avoid all data flow from
secret data to branch conditions.

Randomness generation. NaCl uses the operating-system’s random-number
generator and reads random bytes from /dev/urandom (see [4, Section 3, “Cen-
tralizing randomness”]). This is not possible on the AVR microcontroller. Our
implementation of NaCl does not contain any cryptographically secure random-
ness generator. To test the key-generation functions that require randomness
we used the deterministic randombytes function from the try-anything pro-
gram of the SUPERCOP benchmarking suite. There are two different ways to
address randomness generation on the AVR: One can use NaCl in a way that
does not require randomness by computing key pairs on an external device and
transferring them to the AVR. In NaCl, all operations except key-generation are
deterministic. See [4, Section 3, “Avoiding unnecessary randomness”].

If one needs to generate keys on an AVR microcontroller it is necessary to
include cryptographically secure randomness generation. One possible source of
randomness is, for example, the jitter of the RC oscillator as described in [18].

Message lengths. In the C interface of NaCl, message lengths are passed as
64-bit unsigned integers (datatype unsigned long long). Adresses on the AVR
ATmega microcontrollers have only 16 bits; we therefore omit expensive arith-
metic on 64-bit integers to support messages of a length that would anyway not
fit into the addressable memory.
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Benchmarking. The cycle-count numbers of the various primitives presented
in this paper have been obtained as follows. The numbers given in the following
sections are the results of cycle-accurate simulations for an ATmega2560 micro-
controller. The results given in the Section 7 (the results given in Table 1 in par-
ticular), are obtained through actual measurements on the same targeted micro-
controller. For this purpose we re-implemented the 64-bit resolution cpucycles

cycle counter included in NaCl and the eBACS benchmarking suite SUPER-
COP [9] for AVR. We combine the 8-bit and the 16-bit cycle counters into one
24-bit cycle counter and increase the overall count by 224 for an overflow in-
terrupt of the higher counter. The cycle counts include an 247-cycle overhead
(284-cycle overhead for the low-area variant) for function call and reading the
64-bit cycle count; it is reported as “empty” benchmark in Table 1. We measured
this overhead by subsequently calling an empty function and reading the cycle
counter many times and computing the differences of the measurements. We
also measured the overhead for reading the cycle counter without the overhead
of function calls by computing differences of subsequent readings of the cycle
counter. This overhead is 230 cycles (274 cycles for the low-area variant); it is
reported as “nothing” benchmark in Table 1.

4 Implementation of Salsa20

Salsa20 is a stream cipher which has been proposed in 2005 [3]. It has been
included in the final portfolio of the eSTREAM project initiated by the European
Network of Excellence for Cryptology (ECRYPT) in 2004. The cipher consists of
20 rounds3 where an internal state is modified by various (logical and arithmetic)
transformations. To encrypt a message, a 32-byte key is used.

4.1 High-speed implementation

The Salsa20 stream cipher is realized in the library function crypto stream.
After calling the function, a message with variable length is split into several
input blocks with 64 bytes in length. The cipher is then applied on each message
block by calling the function crypto core. This function first initializes a 32-
byte state and starts the round calculation afterwards. Both functions have been
implemented in assembly to improve the performance of Salsa20.

Initialization of the State. The function init core mainly consists of 7 loop
iterations where the state x (and a copy of the state j which is later added to
the cipher output) gets initialized with the 32-byte key, the 64-byte input, and
a 16-byte nonce. The initialization takes 718 clock cycles in total.

3 Note that there also exist round-reduced versions of Salsa20, e.g., Salsa20/12 apply-
ing 12 rounds instead of 20.
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Round Calculation. The round-calculation function provides the most promis-
ing potential to increase the speed of Salsa20. It consists of ten loop iterations
that include 8 quarterround function calls (thus 80 function calls in total).
Within one quarterround function, three different 32-bit operations (addition,
bitwise addition, and rotations) are performed on either the rows or the columns
of the state x.

We implemented the following optimizations. First, we re-used all 32 avail-
able registers of the AVR to avoid unnecessary storing and loading from the
stack which is costly in terms of memory and speed. For this, we passed the
addresses of the current row or column of the state in the registers R18-R25.
The values of the state are then loaded into the registers R0-R15. The register
pair R17:R16 is reserved to store the 16-bit base address. It will not be modified
within the quarterround function. The remaining address registers R26-R31 are
used for fast addressing during the round transformations. They allow to implic-
itly decrement the addresses before or after a ST (store) or LD (load) instruction.
Second, the state variables are modified in-place. This means that the state is
directly modified without needing extra variables and copy instructions. Third,
the shift operations by 7 and 9 have been realized by cheap logical shift (LSR and
LSL) and rotate through carry instructions (ROR and ROL). Shifting by 13 and 18
has been realized using the MUL instruction by multiplying with the constants
25 = 32 and 22 = 4.

One quarterround function call requires 174 clock cycles in total. The entire
round calculation needs 15 623 clock cycles. The entire crypto stream function
needs 18 166 clock cycles for a 64-byte message. The code size of Salsa20 is 1 750
bytes.

4.2 Low-area implementation

For the low-area version, we looped the final addition of j at the end of the
quarterround function. The remaining assembly parts are already optimized in
terms of low area. We also used the -Os compiler flag to optimize for small
code size. With these modifications, the performance is slightly reduced by 697
clock cycles, resulting in 18 863 clock cycles for crypto stream; the code size is
reduced by 658 bytes to only 1 092 bytes, i.e., 37.6%.

5 Implementation of Poly1305

Poly1305 is a message authentication code (MAC) proposed in 2005 [5]. The
name is related to the used underlying polynomial 2130 − 5. A message m with
variable size n is authenticated using a (random) 32-byte one-time secret key s
(and a 16-byte nonce). The secret key s consists of two parts each 16-bytes in
length, i.e., s = (k, r). First, the message m is split into 16-byte blocks where
each block is padded with a 1. The resulting 17-byte chunks ci, where i ∈ [1, q]
and q = ⌈n/16⌉, are then represented as unsigned litte-endian integer. After
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that, one addition and one modular multiplication is performed for each chunk
c resulting in the 16-byte authenticator h, i.e.,

h = (((c1 · r
q + c2 · r

q−1 + ...+ cq · r
1) mod 2130 − 5) + s) mod 2128. (1)

5.1 High-speed implementation

The most time-consuming operation in Poly1305 is modular multiplication in
the field 2130− 5. In order to obtain high speeds, we implemented both multipli-
cation and reduction in assembly. To save code size, we implemented a 2136-bit
multiplier that is also (re)used by the Karatsuba-multiplier implementation of
Curve25519 and Ed25519 as described in Section 6.

Multiplication of 2136
× 2136. There exist various ways to implement large-

integer multiplication, for example, the widely used schoolbook or Comba mul-
tiplication. On AVRs, it has been shown by various papers that a combina-
tion of both techniques significantly helps in speeding up the computation;
cf., [16,24,32,34].

We followed a similar approach by breaking the 136-bit multiplication into
8×8-byte, 9×9-byte, and 9×8-byte multiplications and combine the partial re-
sults within each block in a conventional schoolbook approach. The 17×17-byte
multiplication takes 1 967 cycles. The code size of the fully unrolled implemen-
tation is 2 944 bytes.

Reduction mod 2130
−5 on AVR. Modular reduction has been implemented

as follows. Since the prime p = 2130 − 5 is a Mersenne-like prime, we can apply
fast reduction by using simple shifts and additions only which are relatively
cheap on AVRs. Consider the integer x ∈ [0, p2) and let x = x1 · 2

130+x0 be the
result of the multiplication. Then, we can exploit the congruence 2130 ≡ 5 and
we can add the shifted higher part x1 · 5 to the lower part x0, i.e., x1 · 5 + x0 =
x1 + (x1 ≪ 2) + x0. After this operation, the result might be still larger than p,
thus another reduction iteration has to be performed on the lower words using
the same technique.

We can optimize the operation by exploiting the gap between 2128 and 2130−5
on the AVR. Since we operate on radix-28, the integer x is represented as x =
x1 · 2

128 + x0 where x0 and x1 are 16-byte arrays, i.e., xj =
∑

15

i=0
xi2

8i with
j = {0, 1}. If we simply add the higher part x1 to the lower part x0, we have an
implicit left shift of x1 by 2. We then only have to shift x1 two bits to the right
to get the reduced result x ≡ x1 + (x1 ≫ 2) + x0 mod p. A right-shift operation
by 2 can be done within 4 clock cycles on AVRs by repeating the following two
instructions: a Logical Shift Right (LSR) instruction (which shifts the LSB to
the carry register) and a Rotate Right Through Carry (ROR) instruction which
rotates a byte by shifting the carry into the MSB. Note also that the first two
LSBs of x1 have to be set to zero before adding it with x0 in order to get the
correct result and to eliminate the two MSBs of the last word of x0.
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5.2 Low-area implementation

For the low-area version of Poly1305, we implemented three operations in a loop,
i.e., two initializations of intermediate variables and the addition operation. For
the latter operation we simply re-used the function bigint add, which is also
used for scalar arithmetic in Ed25519. These modifications have only a slight
impact in performance (15 058 clock cycles are needed for a 64-byte message
instead of 14 312) but the code size is reduced from 946 bytes to only 466, i.e.,
50.7% code-size reduction.

6 Curve25519 and Ed25519

In 2006, Bernstein introduced the Curve25519 elliptic-curve Diffie-Hellman key-
exchange primitive and the corresponding high-speed software for various x86
CPUs [2]. Curve25519 uses the elliptic curve defined by the equation E : y2 =
x3 + 486662x2 + x over the field F2255−19. The scalar multiplication performed
in Curve25519 uses the x-coordinate-based differential addition introduced by
Montgomery in [27, Section 10]. The main computational effort for the scalar
multiplication are 255 so called ladder steps, 255 conditional swaps, each based
on one bit of the scalar, and one inversion in 22

255
−19. Each of the laddersteps

consists of 5 multiplications, 4 squarings, 1 multiplication with the constant
121666, 4 additions, and 4 subtractions in F2255−19.

In 2011, Bernstein, Lange, Duif, Schwabe and Yang introduced the Ed25519
elliptic-curve digital-signature scheme and presented corresponding high-speed
software for Intel Nehalem/Westmere processors [7,8]. The signatures are based
on arithmetic on the twisted Edwards curve [6] defined by the equation E :
x2 + y2 = 1 − 121665

121666
x2y2 over F2255−19. This curve is birationally equivalent to

the Montgomery curve used in the Curve25519 key-exchange software. The main
computational effort for Ed25519 key-pair generation and signing is one fixed-
base-point scalar multiplication with a secret scalar. The main computational
effort for signature verification is one point decompression (Ed25519 stores only
the y coordinate and one bit of the x coordinate of public keys) and one double-
point scalar multiplication with public scalars. One of the two points involved
in this double-point scalar multiplication is the fixed-base-point also used in
key-pair generation and signing.

6.1 High-speed implementation

Arithmetic in F2255
−19. The computations of both Curve25519 key exchange

and Ed25519 signatures break down to operations in the field F2255−19. The most
speed-critical operations are multiplications and squarings. We decided to not
specialize squarings to save code size.

Multiplication is implemented as one level of Karatsuba multiplication, that
breaks the 32× 32-byte multiplication into two 16× 16-byte multiplications and
one 17×17-byte multiplication. Note that the latter multiplication is also used for
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the Poly1305 authenticator described in Section 5. Next to the multiplications,
two 16-byte additions, two 33-byte additions, and two 33-byte subtractions are
required in addition to accumulate the intermediate results. The entire 32× 32-
byte Karatsuba multiplication takes 6 868 cycles; this is slightly slower than
the current state of the art presented at CHES 2011 [19] (6 208 cycles); but we
save in code size, especially for the low-area variant as described later. For the
completely unrolled high-speed version of the 32× 32-byte multiplication, 7 184
bytes of code are required.

Throughout the whole computation we do not reduce modulo 2255 − 19, but
instead only modulo 2256−38. Only at the very end we “freeze” the values modulo
2255 − 19. To perform modular reduction after a multiplication or squaring we
multiply the upper 32 bytes of the 64-byte result by 38 and then add those to the
lower 32 bytes. This will leave us with a 33-bit value. We multiply the highest
bit again by 38 and add the 2-byte result to the lowest two bytes and ripple the
carry through all 32 bytes. This may again produce a carry which we multiply
by 38 and add to the lowest byte. Note that this final addition can not produce a
carry. After an addition or subtraction we simply multiply the final carry bit by
38 and add to (or subtract from) the lowest byte; then ripple through the carry
and again multiply the carry by 38 and add to the lowest byte. These reductions
after multiplication and addition use fully unrolled loops. We use a separate
function call to the modular reduction after multiplication and squaring. This
way we are able to reuse the 32×32-byte multiplication for arithmetic on scalars
in Ed25519 signature verification. Addition and subtraction in F2255−19 do not
use separate function calls to reduction. They have been also fully unrolled.

Curve25519. Our Curve25519 software uses the same sequence of 255 Mont-
gomery ladder steps and 255 conditional swaps as previous optimized implemen-
tations of Curve25519 [10,2]. The conditional swaps neither use lookups from
secret addresses nor (as previously explained) secret branch conditions; a con-
ditional swap between two values a and b depending on one secret bit s is com-
puted as two conditional moves; each conditional move is computed by first
expanding the secret bit s to an all-one or all-zero mask s and then computing
a← a XOR (s AND (a XOR b)).

The final inversion in F2255−19 is computed as exponentiation with 2255 −
20 using the same sequence of 254 squarings and 11 multiplications as [2]. We
implemented this sequence of function calls in C and used the compiler flags
-mmcu=atmega2560 -Os -mcall-prologues to translate it.

Ed25519 key-pair generation and signing. The fixed-base-point scalar mul-
tiplication in key-pair generation and signing is implemented through a signed-
fixed-window scalar multiplication with window size 4. The elliptic-curve arith-
metic uses the extended coordinates introduced in [17]. In total the fixed-base-
point scalar multiplication requires 64 table lookups, 63 additions of a precom-
puted multiple of the basepoint to a point in extended coordinates, and 252
doublings in extended coordinates. At the end of this computation we need one
inversion and two multiplications F2255−19 to convert to affine coordinates. The
precomputed multiples of the base point are in an array marked as PROGMEM.
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This way they do not occupy space in the data segment in RAM but only in
the (much larger) flash memory. Before performing the fixed-base-point scalar
multiplication we copy this table of precomputed points into a space on the stack
to avoid (secretly indexed) lookups from flash memory.

Ed25519 verification. We perform point decompression of the public key in
the same way as explained in [8, Section 5]. We implement the required expo-
nentiation by 2252 − 3 the same way as the inversion: A sequence of function
calls to multiplications and squarings implemented in C and compiled with the
flags -mmcu=atmega2560 -Os -mcall-prologues.

For the double-scalar multiplication we use Straus’ algorithm [31] with window-
size 1, a special case that is sometimes referred to as “Shamir’s trick”. For the
multiplication of 256-bit scalars modulo the group order we use the 32× 32-byte
multiplication and subsequent Barrett reduction [1].

SHA-512. Ed25519 signatures need a 512-bit-output hash function; the original
paper [8] uses SHA-512 but the authors comment that they “will not hesitate
to recommend Ed25519-SHA-3 after SHA-3 is standardized”. In order to pro-
vide a compatible implementation to the Ed25519 implementations currently
included in SUPERCOP [9] we also use Ed25519-SHA-512. We implemented all
speed-critical low-level functions, in particular arithmetic on 64-bit integers, in
assembly. This assembly implementation unrolls all length-8 loops. Calls to the
low-level assembly functionalities are implemented in C. Compiling this SHA-512
C code with the -O3 flag, which we use for most files in the high-speed version,
results in unacceptably large code; for SHA-512 we therefore use compiler flags
-mmcu=atmega2560 -Os -mcall-prologues.

6.2 Low-area implementation

Arithmetic in F2255
−19. The main difference in the implementation of finite-

field arithmetic for the low-area implementation is that we get rid of the 16 ×
16-byte multiplication. Instead we copy the arguments to 17-byte arrays with
leading zero byte and use the 17×17-byte multiplication. The resulting assembly
implementation of 32 × 32-byte multiplication that performs 3 calls to 17 × 17
byte multiplication and all necessary additions and copies for the Karatsuba
multiplication has a size of 3 358 bytes (53.25% less code size compared to the
high-speed version). The runtime is increased to 8 322 clock cycles.

Aside from that change we do not unroll the loops in the modular reduction
after multiplication, addition, and subtraction to further reduce code size.

Curve25519. The high-level implementation of Curve25519 is the same for the
small-area implementation as for the high-speed implementation.

Ed25519 key-pair generation and signing. For the fixed-base-point scalar
multiplication we also use a signed-fixed-window scalar-multiplication algorithm.
Instead of window size 4 (as in the high-speed implementation) we use a window
size of only 2 to save space in flash and RAM.
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Ed25519 verification. The high-level implementation of key-pair generation
and signing is the same for the small-area implementation as for the high-speed
implementation.

SHA-512. SHA-512 uses almost the same code as same in the high-speed im-
plementation. The only difference is that we do not unroll the 3 length-8 loops
in the σ-transformation of SHA-256. This change slightly shrinks the code size
without significantly hurting performance.

7 Results

In this section we report benchmarks of our software and give a comparison with
previous results. As described in Subsection 3.1, the benchmarks are not obtained
in a simulator but by measuring cycles on an actual ATmega2560 microcontroller
clocked at 16MHz (on the Arduino Mega 2560 development board). Measuring
cycles incurs a certain overhead; we give this overhead as a “nothing” benchmark,
i.e. simply differences of subsequent readings to the cycle-counter. The reported
numbers are the median of the cycle counts of 20 runs of the respective primitive.

We compiled all C software with avr-gcc version 4.7.0. For the high-speed
implementation we used compiler flags -mmcu=atmega2560 -O3 where not oth-
erwise reported; for the low-area implementation we used the compiler flags
-mmcu=atmega2560 -Os -mcall-prologues. Our implementation does not use
any space in the data segment and no dynamic memory allocation; so RAM is
only used by the stack4. We measured stack space by writing a canary value
to the whole stack before running the actual function; then reading later how
many of the canary bytes have been overwritten. Reporting code sizes for indi-
vidual primitives does not make much sense because of large portions of code
that is shared between the primitives (for example Curve25519 and Ed25519
share the code for field arithmetic in F2255−19). Instead, we report the code
size (i.e. required space in the flash memory) for both implementations of the
whole library. These sizes were obtained with avr-size from GNU binutils version
2.20.1.20100303. Our results are summarized in Table 1.

Comparison with Related Work. To the authors knowledge, there exist
three resources that present results of Salsa20 on AVR microcontrollers. Meiser
et al. [26] and Eisenbarth et al. [14] reported results of Salsa20 implemented
in C and assembly. Their fastest design needs 17 812 clock cycles for one 64-
byte message block needing 2 984 bytes of code. Their low-area variant needs
18 400 clock cycles and 1 452 bytes of code. Both implementations need 280
bytes of RAM. There is also a C implementation of Salsa20 in the AVR-Crypto-
Lib [15] written by Daniel Otte. His implementation requires 723 clock cycles for
initializing the state and 94 476 clock cycles for encryption.

4 We observed that earlier versions of avr-gcc, for example, avr-gcc 4.5, place some
constants in the data segment; gcc-4.7 stores those constants in program memory.
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Table 1. Benchmark results of NaCl on the AVR ATmega2560 microcontroller

Primitive Message bytes Cycles Stack bytes

nothing high-speed 230
low-area 274

empty high-speed 247
low-area 284

Salsa20 high-speed 8 17 138 266
64 18 166

576 159 510
1024 283 186
2048 565 873

low-area 8 17 830 275
64 18 863

576 165 287
1024 293 408
2048 586 255

Poly1305 high-speed 8 4 146 114
64 14 312

576 122 152
1024 216 512
2048 432 191

low-area 8 4 509 114
64 15 058

576 126 962
1024 224 878
2048 448 685

SHA-512 high-speed 8 535 901 689
64 535 733

576 2 655 521
1024 4 775 501
2048 9 015 172

low-area 8 607 082 669
64 606 916

576 3 012 120
1024 5 417 516
2048 10 228 019

Primitive Operation Cycles Stack bytes

Curve25519 high-speed crypto scalarmult base 22 954 658 681
crypto scalarmult 22 954 657 681

low-area crypto scalarmult base 28 043 134 919
crypto scalarmult 28 043 124 922

Ed25519 high-speed crypto sign keypair 21 924 771 1 566
crypto sign 23 211 611 1 642

crypto sign open 32 619 197 1 317
low-area crypto sign keypair 32 937 940 1 282

crypto sign 34 342 230 1 289
crypto sign open 40 093 186 1 349

NaCl implementation Code size (in bytes)

high-speed 28 883
low-area 17 373
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In view of elliptic-curve implementations on AVR, there exist many results
presented for example in [16,21,33,34]. Most of these results are hard to compare
since the implementations differ in various ways such as in the size of the underly-
ing finite field, the used ECC group formulae, the multiplication technique (both
in terms of group and field arithmetic), and additionally implemented higher-
level protocols (e.g., hash functions, signing and verifying of messages, random
number generation, ...). For example, one of the first who reported the perfor-
mance of ECC on an ATmega128 are Gura et al. [16] who presented their results
at CHES 2004. They implemented ECC over the NIST standardized curves over
prime-fields Fp160, Fp192, and Fp224. Their implementation needs 17.52 million
clock cycles for a single scalar multiplication on the curve over Fp224. Uhsadel
et al. [33] reported around 10 million cycles for a 160-bit scalar multiplication.

One of the few AVR libraries that support also higher-level protocols are
TinyECC, NanoECC, or CRS-AVR010X-ECC. TinyECC has been presented by
Liu et al. [24] in 2008. The library implements ECDSA, ECDH, and ECIES over
the SECG curves over Fp128, Fp160

5, and Fp192. A single scalar multiplication
needs 6.48 million clock cycles. Signing using ECDSA needs 16 million clock cy-
cles and 27 million cycles in addition to pre-compute the base-point multiples of
the implemented sliding window scalar-multiplication method. The entire library
needs between 15 492 and 19 308 bytes of code (depending on the used multi-
plication method) and around 1 500 bytes of RAM. The low-area variant needs
10 180 bytes of code and 152 bytes of RAM. NanoECC has been proposed by
Szczechowiak et al. [32]. The library implements the NIST-K163 Koblitz curve
over Fp160. They reported 9.37 million clock cycles for one scalar multiplication
and the code size of the library is 46 100 bytes6 and the RAM usage is 1 800
bytes. There exist also another library called CRS-AVR010X-ECC [29] that im-
plements ECDSA and ECDH on SECG curves over Fp160, Fp192, Fp224, and Fp256.
The implementation on the curve over Fp256 needs 5 to 8 kB of code and 750
to 900 bytes of RAM. Signing using ECDSA requires 76.8 million cycles. Their
high-speed implementation requires only 27.2 million cycles with an additional
memory of 16 384 bytes.

Recently, Chu et al. [11] set new speed records for a single scalar multiplica-
tion on Twisted Edwards curves on AVRs. Their implementation needs only 5.9
million clock cycles for a 160-bit curve on an ATmega128. However, the authors
aimed for high-speed without considering implementation attacks, e.g., they im-
plemented the conventional double-and-add method and used data-dependent
branch conditions which can be exploited in implementation attacks [22,25].

Discussion. As explained in the introduction, our implementation of NaCl does
not aim at highest speed at all costs. Instead we aimed at good speeds with a
moderate RAM and ROM usage. With this paper we are hoping for feedback

5 Curve secp160r1 has been used in [24] for evaluating the performance of TinyECC.
6 NanoECC is based on the MIRACLE (Multi-precision Integer and Rational Arith-
metic C/C++ Library) [30], which provides many functions and tools to implement
higher-level protocols.
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from potential users of AVR NaCl telling us what the specific requirements of
their application are. For applications that require higher speeds for a specific
primitive there are various possibilities for speedups, in particular in Curve25519
and Ed25519:

– Arithmetic in F2255−19 does not use special code for squarings but instead
uses calls to the muliplication. A specialized squaring implementation would
speed up both Curve25519 and Ed25519.

– The Karatsuba multiplier used for multiplication in F2255−19 is only slightly
slower than the operand-caching multiplication presented in [19]; however,
switching to operand-caching multiplication would offer further speedups for
Curve25519 and Ed25519.

– The multiplication with the small constant 121 666 in Curve25519 is not
specialized; again we are using a call to the full multiplication. A specialized
function for multiplication with this constant would speed up Curve25519.

– Ed25519 signature verification uses Straus’ algorithm with window size 1
instead of, for example, a sliding-window algorithm that would require sig-
nificantly more RAM. If RAM usage is not a critical limitation we could thus
easily speed up signature verification.

– We do not expect users of AVR NaCl to have any use for the fast batch
verification of signatures; processing many signatures in short time is not
exactly the typical domain for embedded microcontrollers. If applications
benefit from fast batch verification and are willing to spend some space in
RAM, we could also include the fast batch verification based on the Bos-
Coster multi-scalar-multiplication algorithm described in [8, Section 5].

References

1. Paul Barrett. Implementing the rivest shamir and adleman public key encryption
algorithm on a standard digital signal processor. In Andrew M. Odlyzko, editor,
Advances in Cryptology – CRYPTO ’86, volume 263 of Lecture Notes in Computer
Science, pages 311–323. Springer-Verlag Berlin Heidelberg, 1987. 11

2. Daniel Bernstein. Curve25519: New Diffe-Hellman Speed Records. In Moti Yung,
Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, 9th International Con-
ference on Theory and Practice in Public-Key Cryptography - PKC 2006, New
York, NY, USA, April 24-26, 2006. Proceedings, volume 3958, pages 207–228, 2006.
http://cr.yp.to/papers.html#curve25519. 2, 9, 10

3. Daniel Bernstein. New Stream Cipher Designs, volume 4986, chapter The Salsa20
family of stream ciphers, pages 84–97. Springer-Verlag Berlin, 2008. http://cr.

yp.to/papers.html#salsafamily. 2, 6

4. Daniel Bernstein, Tanja Lange, and Peter Schwabe. The Security Impact of a New
Cryptographic Library. In Alejandro Hevia and Gregory Neven, editors, 2nd In-
ternational Conference on Cryptology and Information Security in Latin America,
Santiago, Chile, October 7-10, 2012. Proceedings, volume 7533 of Lecture Notes
in Computer Science, pages 159–176. Springer Berlin Heidelberg, 2012. http://

cryptojedi.org/papers/#coolnacl. 1, 2, 4, 5

http://cr.yp.to/papers.html#curve25519
http://cr.yp.to/papers.html#salsafamily
http://cr.yp.to/papers.html#salsafamily
http://cryptojedi.org/papers/#coolnacl
http://cryptojedi.org/papers/#coolnacl


16 Michael Hutter and Peter Schwabe

5. Daniel J. Bernstein. The Poly1305-AES Message-Authentication Code. In Henri
Gilbert and Helena Handschuh, editors, Fast Software Encryption: 12th Interna-
tional Workshop, FSE 2005, Paris, France, February 21-23, 2005, Revised Selected
Papers, volume 3557 of Lecture Notes in Computer Science, pages 32–49. Springer,
February 2005. http://cr.yp.to/papers.html#poly1305. 2, 7

6. Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Pe-
ters. Twisted edwards curves. In Serge Vaudenay, editor, Progress in Cryptol-
ogy – AFRICACRYPT 2008, volume 5023 of Lecture Notes in Computer Sci-
ence, pages 389–405. Springer-Verlag Berlin Heidelberg, 2008. http://cr.yp.to/

papers.html#twisted. 9
7. Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.

High-speed high-security signatures. In Bart Preneel and Tsuyoshi Takagi, editors,
Cryptographic Hardware and Embedded Systems – CHES 2011, volume 6917 of Lec-
ture Notes in Computer Science, pages 124–142. Springer-Verlag Berlin Heidelberg,
2011. see also full version [8]. 2, 9, 16

8. Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. High-speed high-security signatures. Journal of Cryptographic Engineer-
ing, 2(2):77–89, 2012. http://cryptojedi.org/papers/#ed25519, see also short
version [7]. 2, 9, 11, 15, 16

9. Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT benchmarking of crypto-
graphic systems. http://bench.cr.yp.to (accessed 2013-01-31). 2, 6, 11

10. Daniel J. Bernstein and Peter Schwabe. Neon crypto. In Emmanuel Prouff and
Patrick Schaumont, editors, Cryptographic Hardware and Embedded Systems –
CHES 2012, volume 7428 of Lecture Notes in Computer Science, pages 320–339.
Springer Berlin Heidelberg, 2012. 2, 10
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